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Abstract: The infrared spectrum of bovine milk is used to predict many interesting traits, whereas
there have been few studies on goat milk in this regard. The objective of this study was to char-
acterize the major sources of variation in the absorbance of the infrared spectrum in caprine milk
samples. A total of 657 goats belonging to 6 breeds and reared on 20 farms under traditional and
modern dairy systems were milk-sampled once. Fourier-transform infrared (FTIR) spectra were
taken (2 replicates per sample, 1314 spectra), and each spectrum contained absorbance values at
1060 different wavenumbers (5000 to 930 × cm−1), which were treated as a response variable and
analyzed one at a time (i.e., 1060 runs). A mixed model, including the random effects of sample/goat,
breed, flock, parity, stage of lactation, and the residual, was used. The pattern and variability of the
FTIR spectrum of caprine milk was similar to those of bovine milk. The major sources of variation
in the entire spectrum were as follows: sample/goat (33% of the total variance); flock (21%); breed
(15%); lactation stage (11%); parity (9%); and the residual unexplained variation (10%). The entire
spectrum was segmented into five relatively homogeneous regions. Two of them exhibited very
large variations, especially the residual variation. These regions are known to be affected by the
absorbance of water, although they also exhibited wide variations in the other sources of variation.
The average repeatability of these two regions were 45% and 75%, whereas for the other three regions
it was about 99%. The FTIR spectrum of caprine milk could probably be used to predict several traits
and to authenticate the origin of goat milk.

Keywords: FTIR; mid-infrared; caprine milk; milk absorbance spectra; variance components; sources
of variation

1. Introduction

Fourier-transform infrared spectroscopy (FTIR) is a high-throughput method with
multiple applications that has revolutionized the livestock sector [1]. FTIR technology
measures the vibrations of the atoms in a molecule related to their bond strengths. When
the frequency of the IR radiation directed at the bond is equal to the frequency of the
bond’s vibration, the bond absorbs the radiation. The frequencies absorbed constitute the
molecule’s IR spectrum. Analyzing infrared spectra can tell us what molecules (hence, what
compounds) are present in a sample (of milk, cheese, meat, etc.) and at what concentrations.

According to Smith, 2011 [2], infrared spectroscopy is almost universal, in the sense
that the infrared spectra of solids, liquids, and gases can all be measured. A second
advantage concerns the richness of information obtained: the position of a spectral peak
reveals the structure of the molecules, the peak intensity reveals the concentration of
molecules, and the peak width is sensitive to the chemical matrix. Further key features
of FTIR are that it is relatively easy, fast, and sensitive, i.e., it is a non-destructive method
that requires only grams/milliliters of material to produce a good spectrum. The main
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disadvantage of FTIR with regard to milk samples is the presence of water, which has
intense peaks that can mask the spectra of the milk components.

In milk analyses, transmittance is defined as T = Im/Iw, where Im and Iw represent
the transmitted radiation of milk and water (reference or identity testing), respectively.
Usually, Im < Iw (and T < 1) due to the presence of other milk components that affect
the transmittance radiance, but it may also be that Im > Iw (and T > 1). Another related
metric is absorbance, defined as A = − loge T. Note that, by construction, the values of
T are centered at one, so when taking the base e logarithm, A is centered at zero. When
conducting quantitative analyses, absorbance is preferred because it is linearly proportional
to concentration, according to Beer’s law [2].

FTIR spectrometry can be used—with different levels of accuracy—for:

i. the prediction of milk components than can be easily distinguished from each other
due to the specific vibrational properties of their chemical bonds;

ii. the prediction of groups of milk components with similar chemical and vibrational
properties;

iii. the prediction of the chemical components or physical-technological characteristics of
milk that do not have specific vibrational properties;

iv. the prediction of the metabolic characteristics of animals affecting certain properties
of milk;

v. the authentication of the origin of milk.

Fourier-transform infrared spectroscopy is, of course, most commonly used to predict
milk components with specific vibrational properties with highly accurate results guaran-
teed. This is the case for the major chemical components of milk (fat, protein, and lactose),
the predictions of which are regulated by the International Organization for Standardization
(ISO) and certified by the International Committee of Animal Recording [3–5].

Although prediction of the total milk content of fat and protein is accurate, the quan-
tification of individual milk fatty acids [6–8] or individual protein fractions [9–11] is much
less accurate. In fact, the chemical and vibrational characteristics of the members of the
same chemical family are very similar, so discriminating one milk fatty acid from another
one is not simple, and the same is true when comparing a milk protein fraction with another
one. In this case, prediction is based not only on the chemical bonds of each compound, but
probably also on the relationships between the concentration of the compound in question
and other characteristics of the milk [12].

Predicting chemical compounds without specific vibrational characteristics, such
as minerals [13–15], and the physical-technological properties of milk [16–18] is based
substantially on covariance between the compound or trait in question and others related
in some way to it. Accuracy in such cases is never very high and depends on the closeness
of association and the specificity of the vibrational properties of the associated compounds.

The structure of the covariance matrix is also fundamental to predicting traits defining
the metabolism of animals using milk FTIR spectroscopy. Examples include the predic-
tion of blood metabolites [19,20], animal dismetabolism [21], nutritional efficiency [22,23],
animal energy balance [24,25], enteric methane emissions [26–28], fertility [29–31], etc.

Lastly, infrared spectra can be used to determine the fingerprint of milk for authentica-
tion purposes where adulteration is suspected [32–34], or to certify the area of origin [35],
or the farming system in which the milk was produced [36,37]. Some other secondary
method has been proposed for the rapid prediction of some substance or property of milk,
but none has the versatility of FTIR spectrometry in that, with just one sample and one
instrument, in a single passage, many components and characteristics of the milk, the dairy
animal, and the dairy system can be predicted. Moreover, provided that the spectra are
stored, new traits can be predicted a posteriori, simply using new calibration equations on
old spectra.

Many studies have been carried out on milk from bovine species, but there has been
very little research on the milk of other species, particularly goats [38–40].
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The characteristics of bovine FTIR milk spectra have been extensively studied with the
aim of understanding the properties of different fractions of the spectrum and of individual
wavelengths, and in order to identify the areas related to specific chemical bonds. In a
previous study on the FTIR spectrum of bovine milk, we clearly identified five major
spectral fractions in the range of near-infrared (NIR), or short-wave infrared (SWIR), to mid-
infrared (MIR, or MWIR) and long-infrared, or long-wave-infrared (LWIR) radiation [41].
Aside from phenotypic properties, bovine milk spectra have also been analyzed to identify
the possible genetic parameters of wavelength absorbance [42–44] and to obtain genomic
information [45,46].

Given that, unlike bovine milk, there is little knowledge of the FTIR spectrum of
goat milk, and that this knowledge is needed for the correct use of goat spectra to predict
and interpret chemical contents and metabolic properties, the aims of this research were
as follows: (1) to study the absorbance values and their phenotypic variances of each
wavenumber of the goat milk spectrum and to compare them with the characteristics
of bovine milk spectrum from the literature; (2) to estimate the major components of
phenotypic variance; and (3) to estimate the repeatability of 1060 wavenumbers in the FTIR
region from 5000 to 930 × cm−1 of goat milk samples.

2. Materials and Methods
2.1. Experimental Design

This study is part of a research project (the Good-Milk project), which mainly aims to
study the qualitative properties of goat milk compared to milk from other dairy species,
with particular emphasis on milk protein fractions and genetic variants. The work package
dedicated to the study and use of FTIR spectra to predict the qualitative traits of goat milk
focuses on sampling milk from many goats representing different farming systems, breeds,
parities, and lactation stages.

The 657 goats sampled for the present study were of 6 different breeds and were reared
on 20 farms in Sardinia (Italy). The farms were classified into 3 dairy systems (traditional,
intermediate, and modern) according to the feeding system, farm management, and condi-
tions in the facilities. Information on the farming systems, animals, and sampling procedure
are reported in a previous study [47]. Information on the qualitative and technological traits
of the milk samples is provided in other studies carried out on the same database [48–50].
The goats belonged to the following breeds: Saanen (41 goats); Camosciata delle Alpi (164);
Murciano-Granadina (143); Maltese (122); Sarda (44); and Sarda Primitiva (143). Parities on
the day of sampling ranged from 1 to 15, and days in milk (DIM) ranged from 10 to 224.

A 50 mL milk sample was collected from each goat and stored immediately at 4 ◦C.
Within 24 h of sampling, FTIR spectra (2 replicates per milk sample) were obtained with
a MilkoScan FT6000 milk analyzer (Foss A/S, Hillerød, Denmark). Absorbance values of
1060 spectral wavenumbers from 5000 to 930 × cm−1 were recorded. Parity was recoded
from a count variable to a factor with six levels (1–2, 3, 4, 5, 6, 7+), while DIM was recoded
from a count variable to a factor with five levels (1–60, 61–90, 91–120, 121–150, 151–240).

2.2. Statistical Model

A database of 1,392,840 absorbance values (657 samples/goats × 2 replicates ×
1060 wavenumbers) was compiled. Outlier spectra were checked on the basis of the
Mahalanobis distance. A linear mixed model was fitted to estimate the variance compo-
nents and repeatability of the milk absorbance at each individual FTIR wavenumber. The
model was as follows:

yijklm = µ + Gi + Bj + Fk + Pl + Dm + eijklm, (1)

where yijklm represents the 1314 absorbance values (A) recorded for a particular wavenum-
ber (657 samples/goats in duplicate), µ is the overall absorbance mean or intercept (fixed)
for a particular wavenumber, Gi ∼ iid N

(
0, σ2

G
)

is the random effect of the ith sample/goat,
Bj ∼ iid N

(
0, σ2

B
)

is the random effect of the jth breed, Fk ∼ iid N
(
0, σ2

F
)

is the random effect
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of the kth flock, Pl ∼ iid N
(
0, σ2

P
)

is the random effect of the lth parity, Dm ∼ iid N
(
0, σ2

D
)

is the random effect of the mth days in milk, and eijklm ∼ iid N
(
0, σ2

e
)

is the model residual.
Here, N(·, ·) stands for a normally distributed random variable, and ‘iid’ stands for one that
is independent and identically distributed. Strictly speaking, model (1) is a linear mixed
model where µ is the only fixed effect and the other components are treated as random. All
random components were assumed to be independent of each other. This model was fitted
1060 times (one per wavenumber) using the BGLR-R package [51] in the R programming
language [52].

From the 1060 individual mixed models as per Equation (1) fitted to each wavenumber
of the FTIR spectrum, the variance components of the random effects, i.e., σ̂2

G, σ̂2
B, σ̂2

F, σ̂2
P, σ̂2

D,
the residual term σ̂2

e , and the computed proportion of variance explained by each term
were estimated. Under additivity, the estimate of total (phenotypic) variance is calculated
as the sum of the variance components, σ̂2

Ph = σ̂2
G + σ̂2

B + σ̂2
F + σ̂2

P + σ̂2
D + σ̂2

e , and sample re-

peatability is expressed as Rsample =
σ̂2

G+σ̂2
B+σ̂2

F+σ̂2
P+σ̂2

D
σ̂2

Ph
. Sample repeatability was calculated

as the sum of the variances due to the random effects included in the model as a percentage
of the phenotypic variance (i.e., the sum of the variance of the random factors plus the
residual variance).

3. Results
3.1. Descriptive Statistics of the Goat Milk Spectra

Figure 1 depicts the mean phenotypic absorbance values and the 0.025 and 0.975 quan-
tiles of the milk samples for the entire FTIR spectrum (1060 individual wavelengths)
obtained from the milk of the 657 goats included in the study (1314 milk spectra). The two
regions with very high phenotypic variability in absorbance values in the goat milk dataset,
which are characterized by the wavelengths approximately between 3669 and 3052 and
between 1698 and 1586, are of note. These regions are known to be water zones in cow milk
samples and are indicated by peaks of water absorption that can mask the effects of other
milk components. Goat milk spectra are therefore similar to cow milk spectra, and we will
refer to these regions henceforth as the water zones or water regions.

Figure 1. Mean absorbance values (dark solid line) and the 0.025 and 0.975 quantiles (gray lines) of
the 1060 individual infrared wavelengths (5000 to 930 × cm−1), measured from 1314 spectra of milk
samples from 657 goats. Red dashed lines indicate regions with high variability.

3.2. Phenotypic Analysis of the FTIR Spectra

Figure 2 shows the sample/goat repeatability for the 1060 analyses carried out on the
entire goat milk spectrum, i.e., the infrared region between wavelengths 2.0µm (wavenum-
ber 5000 × cm−1) and 10.8µm (wavenumber 930 × cm−1), and the percentage variance
explained by each random effect included in model (1) (Goat = G, Flock = F, Herd = H,
Parity = P, and Days in milk = D) and the residual. As can be seen, the sample/goat repeata-
bility approaches one for almost the entire spectrum, with the exception of the two regions



Foods 2023, 12, 807 5 of 12

with very high variability (Figure 1), where it is significantly lower because the residual
variance often increases to values of 50% of phenotypic variance. In the other regions,
the sample/goat random effect explains an average of 39% of the phenotypic variance,
versus 9% in the aforementioned two regions. The random effect of flock explained, on
average, 23% in the group of regions with low variability, and 11.8% in the group with
high variability, while the random effect of breed explained, on average, 17% and 11%,
respectively, of phenotypic variability. There was little variation in the contributions of the
random effects of Parity (9%) and Days in Milk (11%) to the phenotypic variability in the
entire spectrum. Finally, the unexplained phenotypic variation (residual) was an average
of 1% in the low and 50% in the high variability regions of the spectrum.

Figure 2. Sample/goat repeatability and proportions of variances for Goat, Breed, Flock, Parity,
Days in Milk (DIM), and the residual term for the absorbance values of each of the 1060 wavenum-
bers analyzed.

4. Discussion

The discussion deals separately with the three specific aims of this study as follows:
the patterns and phenotypic variances in the absorbance values of the goat milk spectrum;
the estimation of the variance components of the major sources of variation of infrared
absorbance; and the repeatability of 1060 wavenumbers in the FTIR spectrum of goat
milk samples.

4.1. The Patterns and Phenotypic Variances in the Absorbance Values of the Goat Milk Spectrum

The infrared region analyzed in this study (wavelengths 2.0 to 10.8 µm, or wavenum-
bers 5000 to 930 × cm−1) is a section of the near-, mid-, and long-infrared regions of the
electromagnetic spectrum. The spectrometer used in this study is the one most commonly
used to predict the composition of milk samples [53] in many countries of the world, espe-
cially within milk recording systems for the genetic improvement of dairy populations. It
is widely used to analyze not just cow milk samples, but also buffalo [33], sheep [39,54,55],
and goat [34,39,56] milk samples with specific calibrations [3,56].

Given that milk spectra can be expressed in different ways (as transmittance or ab-
sorbance, as the entire spectrum or specific regions, etc.), it is worth noting that the aver-
age spectrum obtained here for goat milk is very similar to that frequently obtained for
cow milk.

In our previous study on the variability of FTIR spectra of bovine milk samples [41],
we analyzed milk in the same wavenumber interval using the same type of spectrometer,
but the spectra were expressed as transmittance, not absorbance, values. This explains why
the spectra are centered on zero in this study, whereas in the previous study they were
centered on a value of one, and why the pattern is reversed in the sign with respect to the
center. Other studies obtained very similar patterns with transmittance spectra [43]. The
absorbances and patterns reported for bovine milk in a subsequent study [57] were very
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similar to those observed here for caprine milk (Figure 1). Other studies on the absorbance
FTIR spectra of bovine milk have also reported a similar pattern to that of caprine milk
found here [58].

The phenotypic variation of absorbance, shown in Figure 1, was very different at
every wavenumber analyzed. The two spectral regions with a much greater variation in
absorbance than the rest of the spectrum were identified as the areas of absorbance of the
O-H chemical bond, and therefore highly influenced by the presence of water. A large
proportion of milk is constituted by water, so the transmittance (and consequently, the
absorbance) spectrum of milk is very similar to that of water [59]. The milk spectrum is,
as in the present study, frequently expressed as the ratio between the values measured in
milk and those measured in pure water, taken as a reference. Based on the average values
and standard deviations observed along the milk spectrum, and taking into account the
heritability coefficients estimated for every wavenumber measured, in our previous study
we proposed subdividing the spectrum of bovine milk into five sections [41]. Given the
close similarity observed here, we decided to use the same subdivisions for goat milk,
represented by the vertical dashed red lines in Figure 1 and the different background color
of the areas in Figure 2 (white or light blue). The first (SWIR-MWIR) of the two “water”
spectral regions is identified in the area of transition between the near- and mid-infrared
(NIR and MIR) radiations (wavelength 2.73 to 3.27 µm) and the second (MWIR2) region in
the central area of mid-infrared radiation (5.89 to 6.31 µm).

The two “water” spectral regions are often excluded when milk spectra are used
to predict milk traits with appropriate chemometric procedures, as they are considered
sources of “noise” and inexplicable variations [42]. However, the O-H bond is also present
in many other chemical compounds that are important for defining milk quality, while
other chemical bonds have been shown to correspond to the absorbance of electromagnetic
radiation in these sections, and, lastly, the absorbance of several wavelengths in these
sections has been found to be, in part, genetically controlled [43,46].

A better understanding and discussion of the role and importance of different spectral
regions of the goat milk spectrum could be had by quantifying the major sources of variation
in milk absorbance.

4.2. Variance Components of the Major Sources of Variation of Infrared Absorbance

In light of the results (see Figure 2), the phenotypic variability (σ̂2
Ph) of milk absorbance

at each wavenumber was divided into their major sources of variation, and the variability
due to individual sample/goat (σ̂2

G), breed of goat (σ̂2
B), flock (σ̂2

F), parity (σ̂2
P), stage of

lactation (σ̂2
D), and the residual variation (σ̂2

e ), and computed the sample/goat repeatability
was treated as random effects. Bear in mind that in this study, only one milk sample (with
two spectral replicates) per goat was taken, so the effects of individual goat and sample
are combined, whereas the residual variation expresses the differences between the two
spectral replicates obtained from each milk sample.

To facilitate discussion, these estimates were averaged according to the five spectral
regions proposed in our previous study; these are summarized in Table 1.

The first of these five regions is the near-infrared or short-wavelength region (SWIR,
2–2.72 µm), followed by the first “water” region (SWIR-MWIR, 2.73–3.27 µm), the mid-
infrared 1 region (MWIR-1, 3.28–5.88 µm), the second “water” region (MWIR-2, 5.89–6.31
µm), and lastly, the mid- to long-infrared (MWIR-LWIR, 6.32–10.76 µm) region. To facilitate
comparison with other studies, equivalences in standard ISO, wavenumber (cycles per
inverse centimeter, waves × cm−1 and frequencies (cycles per second, Hertz) are also listed
in Table 1.

It is worth noting that the average absorbance of the wavenumbers in the two “water”
regions is negative, whereas it is positive in the other three spectral regions. Moreover,
almost one third of the wavenumbers had an average absorbance of less than 1 standard
deviation from the overall mean. At the same time, in these two regions, 19% and 7% of the
wavelengths had an average absorbance greater than 1 standard deviation from the overall
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mean, and the average phenotypic variability was 6 to 22 times larger than in the other three
spectral regions (Table 1). Regarding the variance components, it is clear from the same
table that these large differences in phenotypic variability are reflected in the variability in
all the major sources of variation. It is therefore expected that, for each variance component,
the “water” regions will exhibit the largest proportion of wavenumbers characterized by
very high variance, while the other three regions will be characterized by very low variance.

Table 1. Characteristics of the five regions of the FTIR spectrum of goat milk.

Item 2 Entire Spectrum SWIR 1 SWIR-MWIR 1 MWIR-1 1 MWIR-2 1 MWIR-LWIR 1

ISO NIR-MIR NIR NIR-MIR MIR MIR MIR
Wavenumber, cm−1 5000–930 5000–3673 3669–3052 3048–1701 1698–1586 1582–930
Wavelength, µm 2.00–10.76 2.00–2.72 2.73–3.27 3.28–5.88 5.89–6.31 6.32–10.76
Frequency, THz 149.9–27.9 149.9–110.1 110.0–91.5 91.4–51.0 50.9–47.5 47.4–27.9
Waves tested, no. 1060 347 161 350 31 171
Absorbance: medium medium low medium low high

Average absorbance 0.0186 0.0109 −0.0109 0.0109 −0.0506 0.0910
Waves > 0.130 a, % 10 0 19 10 7 25
Waves <−0.093 b, % 7 2 31 1 31 1

Phenotypic variability: medium very low very high low high low
Mean of σ̂Ph 0.043 0.008 0.206 0.011 0.105 0.015
Waves σ̂Ph > 0.09 c, % 12 0 69 1 36 0
Waves σ̂Ph <0.02 d, % 74 99 0 86 4 77

Animal (Goat)
variability:

Mean of σ̂G 0.013 0.006 0.046 0.007 0.031 0.009
Proportion of σ̂2

Ph 0.33 0.45 0.07 0.35 0.22 0.36
Breed variability:

Mean of σ̂B 0.014 0.003 0.063 0.005 0.034 0.006
Proportion of σ̂2

Ph 0.15 0.12 0.10 0.21 0.13 0.18
Flock variability:

Mean of σ̂F 0.015 0.004 0.063 0.005 0.038 0.007
Proportion of σ̂2

Ph 0.21 0.24 0.10 0.22 0.20 0.25
Parity variability:

Mean of σ̂P 0.013 0.002 0.059 0.004 0.031 0.005
Proportion of σ̂2

Ph 0.09 0.09 0.08 0.10 0.09 0.10
Lactation stage
variability:

Mean of σ̂D 0.014 0.003 0.064 0.004 0.033 0.005
Proportion of σ̂2

Ph 0.11 0.10 0.10 0.12 0.10 0.11
Repeatability:

Mean Repeatibility 0.90 0.99 0.45 0.99 0.75 0.99

1: SWIR = short-wave infrared; MWIR = mid-wave infrared; LWIR = long-wave infrared; 2: σ̂2
Ph is the phenotypic

variance calculated as the sum of the variance components of the random effects included in model 1 (goat, breed,
flock, parity, lactation stage, and residual) [σ̂2

Ph = σ̂2
G + σ̂2

B + σ̂2
F + σ̂2

P + σ̂2
D + σ̂2

e ]; the mean of σ̂ i is the mean of
the standard deviation for the ith random effect of model 1 for the waves tested in the whole spectrum and in
each of the five regions; the proportion of σ̂2

Ph is the proportion of the phenotypic variance explained by the ith
random effect of the model 1 [σ̂2

i /σ̂2
Ph ]; repeatability is the proportion of the sum of the variances explained by

the random effects (without the residual one) on the σ̂2
Ph [ Rsample =

σ̂2
G+σ̂2

B+σ̂2
F+σ̂2

P+σ̂2
D

σ̂2
Ph

]; a: Proportion of waves

in the region (% of the total waves in the region) with a value higher than twice the average of the entire spectrum;
b: number of waves in the region (% of the total waves in the region) with a value higher than half the average of
the whole spectrum; c: number of waves in the region (% of the total waves in the region) with a value higher than
the average + 1 SD of the entire spectrum; d: number of waves in the region (% of the total waves in the region)
with a value lower than the average − 1 SD of the entire spectrum.

As the absorbance values measured at each wavenumber are centered and stan-
dardized before being used to predict milk traits, it is of interest to analyze the relative
importance of different sources of variation in the five spectral regions. The sample/goat
variance, expressed as an average of all the wavenumbers in the entire FTIR caprine milk
spectrum (Table 1), accounts for one third of the phenotypic variance, and is, on average,
greater in the three “non-water” regions and lower in the “water regions” (7% in the
SWIR-MWIR and 22% in the MWIR2). It is worth noting that there were smaller differences
in the effects of breed of goat among the five spectral regions, with average proportions
ranging from 10% to 21%, and the effects of flock were similar in importance and variability,
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with values ranging from 10% to 25%. The individual goat factors that change with time
(parity and stage of lactation) had a smaller, but significant, influence on infrared radiation
absorbance, and presented similar values in the five spectral regions (8% to 10% for the
effect of parity, 10% to 12% for stage of lactation).

No studies in the literature that analyze the major sources of variation in the ab-
sorbance of electromagnetic radiation at the level of individual wavenumbers or spectral
regions for milk was found, but there are some studies, described later, that quantified the
genetic and environmental components of the phenotype. As seen here, both components
are much greater in the regions with a very large phenotypic variability (“water” regions)
than in the rest of the spectrum [41]. In this case, too, it might be more informative to
analyze the relative proportions of the genetic and environmental variance components,
which are expressed as the heritability of absorbance. It is worth noting that our previous
studies, among others, found heritabilities, albeit variable, for several wavenumbers also in
the “water” regions [42,44]. Obviously, the genetic variance represents the major part of
the variation due to the breed and a part of that due to the individual animal. The herd–
year–season component has also been found to have a strong influence on the phenotypic
variance of absorbance in bovine milk [44], and to affect the prediction of milk traits from
FTIR caprine milk spectra [60]. Interactions between the cow’s genetics, parity, and stage of
lactation and spectral region have also been found [44].

We can conclude that the two “water” regions are affected by individual sample/goat,
breed, herd, parity, and stage of lactation, albeit to a lesser extent than the other regions,
and that they therefore probably contain valuable information that could be used in the
prediction of milk traits or the authentication of breed and feeding and production systems,
provided that it is combined with suitable chemometric methods.

It is worth noting that breed of cow had very little effect on the patterns and variability
in the FTIR spectra of bovine milk [61]; however, when calibration equations developed on
one breed for predicting milk traits were then applied to other breeds, validation accuracy
tended to be slightly lower than when the calibration equations were developed on multi-
breed training sets. Similar results were obtained in a study predicting milk coagulation
traits in four goat breeds [62]. As the spectra were not compared in either of the two
studies, it is unclear whether the different results with different breeds are due to inherent
differences in the predictors (FTIR spectra) or to the different values and characteristics of
the predicted traits.

4.3. Animal/Sample Repeatability of the Absorbance of 1060 Wavelengths of FTIR Goat
Milk Spectra

The variability not captured by the random effects included in the model is captured
by σ̂2

e . As can be seen from Figure 2, the relative contribution of the error term to the total
phenotypic variance of absorbance is close to zero for the SWIR, MWIR-1, and MWIR-LWIR
regions, while for the two “water” regions (SWIR-MWIR and MWIR2), it rose dramatically
to more than 50%. In fact, the average proportion of phenotypic variance not explained by
the random term is 10% over the entire spectrum, but in the SWIR, MWIR-1, and MWIR-
LWIR regions, it is 1.1%, 1.3%, and 1.4%, respectively, whereas in the “water” regions
(SWIR-MWIR and MWIR-2), it is 55% and 25%, respectively. Conversely, as defined in
this study, the repeatability of the absorbance measures is the complement of the residual
proportion of phenotypic variance and is almost 99% in the three “non-water” spectral
regions and about 45% and 75% in the two “water” regions. Given the different structures
of the sources of variation of the absorbance spectrum, when using the entire spectrum
(including the two “water” regions), it seems advisable to use the average of two–three
replicates per milk sample instead of a single spectrum, or to use chemometric procedures
that can select the most informative wavenumbers.

There are very few if any data in the literature regarding the repeatability of FTIR
absorbance measured at each wavenumber. In the case of bovine meat, we also found
large differences in repeatability along the NIR spectrum [63]: it was highly variable in the
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region of the electromagnetic spectrum corresponding to ultraviolet and visible light (0.35
to 0.74 µm), relatively high (about 80%) for wavenumbers in the IR-A region (NIR: 0.74
to 1.40 µm), and very low (10% to 30%) in the IR-B interval (SWIR: 1.40 to 1.85 µm). The
heritability of the individual wavelengths were, correspondingly, very different [64].

5. Conclusions

Our study on a representative goat population (different farming systems, breeds,
parities, and lactation stages) shows that the FTIR spectrum of caprine milk has many
similarities with that of bovine milk reported in the literature. The major sources of variation
were as follows: sample/goat (33% of the total); flock (21%); goat breed (15%); lactation
stage (11%); parity (9%); and the residual unexplained variation (10%). As in cattle species,
the spectrum is highly heterogeneous, and it was possible to distinguish five regions, two
of which (“water” regions) presented much larger variability than the others, not only
in terms of the residual variation, but also in terms of the effects of the major sources of
variation. The similarity with the bovine milk spectrum, as well as the high repeatability
(90% for the entire spectrum, 99% in the non-water regions), leads us to expect that caprine
milk spectra could also be a valuable tool for predicting many milk properties.
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