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Abstract: Patulin (PAT), a type of mycotoxin existing in foodstuffs, is harmful to food safety and
human health. Thus, it is necessary to develop sensitive, selective and reliable analytical methods for
PAT detection. In this study, a sensitive aptasensor based on a dual-signaling strategy was fabricated,
in which a methylene-blue-labeled aptamer and ferrocene monocarboxylic acid in the electrolyte
acted as a dual signal, for monitoring PAT. To improve the sensitivity of the aptasensor, an in-plane
gold nanoparticles–black phosphorus heterostructure (AuNPs-BPNS) was synthesized for signal
amplification. Due to the combination of AuNPs-BPNS nanocomposites and the dual-signaling
strategy, the proposed aptasensor has a good analytical performance for PAT detection with the
broad linear range of 0.1 nM–100.0 µM and the low detection limit of 0.043 nM. Moreover, the
aptasensor was successfully employed for real sample detection, such as apple, pear and tomato. It is
expected that BPNS-based nanomaterials hold great promise for developing novel aptasensors and
may provide a sensing platform for food safety monitoring.

Keywords: black phosphorous; in-plane; electrochemical aptasensor; dual-signaling; patulin

1. Introduction

Patulin (a polyketide lactone 4-hydroxy-4H-furo(3,2c) pyran-2(6H)-one, PAT) belongs
to a class of toxic compounds known as mycotoxins and is a common contaminant in
food and feed. It is a toxic metabolite of at least 60 different species of fungi, such as
Penicillium expansum (P. leucopus), P. patulum (P. urticae, P. griseofulvum), P. crustosum and
A. clavatus [1]. Therefore, humans are likely to be exposed to such toxic substances, which
may cause various toxic effects, such as lung and liver bleeding, kidney damage, neuro-
toxicity, teratogenicity and possible carcinogenicity [2]. Accordingly, the levels of PAT in
food are controlled by a set of regulations. Marín et al. [2] reported that the maximum
level of patulin in pears and apples is 126 mg/kg in the Spanish market, which is twice as
high as the European Union (EU) standard. The World Health Organization and the Food
and Agriculture Organization recommend a maximum daily level of PAT of 0.4 µg/kg
body weight/day [3]. In China, patulin is also a common contaminant in a variety of fruits
and products. The rate of patulin detection was 76.9% in 401 fruit products from eight
provinces in China [4]. Hence, different analytical techniques have been explored for highly
sensitive and accurate detection of PAT, such as chromatography [5–8], colorimetry [9] and
immunoassays [10,11]. However, these methods required heavy instrumentation and com-
plex technology, especially concerning the instability of antibodies in immunoassays [12].
Electrochemical sensors are a powerful technique because of their fast response time, low
cost and excellent flexibility.

At present, aptamers, a type of DNA or RNA, can recognize various target molecules
(metal ions, small molecules, proteins, etc.) with high affinity and have drawn interest in
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sensor design [13,14]. Combining aptamers and electrochemical methods, electrochemical
aptasensors possess an excellent performance. However, most electrochemical aptasensors
have only one signal readout: either a “signal off” or “signal on”. The sensitivity of one-
signal electrochemical sensors is inevitably limited, owing to signal fluctuation [15,16]. A
dual-signaling strategy can solve these drawbacks. Numerous studies of electrochemical
aptasensors with dual-signal channels have been reported to realize the high-performance
detection of proteins and enzymes [17,18]. In dual-signaling electrochemical sensors,
two electrochemical signals are dependent on targets, and their peak intensities show
associated changes simultaneously. Therefore, dual-signaling electrochemical sensors
exhibit a promising performance, with benefits such as a lower limit of detection and
higher sensitivity.

To improve the sensitivity of electrochemical sensors, many nanomaterials have been
applied for the amplification of signal. Among the various nanomaterials, two-dimensional
(2D) nanomaterials have attracted widespread attention due to their unique physicochem-
ical properties [19]. The first 2D nanomaterials appeared in 2004, when graphene was
exfoliated from graphite by the mechanical cleavage technique [20,21]. Black phosphorus
(BP), an allotrope of phosphorus with an orthorhombic lattice, is emerging as an important
successor to 2D nanomaterials [22]. BP nanosheets (BPNS) can be exfoliated from bulk-
layered crystal by breaking down its relatively weak van der Waals interactions, where each
phosphorus atom forms covalent bonds with three neighboring atoms, forming a puckered
orthorhombic structure [23,24]. The intriguing physical properties such as the high charge-
carrier mobility, large on/off ratio, significant anisotropy and layer-dependent band gap
have spurred tremendous interest in BP [25–28]. Owing to a direct, tunable band gap and
no cytotoxicity, BPNS was used to explore photocatalyst and biomedical applications and
more [29–31]. In order to improve the properties of BPNS and broaden their application,
some nanocomposites based on BPNS have been synthesized by hybridization, doping
or functionalization [32]. Sun et al. developed BPNS/graphene for sodium-ion batteries,
which was self-assembled by intercalating BPNS between graphene layers via van der
Waals interactions [33]. Hersam and co-workers reported that BPNS was functionalized by
aryl diazonium through the formation of P–C covalent bonds and applied for field effect
transistors [34]. Currently, the application of BPNS or BPNS-based nanocomposites in
electrochemical sensors has not been adequately explored, which may be because of the
instability of BP. Our group prepared gold nanoparticles–BPNS by electrostatic attraction
for PAT electrochemical sensing [35]. However, this preparation method requires a more
intensive experimental process and cannot enhance the stability of BP. The preparation
of monodispersed BP nanosheets depends on long-time ultrasonic treatment or shear
exfoliation, during which the BP layers are gradually cleaved and defects are generated
on the edges and surface. These defects not only lead to the rapid degradation of the BP
nanosheets, but also undermine the conductivity and electrochemical activity, thus causing
problems in many applications—especially long-term catalysis. It is a good strategy to
design the heterostructures to tailor the properties of 2D nanomaterials [36]. Due to the
intrinsic advantages of the in-plane heterostructures, the in-plane charge carrier mobility of
2D materials is much higher than that between interlayers.

In this work, an in-plane gold nanoparticles–BPNS (AuNPs–BPNS) heterostructure
was synthesized, in which the high chemical activity of the defect sites in BPNS can edge-
selectively reduce HAuCl4, and the formed AuNPs not only occupy the defect sites but
also provide effective immobilization sites for the aptamer. Then, the obtained AuNPs–
BPNS nanocomposites were used to construct a simple dual-signaling electrochemical
aptasensor for sensitive and accurate detection of PAT (Scheme 1). The dual-signal was
obtained from a methylene blue (MB)-labeled aptamer and ferrocene monocarboxylic
acid (FMCA) in the electrolyte. The MB-labeled PAT aptamer self-assembled on the
surface of pre-prepared AuNPs–BPNS/glassy carbon electrode (GCE) through the Au–S
bond. Then, single-stranded DNA complementary to the aptamer formed a rigid double
strand. In the presence of PAT, the aptamer recognized PAT and the complementary
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DNA was released. As a result of the conformational change in the aptamer, the MB tag
came close to the surface of the electrode and the diffusion of FMCA was hindered due
to the increased steric resistance. Thus, the peak current of MB increased and FMCA
decreased, producing “signal on” and “signal off”. In this sensing system, because of
the electronic property of BPNS and the sensitivity of the dual-signaling strategy, the
proposed aptasensor exhibited an excellent performance for PAT detection. Moreover,
the prepared aptasensor could also be applied in real sample detection. The developed
sensing platform exhibited a great potential for the sensitive detection of other aptamer-
specific binding contaminants of foodstuffs.
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Scheme 1. Assembly diagram of the electrochemical dual-signaling aptasensor for PAT detection.

2. Materials and Methods
2.1. Chemicals and Reagents

The BP crystals were purchased from HWRK Chemical Co., Ltd. (Beijing, China) and
stored in a glove box under dark. Chloroauric acid (HAuCl4) was purchased from Acros
Organics (Shanghai, China). N-methyl-2-pyrrolidone (NMP) was purchased from Aldrich
(Shanghai, China). PAT, tris(2-carboxyethyl)phosphine hydrochloride solution (TCEP) and
6-mercaptohexanol (MCH) were purchased from Sangon Biotech. Co., Ltd. (Shanghai,
China). All other solvents were of analytical grade. All solutions were prepared with
ultrapure water (>18 MΩcm) from a Millipore Milli-Q water purification system.

The PAT aptamer and DNA sequence employed in this research were purchased from
TaKaRa (Dalian, China). The sequences were as follows:

PAT aptamer:
5′-MB-CCCGGCCCGCCAACCCGCATCATCTACACTGATATTTTACCTTCCC-SH-3′.
Complement DNA (cDNA): 5′-AAAGGGTTGGCGGGCC-3′.

2.2. Apparatus and Characterization

All of the electrochemical experiments were performed with an IGS1130 electrochemi-
cal workstation (Guangzhou Insens Sensor Technology Co. Ltd, Guangzhou, China). The
three-electrode system consisted of a modified GCE (3 mm in diameter) as the working
electrode, a platinum wire as the auxiliary electrode, and Ag/AgCl (saturated KCl) elec-
trode as the reference electrode; this system was used in all electrochemical investigations.
Transmission electron microscopy (TEM) images were acquired with a Hitachi H-7500
high-resolution transmission electron microscope (Tokyo, Japan) using an accelerating
voltage of 200 kV. UV–Vis absorption spectra were acquired on a Cary 50 Scan UV–Vis
spectrophotometer (Varian, Australia). X-ray photoelectron spectra (XPS) were obtained
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with an ESCALAB 250 Xi XPS system from Thermo Scientific (Waltham, MA, USA). Ra-
man spectra were recorded using a Renishaw Micro-Raman spectroscopy system (London,
England) with an excitation wavelength of 514 nm.

2.3. Preparation of BPNS

For preparation of BPNS, 5 mg of BP crystal was dispersed in 50 mL saturated sodium
hydroxide solution of NMP under sonication at room temperature for 12 h. Then, the
solution was centrifuged at 4000 rpm for 10 min and the supernatant was collected. Finally,
BPNS were obtained by centrifuging the supernatant at 12,000 rpm for 15 min and dispersed
in water as a brown solution.

2.4. Preparation of AuNPs–BPNS

AuNPs were modified on BPNS by in situ reduction. Briefly, 250 µL of 25 mM HAuCl4
was added to 1 mL of 1 mg/mL BPNS solution and stirred for 1 h in oxygen-free dark
conditions. The products were separated by centrifugation and washed with deionized
water. Finally, the obtained product was dispersed in water and stored at 4 ◦C.

2.5. Preparation of the Modified Electrodes

The GCE was polished to a mirror-like surface by 1.0 and 0.3 µm alumina slurries,
respectively, and completely cleaned in ethanol and ultrapure water by ultrasonication.
Then, 10 µL of a 1 mg/mL AuNPs–BPNS solution was dropped into GCE and dried in air
at room temperature. Before the aptamer was fixed, the aptamer was added to phosphate-
buffered saline solution (PBS; pH 7.0) containing 10 mM TCEP for treatment for 1 h to reduce
the presence of disulfide bonds, and then the treated aptamer was dropped onto AuNPs–
BPNS/GCE for 12 h. The electrode was then immersed in 1 mM MCH for 1 h to block the
unbound sites. Finally, 10 µL of 1 µM cDNA was dropped onto the electrode surface for
1.5 h to obtain the final modified electrode cDNA/aptamer/AuNPs–BPNS/GCE.

2.6. Electrochemical Detection of PAT

For the detection of PAT, the modified electrode was immersed in 20 µL of a fixed
concentration of PAT for 60 min under room temperature and then rinsed with the PBS to
wash away the unbound PAT. The obtained electrode was then immersed in PBS (pH 7.4)
containing 1 µM FMCA and investigated by cyclic voltammetry (CV) and cyclic voltam-
metry (SWV). The selective experiments for hydroxymethylfurfural (HMF), aflatoxin B1
(AFB1), aflatoxin M1 (AFM), ochratoxin A (OTA) and zearalenone (ZEN) were performed
under the same conditions. All experiments were performed at room temperature and
measured three times.

2.7. Pretreatment of Food Samples

In this experiment, fresh and infected apples, pears, and tomatoes acted as real food
samples. The pretreatment procedures were performed according to previous work [37].
Apples, pears and tomatoes were smashed separately, then 2.5 g of the obtained sample
mash was added into 10 mL H2O and extracted by ultrasonication for 1 h. The supernatant
from each sample was transferred to a centrifuge tube and centrifuged at 6000 rpm for 5 min.
Then, the extracts were collected. Finally, the supernatant and different concentrations of
PAT were added to PBS.

3. Results
3.1. Characterization of the AuNPs–BPNS

The morphologies of the as-prepared BPNS and AuNPs–BPNS were characterized
by TEM technologies. The TEM micrograph of BPNS is presented in Figure 1A. BPNS
presents a smooth surface with some wrinkles, which is a 2D nanostructure. Figure 1B
shows the TEM patterns of AuNPs–BPNS nanocomposites. AuNPs were successfully
synthesized on the surface of BPNS without other reduction and the inset of Figure 1B
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shows an average diameter of AuNPs of about 21 nm. Elemental analyses of the AuNPs–
BPNS nanocomposites entailed EDX mappings of P, Au and O, where P and O originated
from BPNS and Au indicated the presence of AuNPs (Figure 1C). Notably, AuNPs were
uniformly distributed on the entire BPNS surface. As shown in Figure 1D, the EDX
analysis further revealed the existence of P, Au and O in the nanocomposites.
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The effect of HAuCl4 concentration on the morphology of AuNPs–BPNS was also
investigated. As shown in Figure 2A, when 10 mM HAuCl4 was added, only a small
amount of AuNPs were generated on the surface of the BPNS. As the HAuCl4 concentration
increased to 20 mM (Figure 2B), the amount of AuNPs on the BPNS surface increased. A
satisfying amount of AuNPs–BPNS could be obtained once the concentration of HAuCl4
was increased to 25 mM (Figure 2C). It can be seen that AuNPs were uniformly deposited
on the surface of BPNS without obvious aggregation, which may be because the defect
of BPNS is exactly occupied by the AuNPs. However, when 30 mM HAuCl4 was added
(Figure 2D), the AuNPs showed obvious aggregation. Therefore, 25 mM HAuCl4 was
selected to prepare the AuNPs–BPNS nanocomposites.
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UV–Vis spectroscopy was conducted to characterize the formation process of the
AuNPs. Figure 3A shows the UV–Vis spectrum of BPNS with different amounts of added
HAuCl4. As the amount of BPNS increased, the absorption peaks of the AuNPs increased at
536 nm, demonstrating that the formation of the AuNPs is related to the BPNS. Additionally,
the UV–Vis spectrum of HAuCl4 added to BPNS with the increase in mixing time is
shown in Figure 3B. The absorption peak intensity of the AuNPs increased with the
increase in time, and the color of the solution changed to different shades of a red color.
The successful synthesis of AuNPs may be due to the edge-selective reduction of BPNS.
Moreover, AuNPs can occupy the defects in BPNS to enhance the stability of BPNS [38].
Raman spectroscopy could provide detailed vibrational and rotational patterns for sample
identification. Raman spectra of BPNS and AuNPs–BPNS are provided in Figure 3C.
Three peaks are displayed at 363 cm−1, 440 cm−1 and 466 cm−1, which were ascribed
to one out-of-plane phonon mode Ag

1 and two in-plane phonon modes B2g and Ag
2 for

BP, respectively [39,40]. Upon AuNPs’ modification, the three peaks blue-shifted slightly
because of vibration inhibition. Particularly, the B2g and Ag

2 mode shift was larger than
that of the Ag

1 mode, indicating that AuNPs–BPNS possess an in-plane heterostructure.
Furthermore, the changes in oxidation states of BPNS from pristine BPNS to AuNPs–BPNS
were probed by XPS (Figure S1). In Figure 3D, curves a and b display the P2p spectra
before and after AuNP modification, respectively. The two unchanged peaks near 128.5
and 129.5 eV verify the original state of BP, which is consistent with standard BP. The peak
at 133 eV is due to oxidized phosphorus (i.e., POx) [41–43]. However, for AuNPs–BPNS
(Figure 3Db), the POx peak was enhanced, demonstrating that some BP was oxidized in
the formation of AuNPs–BPNS. The experimental data coincide with those reported in
the literature [38].
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3.2. Characterization of the Modified Electrode

EIS is an efficient method for exploring the interfacial properties of the modified
electrodes [44,45]. Therefore, the modification process was characterized by EIS to
reveal the electrodes’ surface features. EIS measurement was performed in 5.0 mM
K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) solution containing 0.1 M KCl. The equipment was set
at 5 mV of alternative voltage amplitude and 200 mV of applied potential, and the
voltage frequencies ranged from 0.01 Hz to 100 kHz. The electron transfer resistance (Ret)
was expressed by the diameter of a semicircle. As shown in Figure 4A, the bare GCE
showed a small semicircle diameter (177 Ω, curve a), indicating a fast electron-transfer
process. When BPNS was immobilized on the GCE, the semicircle diameter became
bigger than that of bare GCE (704 Ω, curve b). As a result of the good electron transfer
efficiency of the AuNPs, the AuNPs–BPNS/GCE exhibited a lower Ret (566 Ω, curve c)
than BPNS/GCE, suggesting that AuNPs could efficiently enhance the electron transfer
efficiency. After the assembly of the aptamer, the value of Ret increased to 1123 Ω (curve
d) because the negatively charged aptamer and [Fe(CN)6]3-/4- anions repelled each other.
With the hybridization between the aptamer and cDNA, the semicircle diameter further
increased (curve e), which suggests the successful recognition of the aptamer and cDNA.
The results of EIS verified that the aptasensor was successfully prepared (Scheme 1).
Furthermore, XPS spectra for the C, N, Au and S energy regions are shown in Figure S2,
which also verified the aptamer immobilization on AuNPs–BPNS.



Foods 2023, 12, 846 8 of 14

Foods 2023, 12, x FOR PEER REVIEW 8 of 14 
 

 

respectively. Lane 3 represents the mixture of aptamer and cDNA; a new band was 
observed, demonstrating the hybridization among aptamer and cDNA. After PAT was 
added to this mixture, the band of hybridization weakened but the band of cDNA was 
obvious, which can be attributed to the initiation of hybridization and the release of 
cDNA. It implies that the aptamer and cDNA hybridized successfully and the aptamer 
could recognize PAT; thus, the cDNA was released. 

 
Figure 4. (A) EIS spectra of (a) the bare GCE, (b) BPNS/GCE, (c) AuNPs–BPNS/GCE, (d) 
aptamer/AuNPs–BPNS/GCE and (e) cDNA/aptamer/AuNPs–BPNS/GCE in a mixture solution of 
5.0 mM Fe(CN)63−/4− containing 0.1 M KCl. (B) SWV measurements of cDNA/aptamer/AuNPs–
BPNS/GCE in PBS (a) without FMCA, (b) with FMCA and (c) after incubation with PAT. 

3.3. Electrochemical PAT Assay 
In order to obtain an excellent performance in sensing, some parameters were 

optimized: (a) the concentration of aptamer, (b) the hybridization time of aptamer and 
cDNA, (c) the incubation time of PAT. Respective data and figures are given in the 
electronic Supporting Material (Figure S3). The following experimental conditions were 
found to give the best results: (a) optimal aptamer concentration: 1 μM; (b) optimal 
hybridization time: 90 min; (c) optimal incubation time: 60 min. 

The SWV was implemented to study the analytical performance of the proposed 
aptasensor. As shown in Figure 5A, a series of different concentrations of PAT from 0.1 
nM to 100 μM were measured in PBS containing 10 μM FMCA. The peak current of MB 
increased and that of FMCA decreased with increasing PAT concentration. Figure 5B 
displays the linear relationship between the individual MB or FMCA current response 
and the logarithmic values of PAT concentration. For the MB signal, the limit of detection 
(LOD) was 0.011 ng/mL with R = 0.9987, and for the FMCA signal, 0.012 ng/mL with R = 
0.9967. Furthermore, from Figure 5C, the linear relationship between the value of IMB/IFMCA 
and the logarithm of the PAT concentration was acquired as follows: IMB/IFMCA = 0.12 log 
CPAT + 0.38 with R = 0.9941. A good linear correlation was obtained from 0.0154 ng/mL to 
15.4 μg/mL and the LOD reached 0.066 ng/mL (S/N = 3). Compared with either an MB or 
FMCA signal sensor, the dual-signal strategy has a lower LOD. 

 

Figure 4. (A) EIS spectra of (a) the bare GCE, (b) BPNS/GCE, (c) AuNPs–BPNS/GCE,
(d) aptamer/AuNPs–BPNS/GCE and (e) cDNA/aptamer/AuNPs–BPNS/GCE in a mixture solution
of 5.0 mM Fe(CN)6

3−/4− containing 0.1 M KCl. (B) SWV measurements of cDNA/aptamer/AuNPs–
BPNS/GCE in PBS (a) without FMCA, (b) with FMCA and (c) after incubation with PAT.

The SWV measurements were carried out to investigate the electrochemical behavior
of cDNA/aptamer/AuNPs–BPNS/GCE in different conditions. As shown in Figure 4B,
only a low oxidation peak of MB at−0.25 V (curve a) can be observed in PBS without FMCA.
After the addition of FMCA into PBS, a significant oxidation peak was produced at 0.3 V
(curve b). However, after incubation with PAT, the MB response increased significantly and
the FMCA response decreased (curve c). The results reveal that the proposed aptasensor
could be used for PAT detection. PAGE analysis was performed to demonstrate the DNA
combination processes step by step. As shown in Figure S3 (Supporting Information),
Lanes 1 and 2 correspond to the aptamer and cDNA, respectively. Lane 3 represents the
mixture of aptamer and cDNA; a new band was observed, demonstrating the hybridization
among aptamer and cDNA. After PAT was added to this mixture, the band of hybridization
weakened but the band of cDNA was obvious, which can be attributed to the initiation of
hybridization and the release of cDNA. It implies that the aptamer and cDNA hybridized
successfully and the aptamer could recognize PAT; thus, the cDNA was released.

3.3. Electrochemical PAT Assay

In order to obtain an excellent performance in sensing, some parameters were opti-
mized: (a) the concentration of aptamer, (b) the hybridization time of aptamer and cDNA,
(c) the incubation time of PAT. Respective data and figures are given in the electronic
Supporting Material (Figure S3). The following experimental conditions were found to
give the best results: (a) optimal aptamer concentration: 1 µM; (b) optimal hybridization
time: 90 min; (c) optimal incubation time: 60 min.

The SWV was implemented to study the analytical performance of the proposed ap-
tasensor. As shown in Figure 5A, a series of different concentrations of PAT from 0.1 nM to
100 µM were measured in PBS containing 10 µM FMCA. The peak current of MB increased
and that of FMCA decreased with increasing PAT concentration. Figure 5B displays the
linear relationship between the individual MB or FMCA current response and the loga-
rithmic values of PAT concentration. For the MB signal, the limit of detection (LOD) was
0.011 ng/mL with R = 0.9987, and for the FMCA signal, 0.012 ng/mL with R = 0.9967. Fur-
thermore, from Figure 5C, the linear relationship between the value of IMB/IFMCA and the
logarithm of the PAT concentration was acquired as follows: IMB/IFMCA = 0.12 log CPAT + 0.38
with R = 0.9941. A good linear correlation was obtained from 0.0154 ng/mL to 15.4 µg/mL
and the LOD reached 0.066 ng/mL (S/N = 3). Compared with either an MB or FMCA
signal sensor, the dual-signal strategy has a lower LOD.
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Moreover, the analytical performance for the proposed dual-signaling aptasensor is
comparable with other methods in previous reports as can be seen in Table 1. This may be
because BPNS has an excellent electronic performance and two-dimensional sheet structure
with a large surface area which provides more sites for the generation of AuNPs and
prevents AuNPs aggregation; in addition, the dual-signal ratio strategy greatly reduces the
impact of the external environment on the detection results and improves the sensitivity
of the sensor. The results indicate that the proposed aptasensor exhibits a lower LOD and
wider linear range.

Table 1. Comparison of different methods for the determination of PAT.

Methos Linear Range
(ng/mL) LOD (ng/mL) Reference

Colorimetric detection 0.046–24.64 0.046 [46]
Florescent detection 15.4–1540 9.24 [47]

Gas chromatography-Mass spectrometry 64.9–1623 5.00 [48]
Fluorescent resonant energy transfer 0.0092–92.4 0.003 [49]

Quartz crystal microbalance
immunoassay 30.8–154 21.56 [50]

High performance chromatography 0.92–400.4 0.154 [51]
Phosphorescent nanosensor 66.2–1001 49.28 [52]
Electrochemical detection 0.0154–15.4 0.043 This work

The linearity in real spiked matrix samples was determined using pretreated fresh
apple juice containing 10 µM FMCA and different PAT concentrations. The calibration
curve (Figure 6) was obtained from the linear regression of a plot of peak area versus
concentration. Calibration was carried out in the range of 0.154–15,400 ng/mL, being found
to be linear in the entire studied range with R = 0.9956.

3.4. Reproducibility, Stability and Selectivity

The reproducibility of the proposed aptasensor was evaluated by using five cDNA/
aptamer/AuNPs–BPNS/GCEs for the detection of 0.154 µg/mL PAT under the same
conditions (Figure 7A). The relative standard deviation (RSD) was calculated to be 4.5%,
revealing significant reproducibility. Moreover, the aptasensor was stored under refrig-
eration for ten days. As shown in Figure 7B, 91.1% of the initial response of the current
was obtained after adding the same amount of PAT (0.154 µg/mL), demonstrating the
satisfactory stability of the proposed aptasensor.
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Furthermore, five kinds of contaminants in food samples containing hydroxymethyl-
furfural (HMF), aflatoxin B1 (AFB1), aflatoxin M1 (AFM), ochratoxin A (OTA) and zear-
alenone (ZEN) were used to verify the selectivity of the aptasensor. As shown in Figure 8,
despite the fact that the concentrations of the interferences were as high as 10 µM, there
were low values of IMB/IFMCA. However, an obvious response was obtained by the addi-
tion of PAT. The results indicated that the proposed dual-signaling aptasensor exhibits an
excellent selectivity for PAT.
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3.5. Real Sample Detection

To evaluate the practical application capability of the present system, the proposed
aptasensor was employed to detect the PAT contents in fresh and infected apple, pear,
and tomato. As shown in Table 2, no PAT was found in the fresh foods, while small
amounts were found in the infected foods. Then, the standard addition method was also
performed. The standard PAT solutions were added into the food samples; the recoveries
and RSDs were 95.0–106.7% and 2.9–5.1%. Furthermore, there was no significant difference
between the results obtained by the aptasensor and an HPLC method, as shown in Table 1.
These results implied that the dual-signaling aptasensor is applicable for PAT detection in
food samples.

Table 2. Results of the determination of PAT in food samples and recovery tests.

Samples
Background

Concentration
(µg/mL)

Added
Concentration

(µg/mL)

Found Concentration
(µg/mL, HPLC)

Found Concentration
(µg/mL, the Sensor) Recovery (%) RSD (%, n = 3)

Fresh apple ND 0.092 0.075 0.089 96.7 3.31
Fresh pear ND 0.092 0.077 0.088 95.0 2.92

Fresh tomato ND 0.092 0.088 0.094 101.7 4.05

Infected apple 0.035
0.092 0.104 0.131 103.3 4.31
0.308 0.298 0.335 97.5 3.12

Infected pear 0.032
0.092 0.099 0.131 106.7 4.56
0.308 0.301 0.344 101.5 3.60

Infected tomato 0.071
0.092 0.113 0.159 96.7 5.14
0.308 0.315 0.374 98.5 3.52

ND: Not Detected.

4. Conclusions

In summary, BPNS have potential value in the field of food safety detection. Metal
nanoparticles, especially AuNPs, as an efficient catalyst, promote electron transfer on
the AuNPs–BPNS, overcoming the defects of single metal nanoparticles. In this paper,
in-plane gold nanoparticles–BPNS (AuNPs–BPNS) was synthesized, in which the high
chemical activity of the defect sites in BPNS can edge-selective reduced HAuCl4, and
the formed AuNPs not only enhance the stability of BPNS but also provide effective
immobilization sites of the aptamer. The obtained AuNPs–BPNS nanocomposites were
used to construct a dual-signaling aptasensor for PAT detection. Under optimum conditions,
the proposed aptasensor was linear over the range of 0.0154 ng/mL–15.4 µg/mL. The
electrochemical sensing platform has been successfully applied to the determination of PAT
in apple, pear, and tomato extracts with good accuracy and reliability. Food safety detection
methods based on functional nanomaterials will usher in new development opportunities
in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12040846/s1, Figure S1: High-resolution XPS spectra for
(A) C 1 s, (B) N 1 s, (C) Au 4f, and (D) S 2p regions collected from aptamer compound AuNPs-
BPNS.; Figure S2: PAGE images of different DNAs. Lane 1, aptamer; Lane 2, cDNA; Lane 3,
hybridization of aptamer and cDNA; Lane 4, hybridization of aptamer and cDNA treated with PAT.;
Figure S3: Optimization of the concentration of aptamer (A), the hybridization time of aptamer and
cDNA (B) and the incubation time of PAT (C) for the PAT (154 ng/mL) detection.
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