
Citation: Duan, H.; Yu, Q.; Ni, Y.; Li,

J.; Fan, L. Effect of Agaricus bisporus

Polysaccharides on Human Gut

Microbiota during In Vitro

Fermentation: An Integrative

Analysis of Microbiome and

Metabolome. Foods 2023, 12, 859.

https://doi.org/10.3390/

foods12040859

Academic Editor: Alberto

Cepeda Sáez

Received: 18 January 2023

Revised: 5 February 2023

Accepted: 14 February 2023

Published: 17 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Effect of Agaricus bisporus Polysaccharides on Human Gut
Microbiota during In Vitro Fermentation: An Integrative
Analysis of Microbiome and Metabolome
Hui Duan 1,2, Qun Yu 1,2, Yang Ni 1,2, Jinwei Li 1,2,3 and Liuping Fan 1,2,3,*

1 State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
2 School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
3 National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
* Correspondence: fanliuping@jiangnan.edu.cn; Tel./Fax: +86-510-85876799

Abstract: Agaricus bisporus polysaccharide (ABP) is an important active component in edible mush-
rooms, but its interaction with gut microbiota is unclear. Therefore, this study evaluated the effect
of ABP on the composition and metabolites of human gut microbiota by in vitro batch fermentation.
The main degrading bacteria for ABP were Bacteroides, Streptococcus, Enterococcus, Paraprevotella,
Bifidobacterium, Lactococcus, Megamonas, and Eubacterium, whose relative abundances increased during
24 h of in vitro fermentation. The short-chain fatty acids (SCFAs) content also increased more than
15-fold, accordingly. Moreover, the effects of ABP on the relative abundance of Bacteroides (Ba.) and
Bifidobacterium (Bi.) at the species level were further determined. ABP can enrich Ba. thetaiotaomi-
cron, Ba. intestinalis, Ba. uniformis, and Bi. longum. PICRUSt analysis revealed that the catabolism
of ABP was accompanied by changes in the metabolism of carbohydrates, nucleotides, lipids and
amino acids, which were also supported by metabonomic results. It is worth mentioning that, after
24 h fermentation, the relative amounts of gamma-aminobutyric acid (GABA), nicotinamide and
nicotinamide adenine dinucleotide (NAD+) had 14.43-, 11.34- and 15.36-fold increases, respectively,
which were positively related to Bacteroides (Ba. thetaiotaomicron, Ba. intestinalis), Streptococcus, and
Bi. longum (|r| > 0.98). These results laid the research foundation for exploring ABP as a potential
prebiotic or dietary supplement for the targeted regulation of gut microbiota or metabolites.

Keywords: Agaricus bisporus; polysaccharides; gut microbiota; metabolome; Bacteroides;
Bifidobacterium longum

1. Introduction

The human gut microbiota, as a diverse ecosystem and “superorganism”, has attracted
increasing attention due to its superb metabolic capacity and vital roles in human health
and physiology [1,2]. Accordingly, there is growing interest in how to manipulate gut
microbiota [3]. The global market targeting gut microbiota therapies and diagnostics was
estimated at approximately USD 2.8–4.0 billion in 2019 and is expected to more than triple
to USD 7.5–15.0 billion by 2024 [3,4].

Undoubtedly, complex polysaccharides are a major driving force in shaping the human
gut microbiota. They encode abundant carbohydrate-active enzymes (CAZymes) and
thereby break down polysaccharides into monosaccharides, which are further fermented
into short-chain fatty acids (SCFAs) in the cecum and colon [5]. SCFAs, including acetate,
propionate, and butyrate, are important energy and signaling molecules, thus affecting
various physiological processes. For example, acetate can relieve colonic inflammation
in mice by stimulating a G-protein-coupled receptor 43 [6]. In addition to acting on the
gastrointestinal tract, the acetate can enter the circulation and then directly influence the
adipose tissue, brain, and liver, inducing overall beneficial metabolic effects [7].

Foods 2023, 12, 859. https://doi.org/10.3390/foods12040859 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods12040859
https://doi.org/10.3390/foods12040859
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0003-1312-8057
https://doi.org/10.3390/foods12040859
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods12040859?type=check_update&version=1


Foods 2023, 12, 859 2 of 16

Agaricus bisporus is an important edible and medicinal mushroom, and its active
polysaccharide (ABP) can regulate gut microbiota and promote gut health [8–10]. Recently,
health-promoting functions of ABP including anti-aging and immunoregulation have been
reported. For example, ABP had potential anti-aging effects on the liver, kidney, brain, and
skin in d-galactose-induced aging mice, and the mechanism may involve enhancing the
antioxidant status and improving the lipid metabolism [11,12]. Oral microcapsules loaded
with ABP can enhance NK cell cytotoxic effects against colon cancer cells, which may be
used for natural killer cells mediated colon cancer immunotherapy [13].

The beneficial effects of mushroom polysaccharides may be mediated by gut micro-
biota, including increases in beneficial bacteria and SCFAs production and the inhibition
of pathogenic bacteria [14,15]. For example, the modulatory effects of various mushroom
polysaccharides on the intestinal immune response were related to the improvements of
the gut microbial communities in aquatic species [15]. However, the interaction between
ABP and gut microbiota remains unclear. In vitro batch fermentation has been widely
used to research gut microbiota fermentation of different polysaccharides, exploring their
effects on community structure, their degradation products, and their function, which is
helpful to promote the development of personalized nutrition strategies [16]. Therefore,
we evaluated the interaction between ABP and gut microbiota, especially the effect of ABP
on the composition and metabolome of human gut microbiota, which laid the research
foundation for exploring ABP as a potential prebiotic and its precision nutrition strategies.

2. Materials and Methods
2.1. Preparation of A. bisporus Polysaccharides

ABP was extracted from dried A. bisporus powders (60 mush) with a 1:20 solid–liquid
ratio (deionized water) at 100 ◦C for 1.5 h (extract twice). The two extracted solutions were
combined and concentrated at 8000× g for 10 min. The supernatant was concentrated
to 1/10 of the original volume with a rotary evaporator (IKA HB 10, Staufen, Germany).
After 75% of alcohol precipitated, Sevag deproteinized, dialyzed and freeze-dried (CHRIST
Alpha 1–4 LSCbasic, Ostrode, Germany), the crude ABP powder was obtained to be used
in the following analysis [17].

2.2. Preparation of Fecal Samples

Five healthy adult volunteers (age 20–30 years with BMI 18.5–24, 2 males and 3 females)
were recruited at Jiangnan University, Wuxu, China. All volunteers (without intestinal
diseases) had not received antibiotics or probiotic products for at least 3 months. The
study was approved by the Ethics Committee of Jiangnan University (JNU20220901IRB007).
The 5.0 g fresh feces were collected and homogenized (2 min) with 35 mL PBS (pH = 7.4,
0.1% cysteine). After centrifugation (600× g, 10 min), the supernatant was placed into an
anaerobic workstation immediately for the following batch culture fermentation [18].

2.3. In Vitro Batch Culture Fermentation

The gut microbiota medium (GMM) with minor modifications was used for in vitro
batch fermentation [19]. Specifically, the carbon source and SCFAs were removed, and 5 g/L
ABP was added as the sole carbon source in the culture medium. The fermentation process
was conducted according to a previous study [18]. The 5 mL of human fecal suspension was
added to 45 mL of GMM medium, and then incubated at 37 ◦C in the anaerobic workstation.
The samples were collected at 0, 6, 12, 18, 24, 48, and 96 h, respectively, to determine the
pH value and the total bacteria load (OD600). After centrifugation (8000× g, 15 min), the
supernatants and precipitation were stored at −80 ◦C for the following analysis. To be
specific, the supernatant was used for analyzing ABP degradation, SCFAs production, and
non-targeted metabolome, while the precipitation was used for 16S rRNA gene sequencing
analysis. The phonel-sulfate method was used to determine ABP degradation.
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2.4. SCFAs Analysis

The pretreatment method of fermentation supernatant (550 µL) referred to a previous
study [18]. The SCFAs level was analyzed using a GC-MS system (Thermo Fisher GCMS-
QP2010, Waltham, MA, USA) equipped with an Rtx-5MS column and a flame ionization
detector. The detailed protocol was also performed as described previously [19].

2.5. Microbiome Analysis

The microbial genomic DNA was extracted with a FastDNA SPIN kit for feces (MP
Biomedicals). The primers 341F (5′- CCTAYGGGRBGCASCAG -3′) and 806R (5′- GGAC-
TACNNGGGTATCTAAT -3′) were used to amplify the V3-V4 region to obtain 16s data.
In addition, species-specific primers rpsD (F: 5′- AWCDAGAATHGCMCGTAA -3′, R: 5′-
YRTCCCAYTCCAACCA- 3′) and groEL (F: 5′- TCCGATTACGAYCGYGAGAAGCT -3′,
R: 5′- CSGCYTCGGTSGTCAGGAACAG -3′) were used to determine the species-level
relative abundance of Bacteroides spp. and Bifidobacteria spp. [20,21]. PCR products were
sequenced with a Miseq sequencer (Illumina Miseq PE300). Data were analyzed using
Qiime2 software (version 1.9.1, Flagstaff, AZ, USA) and the MicrobiomeAnalyst online
website. Linear discriminant analysis effect size (LEfSe) was used to distinguish the poten-
tially significant differences between groups. The functional profiles of gut microbes were
predicted using PICRUSt.

2.6. Untargeted Metabolomics Analysis

The pretreatment method of fermentation supernatant and LC-MS analysis were
performed according to a previous study [18]. The raw LC-MS data were converted
into visual results using Compound Discoverer 3.3, and then analyzed using Simca
14.1 and online tools, including MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/
MetaboAnalyst/ModuleView.xhtml (accessed on 3 January 2022)) and Wekemo Bioin-
cloud (https://bioincloud.tech/task-meta (accessed on 5 January 2022)).

2.7. Statistical Analysis

Data were expressed as mean ± standard deviation (SD) and were analyzed using
GraphPad Prism 8.3 software. A p value < 0.05 was considered statistically significant.
An online website (https://hiplot.com.cn/cloud-tool/drawing-tool/list (accessed on 9
January 2022)) was used to analyze the correlation.

3. Results
3.1. The Changes in ABP Level, pH, and OD600 Values

The ABP content, the values of pH, and the OD600 were measured to reflect the
polysaccharide consumption, the alterations of the fermentation environment and gut
microbial growth. The ABP level reduced sharply from 5.56 to 0.73 mg/mL (more than
85% utilization) within the first 24 h fermentation, and then slowly decreased to approxi-
mately 0.60 mg/mL in the following 72 h (Figure 1A). Similarly, the pH value significantly
decreased from 7.43 to 5.50 during 0–24 h, and then remained stable (Figure 1A). The initial
OD600 value was 0.57, which increased dramatically to 1.31 after 12 h fermentation and
then remained stable. The results showed that the polysaccharide consumption, the pH
value of the fermentation environment, and gut microbial growth basically reached a stable
level within 24 h.

https://www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml
https://bioincloud.tech/task-meta
https://hiplot.com.cn/cloud-tool/drawing-tool/list
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at 24 h, except for valerate. The total SCFAs content increased from 38.98 (0 h) to 596.73 
μg/mL (24 h) by more than 15-fold. The levels of the first two SCFAs were highest, fol-
lowed by isobutyrate and butyrate, and the remaining two had the lowest contents. The 
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3.3. The Diversity of Gut Microbiota 
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can be reflected by the Shannon indexes, which are usually used to estimate microbial 
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Zhang et al. also found similar results in the in vitro fermentation of heparin [18]. The 
results of beta diversity showed that the overall structure of the gut microbiota in the 0 h 
group differed from that of the 12 h and 24 h groups, indicating that the fermentation of 
ABP significantly altered the structure of the gut microbiota (Figure 2B,C).  

Figure 1. The ABP degradation and SCFAs production during in vitro human fecal fermentation.
(A) ABP level, pH and OD600 values at 0, 6, 12, 24, 48 and 96 h; (B,C) the SCFAs levels.

3.2. The Production of the SCFAs

The levels of six SCFAs, including acetate, propionate, isobutyrate, butyrate, iso-
valerate and valerate, were measured during the 96 h fermentation process. As shown in
Figure 1B,C, almost all six SCFAs increased with fermentation and reached equilibrium at
24 h, except for valerate. The total SCFAs content increased from 38.98 (0 h) to 596.73 µg/mL
(24 h) by more than 15-fold. The levels of the first two SCFAs were highest, followed by
isobutyrate and butyrate, and the remaining two had the lowest contents. The results
suggested that ABP contributed to increasing SCFAs levels.

3.3. The Diversity of Gut Microbiota

ABP consumption and SCFAs production were basically stable at 24 h, thus the effects
of ABP on gut microbiota were only considered during the first 24 h. Alpha diversity
can be reflected by the Shannon indexes, which are usually used to estimate microbial
diversity [22]. It decreased at 12 h, possibly due to the great differences in the in vitro and
in vivo environments, and then remained stable as fermentation progressed (Figure 2A).
Zhang et al. also found similar results in the in vitro fermentation of heparin [18]. The
results of beta diversity showed that the overall structure of the gut microbiota in the 0 h
group differed from that of the 12 h and 24 h groups, indicating that the fermentation of
ABP significantly altered the structure of the gut microbiota (Figure 2B,C).
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Figure 2. The effects of ABP on the gut microbiota. (A) alpha diversity; (B,C) beta diversity; (D,E) the
composition of gut microbiota at phylum and genus levels, respectively; (F,G) histograms of LDA
scores and circular cladograms, respectively, for statistically significant differences among the 0 h,
12 h and 24 h groups based on the LefSe analysis. p, phylum; c, class; o, order; f, family; g, genus. The
diameters of the circles (G) are positively related to the relative abundances. Red, green, blue, and
yellow circles indicate microorganisms that are significantly enriched in the 0 h, 12 h and 24 h group,
or are not significantly affected, respectively.
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3.4. The Composition of Gut Microbiota

The effects of ABP on the composition of gut microbiota at the phylum and genus
levels were analyzed (Figure 2D,E). LEfSe analysis was performed on samples at 0, 12 and
24 h to identify the major changing bacteria (Figure 2F,G). At the phylum level, the rel-
ative abundance of Bacteroidetes was the highest (approximately 50%) with no obvious
change during 24 h of in vitro fermentation; the abundance of Firmicutes was reduced,
while Proteobacteria and Fusobacteria were increased (Figure 2D). At the genus level, the
main response bacteria for ABP were Bacteroides, Bifidobacterium, Streptococcus, Eubacterium,
Paraprevotella, Enterococcus, Lactococcus, and Megamonas, whose relative abundance sig-
nificantly increased (p < 0.05, Figures 2E–G and 3A). The genera with reduced relative
abundance included Klebsiella, Alistipes, Sutterella, Enterbacter, Bilophila, and Collinsella
(p < 0.05).
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Obviously, the amount of Bacteroides was the most abundant and varied significantly.
Bifidobacterium was an important beneficial bacterium. Therefore, the effect of ABP on
these two genera at the species level was further determined. A total of 16 Bacteroides
and six Bifidobacterium species were detected. However, the relative abundances of some
species, such as Ba. acidifaciens, Ba. eggerthii, Ba. finegoldii, Bi. animalis, and Bi. breve,
were very low, while the relative abundances of some other species, such as Ba. vulgatus,
Ba. ovatus, Bi. adolescentis, and Bi. ruminantium, decreased or remained constant during ABP
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fermentation. Thus, the species significantly enriched during 24 h of ABP fermentation
were Ba. thetaiotaomicron, Ba. intestinalis, Ba. uniformis, and Bi. longum (p < 0.05, Figure 3B,C).

3.5. Functional Profile of the Gut Microbiota

The results of PICRUSt showed that 43 (level 2) and 292 (level 3) Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways were identified. ABP markedly enriched 11 KEGG
pathways in level 2 after 12 or 24 h of in vitro fermentation (p < 0.05), in which the top
five pathways were carbohydrate metabolism, glycan biosynthesis and metabolism, lipid,
amino acid and nucleotide metabolism (Figure 4). It is worth mentioning that the nerves
system pathway was enriched only in the 24 h group, indicating that ABP has the potential
to alleviate nervous injury by regulating gut microbiota [17].
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3.6. The Effects of ABP on Metabolic Changes

A total of 390 metabolites was obtained after screening and merging the data in
positive and negative ion modes. The results of the OPLS-DA analysis showed that the
quality control (QC) group clustered together, indicating stable meter operation and slight
data errors, while the 0 h, 12 h and 24 h groups showed a clear separation, indicating
that the metabolites in each group were significantly different (Figure 5A). In addition, a
clustering and heat map analysis of the metabolites was performed. Figure 5B showed the
clustering of the top 50 metabolites in abundance and grouping. A number of SCFAs, such
as succinic acid, DL-Lactic acid, 2-Hydroxy-2-methylbutyric acid, 4-Hydroxybutyric acid,
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3-phenyllactic acid, 5-Aminolevulinic acid, and 5-Aminovaleric acid, were clustered in 12 h
and 24 h groups.
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VIP value was obtained by OPLS-DA analysis, and the magnitude of change can be
measured by the fold change (FC) of metabolites. As shown in Figure 5C, the yellow areas
are metabolites that satisfy p < 0.5 and FC > 2 or FC < 0.5, indicating that these metabolites
are significantly different between the 0 h and 24 h groups. Ultimately, 18 metabolites,
such as DL-Tryptophan, L-Glutamine, pipecolic acid, pyruvic acid, gamma-aminobutyric
acid (GABA), indole-3-acetic acid, indole-3-lactic acid, 2-hydroxyvaleric acid, linoleic acid,
2-aminonicotinic acid, nicotinamide, nicotinamide adenine dinucleotide (NAD+), nicotinic
acid mononucleotide, hypoxanthine, and acetylcholine, were identified and screened out
as the potential biomarkers (Table 1). These metabolites were involved in various path-
ways, including amino acid, carbohydrate, lipid, nucleotide, nicotinate, and nicotinamide
metabolism pathways. In addition, the top three increased metabolites in the 24 h group
were nicotinic acid mononucleotide, indole-3-lactic acid, and NAD+, which increased 70.34,
56.10, and 15.36 times, respectively (p < 0.05).
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Table 1. The significantly changed metabolites during in vitro fermentation of ABP.

No. m/z Compound Name Chemical Formula
Fold Change

12 h 24 h

Amino acid metabolism

1 203.08306 DL-Tryptophan C11 H12 N2 O2 0.26 0.09
2 148.0594 L-Glutamic acid C5 H9 N O4 1.12 0.33
3 147.07589 L-Glutamine C5 H10 N2 O3 0.35 0.34
4 130.08623 Pipecolic acid C4 H7 N O4 2.16 3.2
5 104.07035 GABA C3 H4 O3 4.64 14.43
6 146.11764 Acetylcholine C5 H4 N4 O 5.36 7.03
7 174.05607 Indole-3-acetic acid C4 H9 N O2 1.17 2.05
8 204.06669 Indole-3-lactic acid C10 H9 N O2 33.46 56.10

Carbohydrate metabolism

9 87.04528 Isobutyric acid C11 H11 N O3 0.45 10.63
10 117.05603 2-Hydroxyvaleric acid C4 H8 O2 4.29 6.51
11 118.08565 5-Aminovaleric acid C5 H10 O3 0.58 3.6
12 87.00884 Pyruvic acid C6 H11 N O2 2.88 2.8

Lipid metabolism

13 313.2391 Palmitoleic acid C5 H11 N O2 2.1 2.82
14 279.2337 Linoleic acid C16 H30 O2 2.64 8.75

Nicotinate and nicotinamide metabolism

15 123.05496 Nicotinamide C18 H32 O2 8.88 11.34
16 664.11414 NAD+ C6 H6 N2 O 10.38 15.36

17 336.04694 Nicotinic acid
mononucleotide C21 H27 N7 O14 P2 26.83 70.34

Nucleotide metabolism

18 135.03142 Hypoxanthine C11 H14 N O9 P 0.35 0.24
Fold change: The fold change is compared to 0 h. GABA, gamma-aminobutyric acid; NAD+, nicotinamide
adenine dinucleotide.

Pathway analysis was performed for different metabolites between 0 h and 24 h
groups, which can indicate the significantly affected metabolic routes during the in vitro fer-
mentation of ABP (Figure 5D). The results showed that the significantly affected pathways
were amino acid synthesis and metabolism, including arginine biosynthesis, glycine, serine,
threonine, alanine, aspartate, glutamine, glutamate, histidine, and proline metabolism, and
nicotinate and nicotinamide metabolism (p < 0.05).

3.7. Spearman Correlation Analysis

A Spearman correlation analysis was used to explore the correlation between spe-
cific gut microbiota and metabolites (Figure 6). Specifically, the relative abundances of
Bacteroides, Streptococcus, Enterococcus, and Lactococcus were strongly negatively correlated
with the tryptophan, L-glutamine, and hypoxanthine, while positively correlated with
pyruvic acid, indole-3-lactic acid, 2-hydroxyvaleric acid, palmitoleic acid, nicotinamide,
NAD +, and acetylcholine (|r| > 0.80). The Paraprevotella, Megamonas, and Eubacterium were
strongly negatively correlated with the L-glutamic acid, while positively correlated with
pipecolic acid, GABA, indole-3-acetic acid, isobutyric acid, 5-aminovaleric acid, linoleic
acid, and nicotinic acid mononucleotide (|r| > 0.80). At the species level, the Ba. thetaio-
taomicron, Ba. intestinalis, Ba. uniformis, and Bi. longum were strongly negatively associated
with tryptophan, L-glutamic acid, and hypoxanthine, while positively correlated with
pipecolic acid, indole-3-acetic acid, 2-hydroxyvaleric acid, palmitoleic acid, nicotinamide,
and acetylcholine (|r| > 0.80). The results indicated that ABP enriched these beneficial
metabolites by regulating the relative abundances of Bacteroides, Streptococcus, Enterococcus,
Lactococcus, Paraprevotella, Megamonas, and Eubacterium.
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4. Discussion

The gut microbiota is a dynamic microbial community and is considered a super
organ that can regulate the host metabolism [23]. The diversity and composition of gut
microbiota could be affected by A. bispours [10]. The ABP, as an important active com-
pound in A. bispours, is a mixture of mannogalactan (55.8%), (1→4)-(1→6)-α-D-glucan and
(1→6)-β-D-glucans [24]. The monosaccharide composition of ABP is mainly glucose (more
than 95%), with some minor proportions of galactose and xylose [25]. Its immunostimula-
tory and anti-inflammatory activities have been reported [11–13], but its interaction with
gut microbiota is unclear.

In vitro batch fermentation is the simplest methodology to simulate colonic fermenta-
tion [16]. It has been widely used to study the interaction of gut microbiota with specific
foods or food components (such as polysaccharides) [18]. Although it cannot accurately
reflect the complex interactions that occur in the intestine, it also has many advantages.
For example, (i) it can help elucidate the metabolic routes involved and the intermediate
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metabolites appearing by exposing gut microbiota to certain compounds; (ii) this could,
in turn, provide clues on how to promote microbial metabolism toward specific goals,
such as promoting the growth of specific beneficial bacteria or the production of particular
beneficial metabolites; (iii) it is much less time- and cost-consuming than in animal or
human studies [16]. Therefore, it was decided to test the interaction of ABP with gut
microbiota in our study. Due to the great interindividual variability between different
individuals, fresh fecal samples were collected and pooled from five volunteers. Pooling
will ensure that keystone microbes are not missing, which could result in compounds not
being metabolized [16].

Bacteroides spp. is a core dominant genus in the gut; therefore, it has a global effect on
both the host and the gut microbiota. For example, the administration of Ba. thetaiotaomicron
could alleviate diet-induced metabolic disorders and mitigate obesity of the host [26]. In
the microbial community, Bacteroides spp. also play a vital role because, as a nutrition
provider, it can support other microorganisms to colonize and grow in the intestine [27].
In addition, Bacteroides has plenty of outer surface glycoside hydrolases, which degrade a
wide range of polysaccharides [28]. Its versatility may help to explain their high abundance
in the colon [29]. For example, Ba. thetaiotaomicron can break down fructose polymers
to fructo-oligosaccharides, then monomeric fructose [30]. Interestingly, different strains
consumed the individual polysaccharide in different orders and speeds as their different
preferences, facilitating their coexistence in microbial communities [31]. In this study,
Ba. thetaiotaomicron, Ba. intestinalis, and Ba. uniformis, rather than Ba. vulgatus, could rapidly
utilize ABP to produce various monosaccharides and metabolites.

Bifidobacterium spp. plays an important role in human health and metabolism. Its
abundance in patients suffering from diarrhea, allergy, necrotizing enterocolitis, and obesity
is significantly decreased [32]. For example, it can covert aromatic amino acids (tryptophan,
phenylalanine and tyrosine) to aromatic lactic acids (indolelactic acid) via aromatic lactate
dehydrogenase (ALDH) in the infant gut, which was correlated with the activation of aryl
hydrocarbon receptor (AhR), thereby maintaining intestinal homeostasis and immune re-
sponse [33]. Bifidobacterium also evolved the capacity to use complex carbohydrates to thrive
in the competitive niche [32]. The relative abundance of Bi. longum increased gradually
within 24 h of in vitro fermentation, indicating that it could well utilize ABP. Cordeiro et al.
explored the critical biochemical steps involved in high-mannose N-glycan utilization by
Bi. longum, which involved its functionally distinct glycoside hydrolase 38 [34]. Moreover,
various beneficial functions of Bi. longum, including anti-aging [35,36] and the alleviation
of chronic constipation [37] and depression [38], have attracted increasing attention.

Streptococcus spp. could ferment various polysaccharides to produce lactic acid, and
thus its abundance significantly increased when consuming carbohydrate-rich foods, such
as wheat flour [39]. It was related to healthier eating behavior and was enriched in a
‘healthy’ microbiota [40], which exerted potential benefits for the host metabolism, such as
lower systolic blood pressure [41], while higher dietary fiber or polysaccharides intake was
associated with less abundant Collinsella in overweight adults [41]. It was correlated with
unhealthier eating traits, such as a high-fat–low-fiber diet, and had a pro-inflammatory
potential [41–43], which was related to higher body fat mass and higher blood glucose [44].
Interestingly, there was a potential antagonistic effect between Alistipes and Streptococcus.
The increase of Streptococcus may cause a decline in Alistipes [45,46]. Eubacterium spp., a
genus increased by ABP, was butyrate-producing microbes and was considered beneficial
to human health in the same manner as Bifidobacterium [47]. It played an important role
in energy homeostasis, colonic motility and immunomodulation in the gut [48]. More-
over, Eubacterium spp. also performed bile acid and cholesterol conversion in the gut,
thereby maintaining their homeostasis [48]. The relative abundances of Paraprevotella spp.
and Bilophila spp. were increased and reduced, respectively, after ABP in vitro fermenta-
tion. These two genera were associated with Parkinson’s disease (PD) [49]. The relative
abundances of Paraprevotella showed a decrease in female PD patients [49].
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SCFAs are a class of widely studied microbial metabolites. The function of the gut mi-
crobial is commonly measured by the production of SCFAs (mainly acetate, propionate and
butyrate), which are the main microbial fermentation products and are considered benefi-
cial to human health [50,51]. For example, acetate can activate G protein-coupled receptors
that boost microbiota and thus regulate adipose–insulin signaling transduction [6]; bu-
tyrate can maintain gut barrier integrity and exert immune-modulating, anti-inflammatory
and anti-carcinogenic effects [52]; propionate is considered to induce satiety and improve
glucose metabolism [53,54].

The precursors of GABA, an important neurotransmitter, were glutamate, arginine,
putrescine and ornithine. Strandwitz et al. explored the potential GABA production of the
gut microbiota [55]. The results showed that Bacteroides spp. can activate the expression of
GABA-producing pathways and thereby produce large quantities of GABA. The relative
abundance of Bacteroides was negatively associated with depression, mediated by GABA.
Bifidobacterium spp. Could also produce GABA via decarboxylation of glutamate at a low
pH [56,57]. It is worth noting that GABA production by Bacteroides was not only observed
at a low pH (≤5.5), but also at a physiologically relevant pH in the human intestine
(pH 5.7–7.4) [55]. Pipecolic acid is an intermediate metabolite of L-lysine and could activate
GABA receptors [58,59]. The levels of GABA and pipecolic acid decreased in the serum of
mice with colitis and depressive-like behaviors, which could be mitigated by pipecolic acid
supplementation [60].

In addition, NAD+, a coenzyme for redox reactions and a central metabolic regulator,
played a vital role in maintaining mitochondrial function and host health [61]. NAD+ and
its enhancers, such as nicotinamide [62], can activate sirtuin 1, promote autophagy, and
attenuate oxidative stress and inflammation in aged mice [63,64], which were the most
promising interventions to attenuate aging [65,66]. Moreover, L-pipecolic acid could signif-
icantly mitigate depressive behaviors in mice with colitis. The anti-aging and ameliorative
behavioral deficits of ABP were demonstrated in a previous study [17], which may be due
to the increase in these three metabolites (GABA, NAD+ and nicotinamide).

Indoles, as a beneficial product of tryptophan metabolism by gut microbiota, play
important roles in innate immunity, the suppression of inflammation and the removal
of free radicals [67]. Indole-3-lactic acid can be produced by gut bifidobacterial species,
such as Bi. longum [68,69]. Our results also showed that the indole-3-lactic acid level was
significantly positively correlated with the relative abundance of Bi. longum. Indole-3-lactic
acid exerted its anti-inflammatory effect by interaction with the AhR and decrease of the
inflammatory cytokine IL-8 [69]. Henrick et al. found that Bi. infantis-derived indole-3-lactic
acid upregulated immunoregulatory galectin-1 in T cells during polarization, providing a
functional link between beneficial bacteria and immunoregulation in infants [70].

5. Conclusions

In conclusion, this study demonstrated that, during the in vitro fermentation of ABP,
the ABP consumption, the pH of the fermentation environment, gut microbial growth and
the production of SCFA basically reached a stable level within the first 24 h. Moreover,
the main degrading bacteria for ABP were Bacteroides, Streptococcus, Paraprevotella, and
Bifidobacterium, whose relative abundances increased, while the abundances of Klebsiella,
Alistipes, Sutterella, Enterbacter, Bilophila, and Collinsella decreased. It is worth mentioning
that ABP can enrich the species of Ba. thetaiotaomicron, Ba. intestinalis, Ba. uniformis, and
Bi. longum. The changes in gut microbiota led to more than 10-fold increases in the relative
amounts of GABA, nicotinamide and NAD+ at 24 h of ABP fermentation. The change in
the proportions of these metabolites, which directly or indirectly promote autophagy and
attenuate oxidative stress and inflammation, plays an important role in slowing aging and
preventing neurodegenerative disorders. Therefore, ABP has the potential to be used as a
potential prebiotic or dietary supplement to delay aging by regulating the gut microbiota
and its metabolites.
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However, the study is limited by its use of in vitro batch fermentation, which does not
accurately reflect the complex interactions that occur in the human gut. Therefore, further
research is needed to fully understand its impact and validate the results in animal models
or the human population in the future.
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