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Abstract: To compare the prevalence and antibiotic resistance rate of Listeria monocytogenes in livestock
and poultry (beef, pork and chicken) meat between China and the European Union (EU), a meta-
analysis was conducted. Ninety-one out of 2156 articles in Chinese and English published between
January 2001 and February 2022 were selected from four databases. The prevalence of L. monocytogenes
in livestock and poultry (beef, pork and chicken) meat in China and Europe was 7.1% (3152/56,511,
95% CI: 5.8–8.6%) and 8.3% (2264/889,309, 95% CI: 5.9–11.0%), respectively. Moreover, a decreasing
trend was observed in both regions over time. Regarding antibiotic resistance, for the resistance
to 15 antibiotics, the pooled prevalence was 5.8% (95% CI: 3.1–9.1%). In both regions, the highest
prevalence was found in oxacillin, ceftriaxone and tetracycline, and a large difference was reported
between China and the EU in ceftriaxone (52.6% vs. 17.3%) and cefotaxime (7.0% vs. 0.0%). Based
on the above, it remains a significant challenge to enforce good control measures against the meat-
sourced L. monocytogenes both in China and in the EU.

Keywords: Listeria monocytogenes; livestock and poultry meat; prevalence; antibiotic resistance;
meta-analysis

1. Introduction

Listeria monocytogenes is a bacterial pathogen that is mainly transmitted through food.
The pathogen is notorious worldwide, and can grow in high salinity (10%), low water
activity (<0.9), low temperature (4 ◦C), and in a pH range of 4.1–9.6 [1]. Therefore, it
can survive in processing equipment, packaging materials, food contact surfaces, etc.
Food processing, in particular, is considered to be the most important pathway for L.
monocytogenes contamination [2]. L. monocytogenes can cause disease in certain groups, such
as the elderly, infants, pregnant women, and people with weakened immunity, with a
fatality rate of up to 30% in some countries [3,4], including the European Union (EU), the
United States, and China [5–7].

At present, L. monocytogenes is frequently found in a variety of food products, especially
those of animal origin, with a plethora of isolated strains being resistant to antibiotics [8,9].
Therefore, various foods or food products, especially meat products, have been investigated
in recent years [10]. In 2018, the highest contamination rate of L. monocytogenes in the EU was
reported for RTE (ready to eat) food products, accounting for 37.5% of all contamination [4].
From 2016 to 2018, L. monocytogenes was detected in 5996 raw meat products in Poland,
with a prevalence rate of 2.1% and the rate among different types of meats varying [11].
The prevalence of L. monocytogenes in livestock and poultry meat in 28 provinces in China
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has been investigated, with the highest prevalence of 8.91% in meat and poultry [12]. The
prevalence of L. monocytogenes in ruminant farms and slaughter environments in China
was also tested, and L. monocytogenes was detected in multiple processes in the slaughter
environment [13]. Hence, authorities around the world were devoted to the study of the
prevalence of L. monocytogenes in meat products, covering different types of meat and over
different periods, and even incorporating research studies in the production chain [14,15].
However, based on case studies, there are still differences in prevalence between countries
and even between cities, and it is hard to see the whole picture in terms of the prevalence
of this pathogen in a certain area.

Meanwhile, the Food and Agriculture Organization (FAO), the World Organization
for Animal Health (WOAH)), and the World Health Organization (WHO) have collected
and provided data about the emergence of antibiotic resistant L. monocytogenes isolates, and
the hazard of L monocytogenes in food was further elaborated upon [16]. L. monocytogenes
isolated in different countries developed resistance to first-line antibiotics such as rifampin,
kanamycin, streptomycin and erythromycin [17–20]. The heavy use of prescription drugs
in livestock and clinics is one of the reasons for the increased frequency of antibiotic
resistance [10]. Additionally, multi-drug resistant strains were beginning to emerge in food
and environmental isolates [21]. Some case studies found a high frequency of antibiotic
resistance to cefotaxime, ciprofloxacin and tetracycline in certain L. monocytogenes [22–26].
Another study found that all 25 strains, isolated from pig slaughtering sites in Romania,
were resistant to penicillin, imipenem and fusidiac acid and seven other antibiotics [27].
However, the overall understanding of the prevalence of the antibiotic resistance of L.
monocytogenes in various geographical regions has also been less studied.

In recent years, more and more meta-analyses have been conducted in the field of food
safety [28–33]. A meta-analysis can deal with the overall and sub-sets of the prevalence of
certain pathogens in food and show the pre- and post-intervention effects on food microbes,
and it is therefore a powerful tool for evaluating, identifying and summarizing the results
of a large number of studies [34]. A meta-analysis of the prevalence of Listeria spp. in
foods was performed in Iran, and a pooled prevalence of L. monocytogenes in meat products
of 2.6% (95% CI: 0.2–35.0%) was reported [35]. In another study, a meta-analysis of the
prevalence of L. monocytogenes in meat products in China was conducted from 2007 to 2017,
and it found that the prevalence of L. monocytogenes in raw and RTE meat products was
8.5% (95% CI: 7.1–10.3%) and 3.2% (95% CI: 2.7–3.9%), respectively [34]. This is despite the
fact that some meta-analyses of L. monocytogenes were already conducted in meat products
and clear information on the prevalence of the pathogen in different types of meat was
provided. China and the EU can partially reflect the meat safety levels for the developing
and developed countries since both of them are big meat consumers and producers [36,37].
Considering that no meta-analysis has been conducted on the prevalence and antibiotic
resistance of L. monocytogenes in livestock and poultry meat products between China and
the EU over a 20-year period to date, an updated systematic comparative review on the
prevalence and antibiotic resistance of L. monocytogenes in these regions is urgently needed.

Therefore, the objective of this meta-analysis was to assess the prevalence and antibi-
otic resistance of L. monocytogenes in livestock and poultry (beef, pork and chicken) meat
products in China and the EU by extracting data from numerous literature sources collected
from various databases. In the quantitative analysis, the differences between China and
the EU were compared through the data and the discrepancies were discussed. The results
obtained in this study can further help to formulate reasonable preventive measures against
L. monocytogenes and to select effective drugs for the treatment of listeriosis through the
understanding of antibiotic resistance.

2. Materials and Methods
2.1. Literature Collection

The Cochrane protocol was followed for this meta-analysis [38]. The PRISMA state-
ment [39] was employed for reporting the screening process. In early 2022, four databases
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in English and Chinese were used for literature retrieval, including PubMed (accessed on
18 February 2020), Web of Science (accessed on 18 February 2020), CNKI (www.cnki.net,
in Chinese) (accessed on 18 February 2020) and the Wanfang Data knowledge service
platform (www.wanfangdata.com.cn, in Chinese) (accessed on 18 February 2020). The
search terms used in the literature base are shown in Table 1. In the Chinese databases,
a synonym extension was used for the search. In the English databases, MeSH (Medical
Subject Headings) was used to obtain the subject terms and synonyms associated with the
search terms. The publication time of the articles was set between 2001 and 2022.

Table 1. Search terms used in each literature database.

Literature Database Search Terms

CNKI (www.cnki.net, in Chinese) (accessed on
18 February 2020), Wanfang Data knowledge
service platform (www.wanfangdata.com.cn,
in Chinese) (accessed on 18 February 2020)

((Listeria monocytogenes)) OR
((antibiotic-resistant) OR (prevalence) OR

(contamination situation))

PubMed, Web of Science

((meat) OR (beef) OR (pork) OR (poultry))
AND (Listeria monocytogenes) AND

((Prevalence) OR (Prevalences) OR (Period
Prevalence) OR (Period Prevalences) OR

(Prevalence, Period) OR (Point Prevalence) OR
(Point Prevalences) OR (Prevalence, Point)) OR

((Drug Resistances, Microbial) OR
(Antimicrobial Drug Resistance) OR
(Antimicrobial Drug Resistances) OR
(Antibiotic Resistance, Microbial) OR

(Antibiotic Resistance) OR (Resistance,
Antibiotic))

2.2. Inclusion/Exclusion Criteria

In order to exclude or include an article, the following criteria were applied: (1) The
sampling time should be clearly stated; (2) Sampling sites should be identified (China
or EU); (3) Sample types including livestock and poultry (beef, pork and chicken) meat
products were reported; (4) Sample size should be reported; (5) Samples should be tested
for the prevalence or antibiotic resistance of L. monocytogenes; and (6) Chinese articles
should be collected in the Chinese Science Citation Database (CSCD).

2.3. Data Extraction

The retrieved documents were imported into Endnote 20 software (Clarivate Inc.,
Philadelphia, PA, USA) and were kept after removing duplicates. The data in each selected
study were extracted, including the following basic information: author name, publica-
tion time, sampling time, sampling location, sample name, total sample size, number of
detections of L. monocytogenes, and antibiotic resistance information. The extract data were
entered into a Microsoft Excel spreadsheet for data analysis and quality assessment. The
basic information extracted from the article was compared with the criteria set for doing so,
and those that met all of the criteria were included. If one of the above criteria was not met,
the article was excluded. The data were manually extracted and evaluated by two authors,
and the differences in opinion were referred to a third person for evaluation [40].

2.4. Meta-Analysis and Statistical Analysis

The total sample size, the number of samples contaminated with L. monocytogenes,
the number of L. monocytogenes strains isolated from meat and meat products and those
showing antibiotic resistance, as well as the prevalence and antibiotic resistance rate of L.
monocytogenes were meta-analyzed. The original data were tested for normal distribution
prior to the analysis. When the original data did not conform to the normal distribution,
the data were transformed using a total of logarithmic transformation, logit transformation,

www.cnki.net
www.wanfangdata.com.cn
www.cnki.net
www.wanfangdata.com.cn
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inverse sine transformation, and Freeman-Tukey transformation and then tested again for
normal distribution. According to the test results, the Freeman-Tukey transformed data
was closest to the normal distribution.

All of the data were processed by Stata17 software (StataCorp LLC, College Station,
Texas, USA). The included data were processed to obtain the overall prevalence and
antibiotic resistance of L. monocytogenes. Heterogeneity was then assessed, mainly by
using the I-square test and the associated significance p-value for quantitative assessment.
For studies with high heterogeneity (I2 > 50%), a subgroup analysis was performed to
determine the source of the heterogeneity. When p-value < 0.10 and I2 > 50%, a random
effects model was used for meta-analysis; otherwise, a fixed effects model was used [41].
The 95% confidence interval of the combined effect size was then calculated. A funnel plot
was then drawn to determine if there was any bias, and an Egger test was performed. In
data processing, the Metan and the Metaprop were normally used [42,43]. Since there were
cases where the prevalence or detection rate is zero or one in the data, the Metan in the
software could not be used for processing because the cases of zero and one were excluded.
Therefore, the Metaprop is used in combination with Freeman-Tukey conversion processing.
The ability to include effect sizes of zero or one ensures the integrity and credibility of the
results.

3. Results
3.1. Article Inclusion

The literature search and inclusion process are shown in Figure 1. A total of 2156 arti-
cles were retrieved from the four selected electronic databases. According to the established
criteria, the articles were screened in detail, and finally 91 articles were determined to be in
compliance with the established criteria (47 and 44 in Chinese and English, respectively).
Although the included articles were published in 2001–2022, the sampling was performed
between 2000 and 2020. The sampling sites covered 14 EU countries and 21 provinces,
cities, and autonomous regions in China.
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3.2. Pooled Prevalence of L. monocytogenes in Livestock and Poultry Meat in China and the EU

The pooled prevalence of L. monocytogenes in livestock and poultry (beef, pork and
chicken) meat in China and the EU was 7.4% (95% CI: 5.9–9.6%, I2 = 98.72%, t2 = 0.054,
p < 0.01), and the results showed high heterogeneity. A subgroup analysis was needed
to analyze the sources of the heterogeneity. Regarding the assessment of risk of bias, the
funnel plot in Figure 2 is not asymmetric, with some points falling outside of the funnel.
The results of an Egger test illustrated in Figure 3 show that the regression intercept was
far from the zero point. This indicates that there is a high degree of publication bias.
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3.2.1. Pooled Prevalence of L. monocytogenes in Each Region

The included publications were divided into subgroups by region (Table 2). The
pooled prevalence in China was 7.1% (95% CI: 5.8–8.6%), which was lower than the 8.3%
(95% CI: 5.9–11.0%) of the EU (p < 0.01).
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Table 2. Subgroup analysis of the prevalence of L. monocytogenes in different regions.

Region No. of
Studies

Pooled
Prevalence 95% CI I2 (%) p-Value

China 66 7.1% 5.7–8.6% 97.69 p < 0.01
EU 25 8.3% 5.9–11.0% 99.27

95% CI: 95% confidence interval. p < 0.01: a statistically significant prevalence in the subgroup. I2: I-squared
statistics assessment of the magnitude of variation between studies.

3.2.2. Pooled Prevalence of L. monocytogenes in Different Times

In order to determine whether the prevalence of L. monocytogenes was changing over
time, subgroups were created based on sampling times in 2000–2005, 2006–2010, 2011–2016,
and 2017–2020. As shown in Table 3, the pooled prevalence of L. monocytogenes in livestock
and poultry (beef, pork and chicken) meat generally showed a downward trend, with
the prevalence in 2000–2005, 2006–2010, 2011–2016 and 2017–2020 being 9.1% (95% CI:
6.0–12.9%), 7.4% (95% CI: 5.6–9.8%), 6.6% (95% CI: 4.6–8.8%), and 6.7% (95% CI: 3.1–11.5%),
respectively. Although a slight upward trend in prevalence was observed from 2017 to
2020, the trend needs to be verified over time given the limited number of studies for this
period.

Table 3. Subgroup analysis of the prevalence of L. monocytogenes at different time periods.

Time No. of
Studies

Pooled
Prevalence 95% CI I2 (%) p-Value

2000–2005 19 9.1% 6.0–12.9% 98.55

p < 0.012006–2010 34 7.4% 5.6–9.8% 98.58
2011–2016 32 6.6% 4.6–8.8% 98.59
2017–2020 6 6.7% 3.1–11.5% 97.72

95% CI: 95% confidence interval. p < 0.01: a statistically significant prevalence in the subgroup. I2: I-squared
statistics assessment of the magnitude of variation between studies.

3.2.3. Pooled Prevalence of L. monocytogenes between Raw Meat and RTE or Cooked Meat

Due to the wide variety of food products in each territory, it was not possible to
carry out a detailed classification of meat products. Therefore, only the products that
were clearly identified in the original articles were included for the following subgroup
analysis, including raw meat and RTE or cooked meat. As presented in Table 4, the pooled
prevalence of L. monocytogenes in raw meat was 11.3% (95% CI: 9.0–13.8%) much higher
than that in RTE or cooked meat, with a prevalence of 3.7% (95% CI: 2.9–4.7%) (p < 0.01). It
was also found that the prevalence in raw meat in China (10.1%, 95% CI: 7.8–12.7%) was
lower than that in the EU (16.8%, 95% CI: 9.9–24.9%) (p < 0.01). The prevalence in RTE or
cooked meat in China (3.5%, 95% CI: 2.6–4.5%) was slightly lower than that in the EU (4.1%,
95% CI: 2.5–6.0%) (p < 0.01).

3.2.4. Pooled Prevalence of L. monocytogenes among Pork, Beef and Chicken Meat

In Table 5, among the publications included, the highest prevalence of L. monocyto-
genes was found in chicken and pork, with 10.5% (95% CI: 6.8–14.9%) and 10.5% (95% CI:
6.4–15.3%), respectively, while the lowest prevalence was 8.6% (95% CI: 5.4–12.3%) in beef
(p < 0.01). Regarding the prevalence of L. monocytogenes in various meat products in China
and the EU, the prevalence in pork in China was higher than that in the EU (11.1%, 95% CI:
6.6–16.4% vs. 8.8% 95% CI: 2.1–19.2), but the opposite was observed for chicken (China:
9.9%, 95% CI: 5.8–14.8% vs. EU: 13.9%, 95% CI: 1.3–35.6%), while the prevalence in beef
was at the same level (China: 8.7%, 95% CI: 4.8–13.4% vs. EU: 9.0%, 95% CI: 3.5–16.6%) in
both regions (p < 0.01).
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Table 4. Subgroup analysis of the prevalence of L. monocytogenes between raw meat and RTE/cooked
meat.

Region Meat Type No. of
Studies

Pooled
Prevalence 95% CI I2 (%) p-Value

China
Raw meat 52 10.1% 7.8–12.7% 97.01

p < 0.01

RTE/cooked meat 43 3.5% 2.6–4.5% 91.51

EU
Raw meat 13 16.8% 9.9–24.9% 99.10

RTE/cooked meat 18 4.1% 2.5–6.0% 98.90

Total
Raw meat 65 11.3% 9.0–13.8% 97.97

RTE/cooked meat 61 3.7% 2.9–4.7% 97.31

95% CI: 95% confidence interval. p < 0.01: a statistically significant prevalence in the subgroup. I2: I-squared
statistics assessment of the magnitude of variation between studies.

Table 5. Subgroup analysis of the prevalence of L. monocytogenes among pork, beef and chicken.

Region Species No. of
Studies

Pooled
Prevalence 95% CI I2 (%) p-Value

China
Pork 25 11.1% 6.6–16.4% 97.22

p < 0.01

Beef 19 8.7% 4.8–13.4% 86.44
Chicken 22 9.9% 5.8–14.8% 94.76

EU
Pork 7 8.8% 2.1–19.2% 98.67
Beef 5 9.0% 3.5–16.6% 97.86

Chicken 4 13.9% 1.3–35.6% 96.60

Total
Pork 32 10.5% 6.8–14.9% 97.65
Beef 24 8.6% 5.4–12.3% 93.01

Chicken 26 10.5% 6.4–15.3% 95.05

95% CI: 95% confidence interval. p < 0.01: a statistically significant prevalence in the subgroup. I2: I-squared
statistics assessment of the magnitude of variation between studies.

3.2.5. Pooled Prevalence of L. monocytogenes by Different Detection Methods

The detection method could be regarded as a source of deviation in the reported
prevalence of L. monocytogenes. According to Table 6, when biochemical identification
was used as the detection method, the prevalence was 7.0% (95% CI: 5.7–8.4%), while the
prevalence reached 9.0% (95% CI: 5.7–13.0%) when molecular detection methods were
used.

Table 6. Subgroup analysis of the prevalence of L. monocytogenes by different detection methods.

Method No. of
Studies

Pooled
Prevalence 95% CI I2 (%) p-Value

Biochemical
identification 72 7.0% 5.7–8.4% 98.73 p < 0.01

Molecular
detection 19 9.0% 5.7–13.0% 98.49

95% CI: 95% confidence interval. p < 0.01: a statistically significant prevalence in the subgroup. I2: I-squared
statistics assessment of the magnitude of variation between studies.

3.3. Pooled Prevalence of Antibiotic Resistance of L. monocytogenes

A total of nine articles about antibiotic resistant L. monocytogenes were included in the
meta-analysis. The pooled prevalence of the antibiotic resistance of L. monocytogenes in
livestock and poultry (beef, pork and chicken) meat was 5.8% (95% CI: 3.1–9.1%), including
China and the EU. The heterogeneity in the studies was 89.87%. According to the funnel
plot (Figure 4), most of the points inside were (relatively) symmetrically distributed and a
p-value equal to 0.249 (p > 0.05) was obtained by the Egger test (Figure 5). Thus, it can be
concluded that the nine studies included have no or limited publication bias.
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3.3.1. Pooled Prevalence of Antibiotic Resistance of L. monocytogenes in Livestock in
Different Regions

The prevalence of antibiotic resistant isolates of L. monocytogenes in China (7.0% (95%
CI: 2.8–12.5%)) was slightly lower than that in the EU (8.1% (95% CI: 3.0–14.7%)), as shown
in Table 7 (p < 0.01).
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Table 7. Subgroup analysis of the prevalence of antimicrobial resistance of L. monocytogenes in
different regions.

Region No. of
Studies

Pooled
Prevalence 95% CI I2 (%) p-Value

China 4 7.0% 2.8–12.5% 92.72 p < 0.01
EU 5 8.1% 3.0–14.7% 92.02

95% CI: 95% confidence interval. p < 0.01: a statistically significant prevalence in the subgroup. I2: I-squared
statistics assessment of the magnitude of variation between studies.

3.3.2. Pooled Prevalence of Antibiotic Resistance of L. monocytogenes at Different Times

According to Table 8, the prevalence of antibiotic resistance from 2006 to 2013 was
3.2% (95% CI: 1.1–5.9%) and increased significantly to 18.9% (95% CI: 7.5–33.5%) from 2014
until 2020 (p < 0.01).

Table 8. Subgroup analysis of the prevalence of antimicrobial resistance of L. monocytogenes at
different time periods.

Time No. of
Studies

Pooled
Prevalence 95% CI I2 (%) p-Value

2006–2013 6 3.2% 1.1–5.9% 86.77 p < 0.01
2014–2020 3 18.9% 7.5–33.5% 94.92

95% CI: 95% confidence interval. p < 0.01: a statistically significant prevalence in the subgroup. I2: I-squared
statistics assessment of the magnitude of variation between studies.

3.3.3. Pooled Prevalence of Antibiotic Resistance of L. monocytogenes towards
Different Antibiotics

Fifteen antibiotics were screened and meta-analyzed in this review (Table 9). The
highest antibiotic resistance was found for oxacillin and ceftriaxone, at 61.2% (95% CI:
19.4–95.4%) and 27.3% (95% CI: 19.6–35.8%), respectively. The lowest antibiotic resistance
was 0.0% (95% CI: 0.0–0.4%) for vancomycin, followed by ampicillin at 0.4% (95% CI:
0.0–2.9%) and erythromycin at 0.5% (95% CI: 0.0–2.3%). For a total of eight antibiotics, the
pooled prevalence of Listeria resistance in China was lower compared to that in the EU
(p < 0.01). On the contrary, L. monocytogenes resistant to ceftriaxone strains isolated from
meat products in China (52.6%) were much higher than those in the EU (17.3%) (p < 0.01).
Both China and the EU have this high rate of antibiotic resistance to oxacillin, at 61.8% and
74.8%, respectively. The resistance of L. monocytogenes to streptomycin and gentamicin in
EU meat products was 0.0%, while resistance against these antibiotics was observed in
China. However, for vancomycin, no antibiotic resistance was observed in both China and
the EU. The resistance of L. monocytogenes towards the rest of the antibiotics between two
regions were mostly at the same level.

Table 9. Subgroup analysis of the prevalence antimicrobial resistance of L. monocytogenes towards
different antibiotics.

Region Antibiotics No. of Studies Pooled
Prevalence 95% CI I2 (%) p-Value

China

Oxacillin 2 61.8% 47.2–75.4% N/A N/A
Ceftriaxone 1 52.6% 35.8–69.0% N/A N/A

Ciprofloxacin 4 7.9% 0.0–45.0% 96.45 p < 0.01
Cefotaxime 2 7.0% 2.7–12.7% N/A N/A
Tetracycline 4 11.3% 4.6–20.1% 49.48 p > 0.05
Doxycycline 1 5.3% 1.5–13.1% N/A N/A

Chloramphenicol 4 2.7% 0.4–6.3% 0.00 p > 0.05
Ampicillin 4 0.3% 0.0–3.2% 26.95 p > 0.05

Erythromycin 3 1.7% 0.0–5.5% N/A N/A
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Table 9. Cont.

Region Antibiotics No. of Studies Pooled
Prevalence 95% CI I2 (%) p-Value

China

Streptomycin 3 3.4% 0.0–11.3% N/A N/A
Cephalothin 1 4.0% 0.8–11.2% N/A N/A
Rifampicin 1 4.0% 0.8–11.2% N/A N/A

Trimethoprim/
Sulfamethoxazole 3 3.1% 0.0–15.0% N/A N/A

Vancomycin 3 0.0% 0.0–1.2% N/A N/A
Gentamicin 4 2.9% 0.2–7.4% 23.19 p > 0.05

EU

Oxacillin 2 74.8% 65.1–83.6% N/A N/A
Ceftriaxone 1 17.3% 9.8–27.3% N/A N/A

Ciprofloxacin 4 9.0% 0.0–26.3% 75.64 p < 0.01
Cefotaxime 1 0.0% 0.0–17.6% N/A N/A
Tetracycline 4 13.0% 0.0–43.6% 89.85 p < 0.01
Doxycycline 1 9.9% 4.1–19.3% N/A N/A

Chloramphenicol 3 4.4% 0.0–20.1% N/A N/A
Ampicillin 3 1.0% 0.0–11.0 N/A N/A

Erythromycin 4 0.1% 0.0–1.8% 0.00 p > 0.05
Streptomycin 1 0.0% 0.0–17.6% N/A N/A
Cephalothin 1 8.3% 0.2–38.5% N/A N/A
Rifampicin 2 0.4% 0.0–3.9% N/A N/A

Trimethoprim/
Sulfamethoxazole 4 8.5% 0.0–30.8% 84.61 p < 0.01

Vancomycin 4 0.0% 0.0–1.5% 23.75 p > 0.05
Gentamicin 3 0.0% 0.0–1.0% N/A N/A

Total

Oxacillin 4 61.2% 19.4–95.4% 95.22 p < 0.01
Ceftriaxone 2 27.3% 19.6–35.8% N/A N/A

Ciprofloxacin 8 8.6% 0.0–26.7% 92.77 p < 0.01
Cefotaxime 3 5.2% 1.6–10.2% N/A N/A
Tetracycline 8 11.2% 2.7–23.3% 83.46 p < 0.01
Doxycycline 2 7.4% 3.5–12.3% N/A N/A

Chloramphenicol 7 2.9% 0.5–6.6% 29.97 p > 0.05
Ampicillin 7 0.4% 0.0–2.9% 39.82 p > 0.05

Erythromycin 7 0.5% 0.0–2.3% 0.00 p > 0.05
Streptomycin 4 2.5% 0.0–8.5% 56.45 p > 0.05
Cephalothin 2 3.5% 0.2–9.2% N/A N/A
Rifampicin 3 6.8% 0.0–26.6% N/A N/A

Trimethoprim/
Sulfamethoxazole 7 5.2% 0.1–14.8% 78.47 p < 0.01

Vancomycin 7 0.0% 0.0–0.4% 0.00 p > 0.05
Gentamicin 7 0.9% 0.0–3.9% 32.39 p > 0.05

N/A: Not applicable. 95% CI: 95% confidence interval. p < 0.01: a statistically significant prevalence in the
subgroup. I2: I-squared statistics assessment of the magnitude of variation between studies.

4. Discussion

Food safety is a multi-faceted international issue [44]. Both developing and developed
countries are actively looking for ways to prevent food safety problems. Microbial food-
borne risk is usually defined as the possibility and severity of adverse effects on human
health [45]. Based on the data obtained in this review, the prevalence of L. monocytogenes
from livestock and poultry (beef, pork and chicken) meat in China remained at low levels
throughout almost the last 20 years, and it is slightly lower than that in EU countries.

Chronologically, the prevalence of L. monocytogenes showed an overall downward
trend. The prevalence peaked in 2002–2005, and gradually declined and stabilized in 2006,
following the intensive regulation and legislation on food safety in China’s 10th Five-Year
Plan [46] and the establishment of the General Food Law by the European Food Safety
Authority in 2002 [47]. This indicates that governance at the national level plays an effective
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role. Among different meat products, the prevalence of L. monocytogenes in chicken and
pork was higher than that in beef. Meanwhile, the meat consumption percentages for pork
and poultry meat are above 60% and 20%, respectively, in China. Therefore, measures
taken to control L. monocytogenes in pork and poultry meat are essential to improve the
meat safety level [48].

The prevalence of L. monocytogenes in raw meat is, as expected, much higher than in
RTE and cooked meat products. This suggests that we need to strengthen the monitoring
of L. monocytogenes contamination in raw meat. However, the opposite is true: in recent
years, more attention has been paid to foodborne pathogens in RTE and cooked meat
products, while the high prevalence of L. monocytogenes in raw meat products has been
overlooked [49–51]. In the vast majority of cases, raw meat is eaten after being heated or
cooked; however, attention should be paid to the heating temperature, heating time, and
secondary contamination. Therefore, the addition of cooking labels to different raw meat
packages is a useful measure that can also effectively avoid the survival of pathogenic
bacteria due to the use of incorrect processing methods or the failure to meet the required
heating temperature and time. Meanwhile, RTE meat products and cooked meat products
may be exposed to pathogenic bacteria and cause their spread through cross-contamination
during storage, transportation, packaging, and consumption [52,53]. The food processing
environment is considered to be the main source of RTE food contamination by L. monocy-
togenes. Specifically, it can survive for a long time under adverse conditions such as low
temperature and is an important cause of persistent outbreaks of human listeriosis [54,55].
At the same time, the boundary between RTE meat and cooked meat is not clear in many
studies, and the classification of RTE meat is not detailed. This has resulted in the inability
to set appropriate subgroups for analysis. Therefore, developing a more detailed classi-
fication of RTE meat is important to determine the effect of different processed types of
products with regard to prevalence and to further understand the effect of physicochemical
properties on them.

The detection method of L. monocytogenes also has an impact on the identification
results, with a slightly lower prevalence reported when biochemical identification methods
were used compared to the molecular methods. The discrepancy may be due to false
positives in the PCR primer design process where the amplification sequence has the same
sequence as the non-target gene amplification sequence, the difficulty in distinguishing
dead from live bacteria, or the false positive results due to contamination [56]. However,
due to the high cost of biochemical identification and long testing period, this method is
not commonly used [57]. On the contrary, molecular methods are increasingly used for the
identification of L. monocytogenes [58]. Moreover, new techniques such as chromatography
and immuno- and aptamer techniques are now being used more frequently in the detection
of L. monocytogenes, but there is still a long way to go before they are widely used [59].

In this study, the pooled prevalence of antibiotic resistance of L. monocytogenes in
livestock and poultry between China and EU was 5.8% (95% CI: 3.1–9.1%), which was much
lower than that of RTE foods globally (38.1%; 95% CI: 36.1–39.7%) [60]. The reason for the
difference may be due to the nature and diversity of the food types, their nutrient content,
status, water activity, etc., as well as differences in processing methods. Internationally,
RTE foods cover a wider range of food types, including fish products, dairy products,
and salad products, which may undergo multiple food processing steps which increase
the risk of cross-contamination. It is also relevant that under the sublethal environmental
stresses encountered during the food processing, bacteria can develop a stress response
and increase the resistance to the subsequent exposure to antibiotics [61,62]. In order
to come to a conclusion, the number of studies regarding antibiotic resistance in the
present meta-analysis, which is quite small (nine studies with 356 samples), should also
be taken into account. Ampicillin and oxacillin (β-lactam antibiotics) can inhibit the
synthesis of polysaccharide peptides in bacterial cell walls [63]. L. monocytogenes is naturally
susceptible to β-lactam antibiotics, and the standard antibiotic regimen prescribed for
listeriosis includes penicillin/ampicillin alone or in combination with aminoglycosides
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(gentamicin) [64]. The results of this study showed that L. monocytogenes was still sensitive
to ampicillin and gentamicin, confirming the feasibility of treatment criteria. However,
there was a high resistance rate (61.2%; 95% CI: 19.4–95.4%) to oxacillin. This suggests that
L. monocytogenes has begun to develop resistance, which may be attributed to the overuse
of this drug in the veterinary field [65].

In order to reduce the phenomenon of pathogenic bacteria resistance to antibiotics
in animal-derived food, the EU implemented an EU-wide ban on the use of antibiotics
as growth promoters in animal feed on 1 January 2006 [64]. China has also developed a
corresponding catalog of banned veterinary drugs [66]. The antibiotics involved in this
study, with the exception of vancomycin, are not included in the list of prohibited veterinary
drugs. However, this does not imply that antibiotic resistance of pathogenic bacteria in
meat products can be greatly reduced, since treatment with antibiotics may also be an
option when animals are sick. During food production and processing, there is also a risk
of exposure to antibiotic-resistant bacteria [67]. Taking globalization into consideration, the
import and export of food between countries also contributes to the spread of antibiotic
resistance [68]. The increase in antibiotic resistance rates over time was also demonstrated
in the present study. To deal with this situation, governmental authorities should first
strengthen the supervision of the use of antibiotics in animals bred for food production.
When animals are sick, drugs other than antibiotics should be prescribed for treatment.
Additionally, antibiotic susceptibility testing is necessary prior to the use of antibiotics.

5. Conclusions

In the present study, a review and meta-analysis was performed to compare the
prevalence and antibiotic resistance of L. monocytogenes in livestock and poultry meat
between China and the EU. Our results indicate that the overall prevalence between the
two regions was slightly different, and the prevalence decreased for the last 20 years.
However, the situation of antibiotic resistance of L. monocytogenes in livestock and poultry
meat is still not optimistic, and constitutes a very serious public health issue. Currently,
studies related to the prevalence of L. monocytogenes in meat products are dominated
by qualitative sampling data, but quantitative data on its contamination levels are still
lacking. Therefore, the state and enterprises should strengthen the regular investigation of
L. monocytogenes contamination in all aspects of slaughter, processing and marketing, and
establish a quantitative microbiological risk assessment of the entire chain from pasture to
table to further understand the level of L. monocytogenes contamination.
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