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Abstract: In this study, the rheological behavior of maize kernel was systematically investigated using
a dynamic mechanical analyzer. The loss in toughness caused by drying resulted in a downward
shift in the relaxation curve and an upward shift in the creep curve. The long relaxation behavior
became obvious when the temperature was above 45 ◦C, resulting from the weakening of hydrogen
bonds with temperature. The maize kernel relaxed more rapidly at high temperatures, caused by
a reduction in the cell wall viscosity and polysaccharide tangles. The Deborah numbers were all
much smaller than one, suggesting that the Maxwell elements showed viscous behavior. Maize
kernel, as a viscoelastic material, showed a dominant viscous property at high temperatures. The
decline in β with increasing drying temperature indicated an increase in the width of the relaxation
spectrum. A Hookean spring elastic portion made up the majority of the maize kernel creep strain.
The order–disorder transformation zone of maize kernel was about 50–60 ◦C. Due to the complexity of
maize kernel, the William–Landel–Ferry constants differed from the universal values; these constants
should be ascertained through experiments. Time-temperature superposition was successfully used
to describe the rheological behavior. The results show that maize kernel is a thermorheologically
simple material. The data acquired in this study can be used for maize processing and storage.

Keywords: rheological properties; time-temperature superposition principle; maize kernel

1. Introduction

As an important staple crop, maize is widely grown throughout the world [1]. The
water content of maize at harvest ranges from 20% to 28% [2]. For safe storage, maize
should be dried to a 12–13% water content [3].

Maize can be dried by many methods, such as hot air drying, vacuum drying, solar
drying, and microwave drying. Hot air drying is a procedure in which a product is dried
with heated air. This drying method is simple and thus commonly used [4]. However, its
efficiency is low [5]. In vacuum drying, the product is dried at sub-atmospheric pressure.
Products dried using this method are generally of a better quality [6]. The synergistic
combination of vacuum and hot air drying results in high-quality products with a short
processing time and low power consumption. Maize can be effectively dried using a
combination of the vacuum and hot air processes [7].

Foods are viscoelastic materials [8]. The data on viscoelastic behavior of foods can
be used to describe processing operations [9]. The drying conditions, maize varieties, and
ripening stage can affect the viscoelastic properties of maize kernel. Stress relaxation is an
essential characteristic of a viscoelastic material [10]. In a stress relaxation experiment, a
constant deformation is applied to the product and the decline in the stress over time to
keep this deformation is measured [11]. Li et al. [12] found that the five-element Maxwell
equation could predict the stress relaxation property of sweet potato better than the three-
element Maxwell equation. Wang et al. [11] studied the stress relaxation property of rice.
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They measured the relaxation modulus. Abedi and Takhar [13] investigated the stress
relaxation behavior of banana. The ripening stage could affect the rheological behavior
pattern of banana in the drying process.

Creep is another essential characteristic of a viscoelastic material [10]. In a creep
experiment, a fixed force is applied to the product and the displacement is measured.
Li et al. [12] performed the creep-recovery cycle test on sweet potato. They repeated the
cycle three times. After the first cycle, no significant differences in the creep elements were
observed. Ditudompo et al. [14] found that the Burgers’ equation could describe the creep
behavior of an extruded cornstarch well (R2 > 0.92). Ozturk and Takhar [15] studied the
viscoelastic behavior of carrot. The creep property of carrot was highly correlated with
the moisture content. The storage of maize can be simulated by creep experiments [16].
However, it is difficult to conduct stress relaxation and creep experiments over a wide
time range.

Prolonging the time and raising the temperature have an equivalent influence on the
viscoelastic behavior of materials. This is known as the theory of time–temperature super-
position (TTS) [17]. The applicable standards for TTS are as follows [18]: (a) neighboring
curves can be joined to form a smooth curve; (b) all the viscoelastic functions must be super-
imposed with an identical αT; and (c) the relationship between αT and temperature must
satisfy the empirical equations. Polymers that follow TTS are called thermorheologically
simple polymers; those that do not follow TTS are called thermorheologically complex
polymers [19]. TTS has previously been tested in various polymers [11,20–25]. However,
the application of TTS to maize kernel has not been reported.

The purposes of the current study were (i) to describe the viscoelastic behavior of
maize kernel dried using a combination of vacuum and hot air processes; (ii) to assess the
applicability of TTS to maize kernel; and (iii) to characterize the viscoelastic behavior of
maize kernel over a wide timescale using TTS.

2. Materials and Methods
2.1. Materials

The variety of maize employed in this study was Nongda 86. Its seed kernels were
obtained from freshly harvested maize (Beijing Sinong Seed Co., Ltd., Beijing, China) from
Zhangye city, Gansu province, China. The kernels’ initial water content was 27%. Prior to
further testing, the kernels were kept in self-sealing bags and refrigerated at 4 ◦C.

2.2. Drying of Maize Kernels

The maize kernels were dried using the two methods detailed below. The samples’
water content was determined using a GTR800E single-kernel moisture tester (Shizuoka
Seiki Co., Ltd., Shizuoka, Japan).

2.2.1. Natural Drying (ND)

The maize kernels were placed on six glass plates (diameter: 20 cm) (Lanyi reagent
company, Beijing, China) in one or two (thin) layers and then dried indoors to a water
content of 13%. Finally, the samples were kept in self-sealing bags and refrigerated at 4 ◦C.

2.2.2. Hot Air/Vacuum Drying (HVD)

In a 50 ◦C oven (Shanghai Yiheng Scientific Instrument Co., Ltd., Shanghai, China),
the maize kernels were firstly dried to a water content of 18%. Then, in a −0.1 MPa DZ-3
vacuum drier (Taisite Instrument Co. Ltd., Tianjin, China), the samples were separately
dried at 75 ◦C, 65 ◦C, 55 ◦C, 45 ◦C, and 35 ◦C to a water content of 13%. Finally, the samples
were kept in self-sealing bags and refrigerated at 4 ◦C.

2.3. Sample Preparation

To ensure the maize kernels had a flat and smooth surface, every sample was carefully
polished by hand to prevent any physical failure caused by using abrasive papers. A
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Fowler PRO-MAX digital vernier caliper (Newton, MA, USA) with a precision of 0.01 mm
was employed to determine the width and length of every sample. The dimensions of
the samples were about 9 mm × 4 mm × 4 mm (length × width × height). The sample
preparation process was based on our previous research [26].

2.4. Stress Relaxation Tests

A TA Instruments Q800 dynamic mechanical analyzer (DMA, New Castle, DE, USA)
was employed to measure the maize kernels’ relaxation moduli. The compression mode
was employed to carry out the tests. A 0.05 N preload was applied to ensure complete
contact between the surface of the sample and the compression plate. The samples were
equilibrated at four test temperatures (85 ◦C, 65 ◦C, 45 ◦C, and 25 ◦C) for 1 min. Then, the
tests were conducted at the 0.8% strain for 10 min.

The generalized Maxwell equation (Equation (1)) was employed to describe the maize
kernel relaxation modulus:

E(t) =
n

∑
m=1

Em exp(−t/τm) + E0 (1)

where E(t) (MPa) and E0 (MPa) denote the stress relaxation modulus and equilibrium mod-
ulus, respectively; τm (s) is the relaxation time; Em (MPa) is the corresponding relaxation
modulus; and t (s) is the time.

The Kohlrausch–Williams–Watts (KWW) equation (Equation (2)) was also employed
to predict the modulus:

E(t) = E0 exp[−(t/τ)β] (2)

where E0 (MPa) denotes the initial modulus, τ (s) denotes the relaxation time, and β denotes
the exponent.

2.5. Creep Tests

The DMA was also employed to determine the kernels’ strains. The compression
mode was employed to carry out the tests. A 0.05 N preload was supplied to each kernel.
The samples were equilibrated at four test temperatures (60 ◦C, 50 ◦C, 40 ◦C, and 30 ◦C) for
1 min. Then, the tests were performed at 0.08 MPa stress for 10 min.

Burgers’ equation (Equation (3)) was employed to predict the creep strain.

ε =
σ

E1
+

σ

E2

[
1− exp

(
−t

E2

η2

)]
+

σ

η1
t (3)

In Equation (3), t (s) represents time; ε (dimensionless) denotes the kernel’s strain; σ
(MPa) denotes the applied stress; η1 (MPa s) and η2 (MPa s) denote the Maxwell dashpot
viscosity and Kelvin dashpot viscosity, respectively; and E1 (MPa) and E2 (MPa) denote the
Maxwell spring modulus and Kelvin spring modulus, respectively. Generally, η2/E2 = τ,
where τ denotes the Kelvin element retardation time.

From the differentiation of Equation (3), the creep rate ε’ can be acquired:

ε′ =
dε

dt
=

σ

η1
+

σ

η2
exp

(
−t

E2

η2

)
(4)

When the time tends to infinity, ε’ will gradually reach a certain value:

ε′(∞) =
dε

dt

∣∣∣∣t=∞ =
σ

η1
(5)

Another equation, called the Findley power law, can also describe the strain of poly-
mers [27]. It has the following form:

ε = atb + ε0 (6)
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Here, ε0 denotes the initial deformation, while a and b denote the material parameters.
A simpler two-parameter power law equation has also been employed to describe the

strain of the polymers [28–30]:
ε = atb (7)

2.6. Time–Temperature Superposition

The strain and relaxation modulus of the maize kernels over a wide time range were
described using TTS. The master curves were produced by transferring the short-period
curves horizontally [31]. The William–Landel–Ferry (WLF) [19] (Equation (8)) or Arrhenius
equation [32] (Equation (9)) can be employed to describe the shift factor.

log αT =
C1T0 − C1T
T − T0 + C2

(8)

In Equation (8), αT, T0 (K), and T (K) represent the shift factor, reference temperature,
and test temperature, respectively, while C1 and C2 (K) are the WLF parameters.

log αT =
Ea

R
(

1
T
− 1

T0
) (9)

In Equation (9), R (J/K·mol) and Ea (kJ/mol) denote the gas law constant and activa-
tion energy, respectively, while T0 (K) and T (K) denote the reference and experimental
temperatures, respectively.

As suggested by Ferry [18], the Arrhenius equation and WLF equation were both em-
ployed to describe αT. C1, C2, Ea, and the coefficient of determination (R2) were determined
from the experimental data using regression analysis. Temperatures of 25 ◦C and 30 ◦C
were chosen as the reference temperatures for stress relaxation and creep TTS, respectively.

2.7. Statistical Analysis

Three replicates were conducted for every sample. Universal Analysis 2000 software
(version 4.3A, TA Instruments, New Castle, DE, USA) was employed to acquire the DMA
data. SPSS 17.0 (SPSS Inc., Chicago, IL, USA) was employed to conduct the statistical analysis.

3. Results and Discussion
3.1. Analysis of Stress Relaxation Behavior

The stress relaxation data for maize kernels at different temperatures are plotted in
Figure 1. Three stages make up the curve. The first stage shows an immediate elastic
response. The timescale of this region is nearly zero. The second stage demonstrates a
marked stress relaxation process. The timescale is from about 0 to 20 s. In the third stage, the
modulus approaches a constant. The maize kernel is viscoelastic [8]. When strain is applied
to the kernel, the stress increases immediately due to the elastic portion of the kernel and
then decreases gradually due to the viscous portion of the kernel. This trend is identical to
the findings reported in a previous study [33]. It can be seen from Figure 1 that the kernels
dried by ND had the highest initial relaxation modulus. This is because the kernels dried by
ND had the highest toughness. For the same sample, when the temperature was increased,
the initial modulus declined markedly. This was caused by an increase in the motion of the
polymer chains, resulting in a lowering of the threshold for specific strain conditions [34].

Table 1 presents the elements of the generalized Maxwell equation. As listed in Table 1,
the R2 was around 0.94–0.98, indicating that the stress relaxation modulus was described
well by the generalized Maxwell equation. A similar finding was reported in a study on oat
grains [35]. Table 1 also shows that E1 decreased as the temperature increased, suggesting
that higher temperatures reduced the maize kernel’s deformation resistance [36]. Hence,
the stress required to achieve the given strain decreased. At the same temperature, τ
fluctuated with drying conditions and did not display a decreasing or increasing tendency,
suggesting that the relaxation time was not related to the drying method. In general, τ
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decreased as the temperature increased. That is, kernels relaxed more rapidly at higher
temperatures. The reason for this is as follows: when a maize kernel becomes soft due
to high temperatures, the cell wall viscosity and polysaccharide tangles will be reduced,
leading to faster stress dissipation [36]. By using the expression below, the Deborah number
(De) can be obtained:

De = τ/t (10)

Here, t denotes the observation time. De can provide useful information on materials’
viscoelastic properties: De ≈ 1 denotes a viscoelastic behavior; De << 1 denotes a viscous
fluid; and De >> 1 denotes an elastic solid [37]. The De values (0.094–0.385) calculated in
this study were much smaller than one; this suggests that the Maxwell element showed
viscous behavior.
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Figure 1. Relaxation modulus data for maize kernels at different temperatures: (A) natural drying (ND);
(B) hot air/vacuum drying (HVD) 35 ◦C; (C) HVD 45 ◦C; (D) HVD 55 ◦C; (E) HVD 65 ◦C; (F) HVD 75 ◦C.
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Table 1. Parameters of the generalized Maxwell equation for maize kernels.

Drying Condition T (◦C) E1 (MPa) τ (s) E0 (Mpa) R2

ND 25 3.893 155.324 6.894 0.970
45 5.934 127.648 3.024 0.973
65 3.855 101.195 1.150 0.960
85 2.580 70.449 0.502 0.949

HVD 35 ◦C 25 3.349 231.258 3.609 0.982
45 4.180 168.697 0.631 0.989
65 2.265 122.905 0.674 0.971
85 2.337 87.183 0.203 0.964

HVD 45 ◦C 25 2.715 198.521 2.915 0.982
45 4.308 194.858 0.738 0.990
65 2.045 82.344 0.208 0.977
85 2.237 56.494 0.225 0.976

HVD 55 ◦C 25 4.893 211.059 5.252 0.983
45 3.368 187.663 3.374 0.980
65 4.495 118.842 0.866 0.984
85 4.144 119.810 0.359 0.973

HVD 65 ◦C 25 3.896 206.480 4.516 0.981
45 3.848 204.399 1.597 0.989
65 2.994 163.361 0.506 0.980
85 3.269 86.022 0.364 0.962

HVD 75 ◦C 25 2.867 154.009 5.058 0.974
45 2.260 129.410 2.635 0.974
65 2.791 124.449 1.743 0.976
85 1.803 87.104 0.367 0.980

Table 1 also shows that when the temperature increased, E0 decreased. This suggests
that maize kernel is mainly a viscous material at high temperatures. The maize kernel’s
viscous portion begins to decrease as the temperature decreases. According to the theory
of free volume, molecular dynamics can account for the influence of the viscous portion.
When the temperature is low, there is not enough free volume to allow for the motion of
molecular chains; thus, the molecules’ movement is fixed. This makes the kernel glassy.
When the temperature is high, the free volume becomes larger and the molecular chains
can move. This makes the kernel rubbery [11]. In addition, the E0 for ND was higher than
the E0 for HVD (at the same temperature), except in the case of HVD 55 ◦C at 45 ◦C and
HVD 75 ◦C at 65 ◦C. This suggests that the kernel’s stiffness changed. This is owing to the
changes in the kernel’s cellular structure caused by hot air/vacuum drying, giving rise to a
decline in the stiffness. The change in E0 may have resulted from the breakdown of cell
membranes caused by HVD [38], leading to the collapse of the cells [33,39].

3.2. Analysis of Creep Behavior

Figure 2 displays the creep curves for maize kernels at various temperatures. The
curves demonstrate classic creep features and exhibit a similar tendency over time. When
stress is applied to the maize kernels, the strain increases instantly because of elasticity.
In this portion, the changes in the kernel’s structure are reversible [40]. Then, the strain
continues to increase at a decreasing rate due to viscosity. This portion of the curve
contributes to the maize kernel’s viscoelastic property [15]. The last portion is a straight line,
representing the kernel’s viscous flow deformation. In this compression stage, the kernel’s
tissues are permanently destroyed, and the changes can only be partially reversed [41].
This tendency is consistent with the creep strain of barley kernels reported in a previous
study [42]. In this study, the creep strain exhibited a strong temperature dependence. When
the temperature increased, the strain also increased. A similar finding was reported in a
previous study [43]. Therefore, the solid-like characteristics of maize kernel increase as
the temperature decreases [14]. It can also be seen from Figure 2 that the ND kernels had
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the lowest creep strain. This is because the kernels dried using the ND method were more
compact and robust.
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Figure 2. Creep data for maize kernels at different temperatures: (A) ND; (B) HVD 35 ◦C; (C) HVD
45 ◦C; (D) HVD 55 ◦C; (E) HVD 65 ◦C; (F) HVD 75 ◦C.
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Table 2 displays the values of the four elements (E1, E2, η1, and η2) mentioned in
Section 2.5. The data in this table suggest that Burgers’ equation can predict the creep
property well (R2 > 0.98). E1, E2, η1, and η2 all decreased as the temperature increased,
suggesting that increasing temperature increases the deformation of maize kernel. E1 is
correlated with the elasticity of a semi-crystalline polymer’s crystalline regions. In contrast
to the amorphous zones, the crystalline regions are exposed to instant stress because of their
relatively high hardness. When the stress is eliminated, E1 can be resumed instantly [44]. E2
is correlated with the rigidity of a material [30]. When the temperature increases, the instant
and viscoelastic strain increase. As a result, E1 and E2 decrease. η1 is correlated with the
damage from the crystalline regions and the irrevocable strain from the amorphous zones.
η2 corresponds to the viscosity of the semi-crystalline polymer’s amorphous zones [45].
When the temperature increases, the values of η1 and η2 decline. This indicates that the
molecular chains become more active [29]. The ND elements exhibited the greatest declines
(particularly in η1, which depends heavily on temperature and is correlated with the rate
of long-period deformation), suggesting that the viscoelastic property of kernel dried by
ND was more sensitive to temperature.

Table 2. Parameters of Burgers’ equation for maize kernels.

Drying
Condition T (◦C) E1 (MPa) E2 (MPa) η2 (MPa s) η1 (MPa s) τ (s) ε’ (∞)

(×10−6 s−1) R2

ND 30 12.366 93.513 2123.752 3.343 × 104 22.711 2.393 0.986
40 9.459 44.621 1960.307 1.500 × 104 43.932 5.335 0.991
50 8.550 29.893 1429.997 1.362 × 104 47.837 5.874 0.991
60 8.037 15.943 884.383 6667.172 55.472 11.999 0.995

HVD 35 ◦C 30 7.874 44.399 1249.639 1.758 × 104 28.146 4.551 0.986
40 7.510 39.770 1249.193 1.169 × 104 31.410 6.846 0.991
50 5.546 21.809 782.902 9165.199 35.898 8.729 0.989
60 5.392 12.599 869.341 5301.574 69.001 15.090 0.995

HVD 45 ◦C 30 5.860 42.303 822.937 1.662 × 104 19.453 4.813 0.982
40 5.346 21.779 685.719 7719.949 31.485 10.363 0.990
50 5.511 15.600 752.968 5336.196 48.267 14.992 0.993
60 5.858 9.698 377.393 5333.766 38.915 14.999 0.990

HVD 55 ◦C 30 7.352 50.190 1277.306 1.815 × 104 25.449 4.409 0.985
40 5.876 18.000 778.471 7273.839 43.248 10.998 0.991
50 4.255 18.021 530.068 6427.004 29.414 12.447 0.988
60 3.671 9.550 512.969 4199.839 53.714 19.048 0.992

HVD 65 ◦C 30 9.741 65.245 2054.107 2.380 × 104 31.483 3.361 0.987
40 7.926 39.079 1085.328 1.463 × 104 27.773 5.467 0.987
50 7.549 28.880 1011.784 9554.119 35.034 8.373 0.991
60 6.956 22.999 957.637 5738.029 41.638 13.942 0.994

HVD 75 ◦C 30 7.816 57.858 1335.159 1.856 × 104 23.076 4.311 0.986
40 6.288 30.236 975.934 1.119 × 104 32.277 7.149 0.988
50 5.263 18.040 602.605 8122.873 33.404 9.849 0.988
60 4.896 20.384 621.951 7975.713 30.512 10.030 0.988

It can also be seen from Table 2 that E2 was larger than E1. In comparison to the viscous
and retarded elastic strain, the instant strain was larger. Thus, the Hookean spring elastic
portion mainly makes up maize kernel’s creep strain [14]. Table 2 also presents ε’ (∞) and τ
for the maize kernels. When the temperature was increased, ε’ (∞) increased monotonically.
At 60 ◦C, the kernels generally showed a longer retardation time (τ), indicating that the
samples’ viscoelastic property remained for longer [41].

Overall, the kernel dried by ND had a higher stiffness. The viscoelastic property of the
kernel dried by ND was more sensitive to temperature. The relaxation time of the kernel
was not related to the drying method.
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3.3. Applicability of Time-Temperature Superposition

Figures 1 and 2 were replotted in logarithmic form (left-hand graphs in Figures 3 and 4)
to employ TTS. It can be seen that for stress relaxation, the impact of temperature was
obvious at 45 ◦C and became more significant at 65 ◦C; for creep, the impact was obvious
at 50 ◦C and became significant at 60 ◦C. The temperature range of 45–65 ◦C and 50–60 ◦C
denoted the order–disorder transformation zones of maize kernel [46]. These are close to the
gelatinization temperature of maize starch (64–72 ◦C) [47]. Furthermore, from the graphs on
the left in Figure 3, it can be seen that the long relaxation behavior became obvious when the
temperature was above 45 ◦C. Specific molecular interactions in maize kernel and temperature
have an impact on when the long relaxation process occurs [21]. In general, in this study,
long relaxation occurred when the time was approximately 200 s at 65 ◦C, and when it was
160 s at 85 ◦C. This is because the hydrogen bonds were weakened when the temperature was
raised [48].
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Figure 3. The left-hand graphs show logarithmic plots of stress relaxation data for maize kernels, while the
right-hand graphs are the corresponding master curves for maize kernels (A1,A2)—ND; (B1,B2)—HVD
35 ◦C; (C1,C2)—HVD 45 ◦C; (D1,D2)—HVD 55 ◦C; (E1,E2)—HVD 65 ◦C; (F1,F2)—HVD 75 ◦C).
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Figure 4. The left-hand graphs show logarithmic plots of creep data for maize kernels, while the right-
hand graphs are the corresponding master curves for maize kernels (A1,A2)—ND; (B1,B2)—HVD
35 ◦C; (C1,C2)—HVD 45 ◦C; (D1,D2)—HVD 55 ◦C; (E1,E2)—HVD 65 ◦C; (F1,F2)—HVD 75 ◦C.

By shifting the stress relaxation (left-hand graphs in Figure 3) and creep (left-hand
graphs in Figure 4) curves horizontally, the master curves were acquired (right-hand
graphs in Figures 3 and 4). As noted earlier, the applicable standards for TTS are as
follows: (a) neighboring curves can be joined to form a smooth curve; (b) all the viscoelastic
functions must be superimposed with an identical αT; and (c) the relationship between αT
and the temperature must satisfy the empirical equations. It can be seen from the graphs
in Figures 3 and 4 (right) that the relaxation and creep curves exhibited superposition
for all the samples, although the master curves showed some tails and irregularities
(Figure 3(A2–E2) and Figure 4(B2,C2)). The absence of superposition is correlated with
the relaxation mechanism, which depends on temperature and takes place inside the maize
kernel [49]. This is parallel to the findings reported in a previous study [50]. In that
study, the curves obtained at higher temperatures could not be overlapped smoothly with
only horizontal shifting. Nevertheless, by shifting the obtained curves both vertically and
horizontally, smooth master curves were acquired. In general, the relaxation modulus and
creep strain master curves were considered to be continuous and smooth in this study.
Some curves (Figure 3(F2) and Figure 4(A2,D2–F2)) demonstrated an excellent fit for the TTS.
These findings suggest that the maize kernel is a thermorheologically simple material [51].
The applicability of TTS has also been evaluated for other food materials [46,49,52–54], and
soybean [55] was reported as a thermorheologically simple material.

It can be seen from Figures 5 and 6 that αT reduced monotonically with the temperature.
This is similar to the finding of Meza et al. [56]. Furthermore, αT versus the temperature
data could be fitted well by both the Arrhenius equation and the WLF equation (R2 > 0.857).
However, the correlation between αT and the temperature was not very high for some
samples. This is because the temperatures were too close, and no remarkable viscoelastic
variations were detected, similar to the finding reported by Ahmed [49]. In his study, no
noticeable rheological variations were found in guar gum dispersions due to the closeness
of the temperatures.
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Figure 5. Shift factors fitted to the Arrhenius equation for maize kernels (stress relaxation): (A1) ND; 
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fitted to the William–Landel–Ferry (WLF) equation for maize kernels (stress relaxation): (B1) ND; 

(B2) HVD 35 °C; (B3) HVD 45 °C; (B4) HVD 55 °C; (B5) HVD 65 °C; (B6) HVD 75 °C. 

  

  

  

  

  

  

Figure 5. Shift factors fitted to the Arrhenius equation for maize kernels (stress relaxation): (A1) ND;
(A2) HVD 35 ◦C; (A3) HVD 45 ◦C; (A4) HVD 55 ◦C; (A5) HVD 65 ◦C; (A6) HVD 75 ◦C. Shift factors
fitted to the William–Landel–Ferry (WLF) equation for maize kernels (stress relaxation): (B1) ND;
(B2) HVD 35 ◦C; (B3) HVD 45 ◦C; (B4) HVD 55 ◦C; (B5) HVD 65 ◦C; (B6) HVD 75 ◦C.

Tables 3 and 4 display the Arrhenius activation energy (Ea) and WLF constants. The
WLF constants, C1 and C2, are given by [57]:

C1 =
B

2.303 f
(11)

C2 =
f
α

(12)

Here, B can be taken equal to unity, f denotes the fractional free volume at the reference
temperature, and α denotes the thermal expansion coefficient. Although the WLF constants
fluctuated with the drying conditions, the WLF constants for ND and HVD 35 ◦C were the
highest, suggesting that the fractional free volume and thermal expansion coefficient were
the smallest.
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Figure 6. Shift factors fitted to the Arrhenius equation for maize kernels (creep): (A1) ND; (A2) HVD 

35 °C; (A3) HVD 45 °C; (A4) HVD 55 °C; (A5) HVD 65 °C; (A6) HVD 75 °C. Shift factors fitted to the 

WLF equation for maize kernels (creep): (B1) ND; (B2) HVD 35 °C; (B3) HVD 45 °C; (B4) HVD 55 °C; 
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Tables 3 and 4 display the Arrhenius activation energy (Ea) and WLF constants. The 

WLF constants, C1 and C2, are given by [57]: 

Figure 6. Shift factors fitted to the Arrhenius equation for maize kernels (creep): (A1) ND; (A2) HVD
35 ◦C; (A3) HVD 45 ◦C; (A4) HVD 55 ◦C; (A5) HVD 65 ◦C; (A6) HVD 75 ◦C. Shift factors fitted to the
WLF equation for maize kernels (creep): (B1) ND; (B2) HVD 35 ◦C; (B3) HVD 45 ◦C; (B4) HVD 55 ◦C;
(B5) HVD 65 ◦C; (B6) HVD 75 ◦C.
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Table 3. WLF constants and Arrhenius activation energy for maize kernels (stress relaxation).

Equation Parameters Drying Condition

ND HVD
35 ◦C

HVD
45 ◦C

HVD
55 ◦C

HVD
65 ◦C

HVD
75 ◦C

WLF C1 14.990 5.995 8.406 7.174 7.758 5.882
C2 (K) 191.700 56.655 134.400 72.001 71.984 43.807

R2 0.997 0.999 0.953 0.992 0.986 0.857
Arrhenius Ea 126.900 124.200 90.860 117.300 126.600 134.800

R2 0.997 0.959 0.934 0.967 0.960 0.963

Table 4. WLF constants and Arrhenius activation energy for maize kernels (creep).

Equation Parameters Drying Condition

ND HVD
35 ◦C

HVD
45 ◦C

HVD
55 ◦C

HVD
65 ◦C

HVD
75 ◦C

WLF C1 6.127 32.020 2.226 15.873 4.435 9.671
C2 (K) 17.771 257.500 8.346 73.297 13.647 40.668

R2 0.998 0.963 0.985 0.998 0.966 0.989
Arrhenius Ea 250.599 220.498 111.035 292.645 199.302 255.960

R2 0.932 0.945 0.870 0.987 0.936 0.955

It can be seen that the R2 of the WLF equation was higher than that of the Arrhenius
equation. A similar finding was reported in a previous study [58]. Despite this, it should be
noted that there are two coefficients in the WLF equation, while there is only one coefficient
in the Arrhenius equation. Hence, the WLF equation is more adaptable. We can also
observe from Tables 3 and 4 that the C1 and C2 values ranged from 2.226 to 32.020 and 8.346
to 257.500 K, respectively. The values of C1 were slightly different from the universal value
(C1 = 17.44), while the values of C2 were considerably different (C2 = 51.6 K) [57]. This
is due to the complexity of food polymers (including different charges on the surfaces of
polymers, various polysaccharides, 20 amino acids of protein, large polydispersities) [59]
and is similar to the finding of Altay and Gunasekaran [60]. In their research, the values
of C1 and C2 for a gelatin–xanthan gum system ranged from 4.52 to 22.68 and 58.97 to
204.97 K, respectively. Peleg [61] stated that employing universal values in food polymers
ought to be approached cautiously. The values of C1 and C2 for food materials should be
ascertained through experiments due to their substance-specific characteristics [59].

In this study, the Ea values for stress relaxation ranged from 90.86 to 134.8 kJ/mol.
These values are very close to the Ea value (94.3 kJ/mol) of rice kernels (13.8% moisture con-
tent) for stress relaxation [11]. This is likely because maize kernels and rice kernels are both
mainly composed of starch. The values for creep ranged from 111.035 to 292.645 kJ/mol,
which are higher than the values (62.960–166.539 kJ/mol) for starch films [62,63]. Further-
more, the values for creep were significantly higher than those for stress relaxation. The Ea
for relaxation and creep represents the energy needed for the initiation of the molecular
movements, leading to relaxation and creep [64]. From Tables 3 and 4, the values for
the kernels dried by HVD at 75 ◦C and HVD at 55 ◦C were the highest, suggesting that
more energy was required, while the values for the kernels dried by HVD at 45 ◦C were
the lowest.

Overall, TTS was successfully applied to the maize kernel. TTS extended the timescale
of the relaxation modulus and creep strain from 2 to 5–6 log periods (Figure 3) and 2 to
4–7 log periods (Figure 4), respectively. Performing a DMA experiment for such a long
time is extremely challenging. The application of TTS to the rice kernel was reported in
a previous study [11]. In that study, the timescale of the relaxation modulus for the rice
kernel was extended from 2 to 6 log periods.
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3.4. Long-Period Stress Relaxation and Creep Response

Figure 7 shows the TTS predicted relaxation moduli for maize kernels dried under
different conditions at 25 ◦C. As shown in this figure, the resulting predicted curves provide
an accelerated stress relaxation characterization up to 1600 h. Constant strain-rate tests
performed for yellow-dent maize kernels were reported in a previous study [9]. In that
study, the timescale of the relaxation modulus was extended to 106 s; however, the modulus
was higher than that in the current study. This may have resulted from differences in the
maize varieties and experimental conditions.
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Figure 7. Time-temperature superposition (TTS) predicted stress relaxation for maize kernels dried
under different conditions: (A) ND; (B) HVD 35 ◦C; (C) HVD 45 ◦C; (D) HVD 55 ◦C; (E) HVD 65 ◦C;
(F) HVD 75 ◦C.
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Figure 8 shows the TTS predicted creep strains for maize kernels dried under different
conditions at 30 ◦C. The timescale of the creep strain was extended to 5000 h, and the trends
of the curves were similar in the longer time frame. The timescale of the creep strain for the
starch film was extended to 107 s in another study [63].
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Figure 8. TTS predicted creep for maize kernels dried under different conditions: (A) ND; (B) HVD
35 ◦C; (C) HVD 45 ◦C; (D) HVD 55 ◦C; (E) HVD 65 ◦C; (F) HVD 75 ◦C.
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Table 5 lists the equation parameters for long-period stress relaxation. We can observe
from this table that both the Maxwell equation and KWW equation fitted the data well. The
R2 of the Maxwell equation was slightly higher than that of the KWW equation. Similar
studies have reported fitting the generalized Maxwell equation to the relaxation modulus
data of corn kernels [9] and rice kernels [11]. In this study, the values of E1, E2, and E3 were
close to each other. This suggests that the maize kernel’s inner structure changed slightly
during the long-period relaxation [36]. Furthermore, for the entire relaxation time, the
Deborah numbers (De1 = 0.00034–0.14918; De2 = 0.00004–0.21343; De3 = 0.00011–0.06139)
were much smaller than one. This suggests that the first, second, and third Maxwell
elements all show a viscous response.

Table 5. Equation parameters for long-period stress relaxation of maize kernels.

Equation Parameters Drying Condition

ND HVD 35 ◦C HVD 45 ◦C HVD 55 ◦C HVD 65 ◦C HVD 75 ◦C

Generalized Maxwell equation E1 (MPa) 4.449 2.543 1.118 2.326 2.297 1.753
E2 (MPa) 2.802 1.796 1.674 3.555 2.763 3.166
E3 (MPa) 2.858 2.573 2.923 4.050 3.253 2.485

τ1 (s) 2177.795 4704.469 55.148 8945.749 5866.535 8.865 × 105

τ2 (s) 123.826 1.676 × 105 2.760 × 104 1.604 × 105 2.716 × 105 242.832
τ3(s) 8.286 × 104 155.342 821.170 143.129 146.080 2.284 × 104

E0 (MPa) 0.668 0.095 0.095 0.322 0.172 0.365
R2 0.994 0.980 0.990 0.992 0.987 0.996

Kohlrausch–Williams–Watts
(KWW) equation E0 (MPa) 16.501 10.670 7.847 13.554 14.006 12.593

τ 1059.509 958.363 798.541 3888.804 791.291 1602.291
β 0.194 0.191 0.271 0.187 0.149 0.145

R2 0.992 0.978 0.984 0.974 0.978 0.995

The value of the exponent β declined from 0.194 to 0.145 when the drying temperature
was increased to 75 ◦C, except in the case of HVD at 45 ◦C. In accordance with Ngai et al.’s
coupling theory [65], the medium and the relaxing species become more tightly coupled
when β declines. This is correlated with overall declines in the molecular motion and
increases in the width of the relaxation spectrum. The decline in β results from the increase
in the density of the polymer with increasing drying temperature. When the space among
the molecules is reduced, the motion of molecular chains is more limited, increasing the
width of the relaxation spectrum [66].

Table 6 lists the equation parameters for long-period creep. We can observe from
this table that the creep data were described well by Burgers’ equation for all the maize
kernels. Nonetheless, long-term experiments have considerably different elements than
short-term experiments, caused by fitting a higher rate of creep to the strain in the short-
term experiments [29].

Table 6. Equation parameters for long-period creep of maize kernels.

Equation Parameters Drying Condition

ND HVD 35 ◦C HVD 45 ◦C HVD 55 ◦C HVD 65 ◦C HVD 75 ◦C

Burgers equation E1 (MPa) 10.244 6.968 5.251 6.081 8.161 6.503
E2 (MPa) 17.795 13.754 11.929 7.081 18.004 11.459

η2 (MPa s) 4.317 × 105 2.145 × 104 3.291 × 104 1.142 × 105 1.789 × 105 1.821 × 105

η1 (MPa s) 3.389 × 107 4.294 × 106 3.126 × 105 6.964 × 107 8.018 × 106 4.386 × 107

R2 0.951 0.956 0.966 0.950 0.946 0.922
Two-parameter power law equation a 0.005 0.008 0.010 0.008 0.006 0.009

b 0.088 0.083 0.097 0.088 0.080 0.067
R2 0.905 0.932 0.879 0.970 0.912 0.970

Findley power law equation a 2.418 × 10−4 0.001 2.829 × 10−4 0.003 4.020 × 10−4 0.003
b 0.263 0.254 0.392 0.148 0.254 0.113
ε0 0.007 0.010 0.014 0.008 0.008 0.007
R2 0.978 0.977 0.974 0.982 0.974 0.976

The Findley power law equation can better represent the TTS predicted strain than
Burgers’ equation. The two-parameter power law equation also describes the creep data
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well. When the parameter ε0 was removed, a and b became more consistent. This is similar
to the finding from a previous study [19].

4. Conclusions

With regard to stress relaxation, creep, and TTS, the rheological properties of maize
kernels dried using a combination of vacuum and hot air processes were investigated. The
kernel dried by ND had a higher stiffness. The viscoelastic property of kernel dried by ND
was more sensitive to temperature. The relaxation time of the kernel was not related to
the drying method. The long relaxation behavior became obvious when the temperature
was above 45 ◦C, as a result of the weakening of hydrogen bonds with temperature. The
Des were all much smaller than one, indicating that the Maxwell elements showed viscous
behavior. The maize kernels exhibited dominant viscous behavior at high temperatures.
The decline in β with increasing drying temperature indicates an increase in the width
of the relaxation spectrum. The order–disorder transformation zone of maize kernel was
about 50–60 ◦C. Finally, TTS was successfully applied to predict the long-period relaxation
modulus (up to 1600 h) and creep strain (up to 5000 h). These results show that maize kernel
is a thermorheologically simple material. Further structural analyses (such as atomic force
microscope and nuclear magnetic resonance analyses) are needed to clarify the molecular
mechanism of the HVD kernels. The data acquired in this study can be used for maize
processing and storage.
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