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Abstract: Inflammatory bowel disease (IBD) is a heterogeneous group of diseases associated with
chronic inflammation of the intestinal tract, and is highly prevalent worldwide. Although its origin is
not yet fully understood, new evidence emphasizes that environmental factors, especially dietary
factors and intestinal microbiota disorders are key triggers of IBD. Probiotics, such as Lactobacillaceae
spp., play an essential role in human health as they exert beneficial effects on the composition of the
human gastrointestinal microbial community and immune system. Probiotic-based therapies have
been shown to be effective in alleviating IBD. Among these, Lactobacillaceae rhamnosus is one of the
most widely used strains. L. rhamnosus is widely present in the intestines of healthy individuals; it
regulates the intestinal immune system and reduces inflammation through a variety of mechanisms.
The purpose of this study was to identify scientific evidence related to L. rhamnosus and IBD, review
and summarize the results, and discuss the possible mechanisms of action as a starting point for
future research on IBD treatment.

Keywords: Lactobacillaceae rhamnosus; inflammatory bowel disease; gut microbiota; intestinal barrier;
immune response; adhesion

1. Introduction

Inflammatory bowel disease (IBD) is a chronic and relapsing intestinal inflammation
that manifests in two main clinical phenotypes: ulcerative colitis (UC) and Crohn’s disease
(CD). UC mainly involves confluent inflammation of the colonic mucosa, whereas CD usu-
ally has a transmural, lamellar character. CD can involve any portion of the gastrointestinal
tract, ranging from the mouth to the anus [1]. This disease is more common in Western
countries, with an incidence of >0.3% [2]. However, recent studies have shown that the
prevalence of IBD has increased in countries with improved socioeconomic status [3]. This
phenomenon suggests that lifestyle, dietary and environmental changes may contribute
to the upward trend of these diseases, especially in genetically susceptible individuals [4].
The etiology of IBD is unknown, but genetic and other factors (e.g., microbiota and diet)
seem to lead to immune disorders, including altered immune responses to the microbiota,
disruption of the gut barrier function and ultimately, chronic inflammation [5,6]. The in-
testinal epithelium separates the intestinal lumen from the immune cells. Microorganisms
and antigens affect immune cells by contact with or crossing the intestinal epithelial barrier
to induce an immune response [7].

The treatment of IBD includes anti-inflammatory, immunomodulatory and immuno-
suppressive drugs, in addition to bio-therapy targeting inflammatory cytokines, such as
tumor necrosis factor (TNF) or blocking immune cell homing [8]. However, these thera-
pies have significant side effects and high treatment costs [9,10]. A 2018 meta-analysis of
27 population-based randomized controlled trials found that probiotic supplementation
was beneficial for both adult IBD and pediatric IBD relative to traditional treatments. The
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results of seven trials on CD suggest that probiotics may have a significant effect on CD in
general, and in particular in post-surgical CD. In UC, probiotic supplementation remains
effective for symptom relief. One of them, VSL#3—a mixture of probiotics and prebiotics,
has a very significant effect on UC patients [11–14]. In addition, great progress has been
made in understanding the mechanism of the effects of different probiotic strains and their
relationship with IBD [15]. Probiotics have been reported to alleviate colitis symptoms by
regulating gut microbiota [16], enhancing the mucosal barrier effect [17], inhibiting the
expression of inflammatory cytokines [16] and regulating the imbalanced immune response
of the immune system [18].

L. rhamnosus is a gram-positive bacterium present in many types of fermented foods
and is capable of surviving in a variety of ecological niches, including the intestine and
vagina, [19] with a wide range of probiotic properties [20,21]. It has been reported that
L. rhamnosus can attach to and colonize the surface of the intestinal mucus barrier, thus
preventing pathogenic microorganisms from entering the digestive tract and then crossing
the intestinal barrier to invade the body [22]. L. rhamnosus can also significantly decrease
the abundance of pathogens, such as Escherichia coli and Staphylococcus by metabolizing and
producing antibacterial substances in the gut [23]. As shown in Figure 1, several possible
mechanisms of action of L. rhamnosus may contribute to its beneficial impact on IBD. First,
L. rhamnosus has been reported to modulate the immune response of intestine-associated
lymph-like and epithelial cells via bacterial products [24] and cell wall components [25]. Sec-
ond, L. rhamnosus may affect the intestinal barrier function by the secretion of mucin [26],
regulation of epithelial cell apoptosis [27] or expression of tight-junction proteins [28].
Furthermore, L. rhamnosus may influence the composition of gut microbiota through com-
petition for nutrients and mucosal adhesion [29]. In this paper, we summarize recent
studies of L. rhamnosus in different IBD models, as shown in Tables 1 and 2.
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Table 1. Publications showing the results of using probiotics for IBD in animal models.

Ref. Numbers, Model, Age Moulding Method Probiotic Strains CFU/Dose, Duration Effects

[30] 25, Dark Agouti rats, 30 d TNBS L. rhamnosus 64 3 × 106 CFU, daily, 27 d
damage score↓, immune cell infiltration↓,
cytokine↓, MPO activity↓.

[31] 90, BALB/c mice, 7 w DSS L. rhamnosus 1.0320 2 × 108 CFU, daily, 28 d
the DAI score↓, hemoglobin content↑, MPO
activity↓, IL-1β↓, IL-6↓, TNF-α↓ and IL-10↑.

[32] 48, Wistar rats, 10 w Acid L. rhamnosus EM1107 109 CFU, daily, 17 d

TNF-α↓, myeloperoxidase↓, IL-1β↓and
oxidative stress↑. IL-17↓, NF-κB p65↓,
MMP-2↓, MMP-9↓, and iNOS↓, SOCs-1↑,
ZO-1↑ and mucin-2↑.

[33] 32, C57BL/6J mice, 6 w DSS L. rhamnosus LDTM 7511 109 CFU, daily, 14 d
colon length↑, spleen weight↓, Lcn-2↓,
MPO↓, CRP↑, relatively intact colonic
architecture, Chao1 index↑, Shannon index↑.

[34] 40, C57BL/6 mice, 8 w DSS L. rhamnosus L34 1 × 107 CFU, once every 3 d,
14 d

the gut local inflammation↓, gut-leakage
severity↓, fecal dysbiosis↓ and systemic
inflammation↓.

[35] 40, C57BL/6Cnc mice, 8 w DSS L. rhamnosus SHA113 109 CFU, 9 d
SCFA-producing genera↑, UC-related
genera↓.

[36] 16, BALB/c mice, 6 w DSS L. rhamnosus OLL2838 107 CFU, 3 d
Body weight↑, and colon length↑,
expression of zonula occludens-1 and
myosin light-chain kinase↑

[37] 40, C57BL/6J mice, 5 w DSS L. rhamnosus Hao9 109 CFU, 7 d
DAI↓, colon length↑, alleviated colonic
pathological variations, histological scores↓,
TNF-α, IL-6, and IL-1β ↓, IL-10↑.

[38] 50, C57BL/6 mice DNBS L. rhamnosus I-3690 5 × 109 CFU, 10 d
macroscopic scores↓, cytokine levels↓, colon
and ileum MPO activities↓

Damage score: Crude morphological scoring of the isolated colonic tissue [30]. Disease activity index (DAI) score: A composite score combining three conditions: percent weight loss,
stool consistency, and stool bleeding [31]. DSS: dextran sulfate sodium salt; TNBS: trinitro-benzene-sulfonic acid; MPO: myeloperoxidase; IL-: interleukin-; TNF-α: tumor necrosis factor-;
MMP-: matrix metalloproteinase-; ZO-1: zonula occludens-1; CRP: C-reactive protein; Lcn-2: lipocalin– 2/NGAL;.
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Table 2. Publications showing the results of using probiotics for IBD in human models.

Ref. Numbers of Patients Disease Probiotic Strains CFU/Dose, Duration Effects

[39] 187 adults UC LGG 18 × 109 CFU, 12 m
LGG treatment is more efficient than standard
treatment in extending relapse-free time.

[40] 4 children CD LGG 1010 CFU, twice a day, 6 m
The median activity index of children with CD at
4 weeks was 73% lower than at baseline.

[41] 11 adults CD LGG 2 × 109 CFU, daily, 6 m
The median time to relapse was on average
4 weeks longer in the LGG group than in the
placebo group.

[42] 14 children CD LGG 1010 CFU, twice a day, 10 d
Oral administration of LGG increased the
intestinal IgA immune response, thus promoting
the intestinal immune barrier.

[43] 37 adults CD LGG 6 × 109 CFU, twice a day, 52 w
LGG appears to neither prevent one-year
endoscopic recurrence nor reduce the severity of
recurrent disease.

[44] 117 adults CD&UC LGG 1.4 × 1010 CFU, daily, 52 w
Patients taking daily LGG had a lower frequency
of first postoperative inflammatory bowel disease
complications.



Foods 2023, 12, 692 5 of 13

2. Molecular Mechanism of L. rhamnosus to Alleviate IBD
2.1. IBD and Gut Microbiota
2.1.1. Relationship between IBD and Gut Microbiota

Disturbances in the composition of gut microbiota may lead to a dysregulated immune
response and altered gut barrier function, resulting in chronic inflammation of the intestine.
There is sufficient evidence that gut microbiota is associated with the development of IBD.
Studies have shown that fecal shunting ameliorates intestinal inflammation in CD [45].
Additionally, antibiotics are somewhat effective in the treatment of IBD [46]. Under sterile
conditions, the disease either did not develop or was significantly milder, suggesting that
microorganisms are critical for the progression of intestinal inflammation in colitis [47]. In
addition, the composition and diversity of the gut microbiota are altered in patients with
active IBD, compared to those in healthy individuals [48]. Moreover, many of the reported
IBD susceptibility genes are related to microbial identification and disposal [49].

2.1.2. Alleviating Symptoms in Animal Models by Regulating Gut Microbiota

The current theory of the inflammation-driven dysregulation mechanism suggests that
increasing the level of lumen oxygen from the leaking intestine will induce the overgrowth
of facultative anaerobes and severely inhibit anaerobic bacteria [50], patients with IBD show
a reduction in biodiversity, decreased stability and expansion of proteobacteria. The loss of
microbiota diversity may result in a reduction or even the loss of key functions essential for
maintaining the integrity of the gut barrier and regulating the host immune system, which
may lead to increased inflammation and an immune response [51,52]. To date, no specific
pathogenic bacteria have been identified in association with IBD.

Moreover, probiotics, as a strategy to treat intestinal disorders, that reduce the pathogenic
bacteria [53] and fungi [54] have also been studied in colitis. In a recent study, L. rhamno-
sus LDTM 7511 attenuated the release of inflammatory cytokines, in addition, it induced
a shift in the gut microbiota from a dysregulated state, showing an opposite pattern to
that of the DSS group in the abundance of bacterial taxa associated with DSS colitis [33].
L. rhamnosus SHA113 increased the abundance of SCFA-producing genera (e.g., Bifidobac-
terium, Akkermansia and Olsenella) and decreased the abundance of harmful bacteria in the
intestine of UC mouse models. It also increased the number of genera positively correlated
with mucin expression (Prevotella, Enterorhabdus and Parvibacter) and restored the mucus
barrier, resulting in the alleviation of disease symptoms [35]. Furthermore, a recent study
found that the combination of L. rhamnosus 1.0320 with inulin increased the abundance
and diversity of the gut microbiota and increased the content of beneficial bacteria (e.g.,
Akkermansia muciniphila) more than L. rhamnosus 1.0320 alone. Akkermansia muciniphila
was present in the combination group, suggesting that it has anti-inflammatory effects in
mice. [31]. In addition, exopolysaccharides from L. rhamnosus have been reported to modu-
late the gut microbiota in IBD. In a recent report, researchers found that exopolysaccharides
produced by L. rhamnosus ZFM231, significantly attenuated DSS-induced IBD symptoms,
which is attributable to its ability to regulate the structural composition of the gut micro-
biota and maintain gut homeostasis by promoting the abundance of anti-inflammatory
bacteria [55]. In conclusion, these studies suggest that L. rhamnosus can promote the restora-
tion of the microbiota structure and function by modulating the abundance of specific
bacteria in the gut in IBD, leading to improvements in the disease.

2.2. IBD and the Intestinal Barrier
2.2.1. Relationship between IBD and Abnormal Intestinal Barrier Function

Intestinal epithelial cells (IECs) form a protective barrier against luminal contents
and the external environment via tight intercellular junctions (TJs). This protective barrier
prevents the permeation of pro-inflammatory mediators from the luminal environment
into the mucosal tissue, and ultimately into the circulatory system [56,57]. There is growing
evidence that abnormal epithelial barrier function plays a key part in the pathophysiology of
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IBD [58]. Clinical studies have shown that intestinal barrier dysfunction precedes IBD, and
that intestinal permeability, serum antibacterial antibodies and specific proteins can be used
as prognostic indicators of disease and precede clinical diagnosis by several years [59,60].
In normal intestinal tissues, calmodulin, which belongs to adherens junctions, forms dimers
with calmodulin on adjacent cells and tight junction proteins, in the upper part of adherens
junctions, enhancing cell-to-cell binding. In the inflamed intestine, the expression of these
connexins is generally downregulated, with the exception of Claudin-2 [61].

2.2.2. Ability to Restore Intestinal Barrier Function in Animal and Cellular Models

One of the key protective effects of probiotics on intestinal tissues is the strengthening
of epithelial tight junctions and ensuing maintenance of intestinal barrier function. It has
been reported that probiotics enhance barrier function not only by inducing the synthesis
and assembly of tight junction proteins [62], but also by preventing harmful factors from
destroying tight junctions [63]. In addition, probiotics release bioactive factors that trigger
the activation of multiple cellular signaling pathways, thereby enhancing tight junctions
and barrier function [64].

L. rhamnosus GG (LGG) can prevent oxidative stress-induced destruction of tight
junctions and barrier functions in Caco-2 cell monolayers [65]. In a recent study, the anti-
inflammatory properties of L. rhamnosus CNCM I3690 were confirmed using an in vitro
model of TNF-α-stimulated Caco-2 monolayer cells, and its protective effect on epithelial
function was noted. Subsequently, the authors tested the protective effect of L. rhamno-
sus CNCM I-3690 in a mouse model with increased colon permeability and found that
L. rhamnosus CNCM I-3690 was able to restore partial function of the gut barrier and in-
crease the levels of tight junction proteins occludin and E-cadherin [28]. As described in
another study, L. rhamnosus SHA113 increased the expression levels of mucin in colon tissue,
while significantly increasing the expression of ZO-1, thereby restoring intestinal barrier
function in mice [35]. In addition, LGG-derived soluble proteins (p40 and p75) also defend
the intestinal barrier against hydrogen peroxide-induced injury in an extracellular signal-
regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK)-dependent manner
by enhancing membrane translocation of tight junction complex proteins, including PKCβ1,
ZO-1, and occlusion [65]. Oral administration of live and heat-inactivated L. rhamnosus
OLL2838 restored the barrier function and prevented the DSS-induced colitis-induced
mucosal permeability. This may be due, at least partially, to the increased expression of
myosin light chain kinase and ZO-1 in the intestinal epithelial cells [36].

2.3. IBD and the Immune Function Modulation
2.3.1. Relationship between IBD and the Abnormal Immune Function

Normal innate and adaptive immune regulation maintains a healthy state by balancing
changes in the host physiology caused by antigens in the diet or by bacteria, viruses, fungi
and parasites in the gut. If these evolved adaptive mechanisms fail or diminish owing to
changes in environmental factors, such as host lifestyle, chronic intestinal inflammation
can occur [66]. Thus, maintaining a dynamic balance between necessary and excessive
immune defenses is an effective therapy for IBD. Innate immune responses are elicited by
host pattern recognition receptors (PRRS) on leukocytes that recognize bacterial pathogen-
associated molecular patterns (PAMPs). Their pro-inflammatory responses are thought to
underlie the pathogenesis of IBD [67]. Activation of adaptive immunity is due to the innate
immune deficiency of an organism. Patients in infancy have abrogated IL-10 signaling
and exhibit a phenotype similar to that of IBD. In these patients, macrophage responsive-
ness to IL-10 is lost because of IL-10 receptor defects or defects in IL-10 production by
monocytes/macrophages and regulatory T cells [68].

Maintenance of pathogen-host homeostasis through Toll-like receptors (TLRs) is an
important way that probiotics exert their efficacy [69]. Many studies have demonstrated that
TLR signaling directly impacts the function and proliferation of Treg cells [28]. In addition to
TLRs, researchers have found that the pro-inflammatory cytokine environment and specific
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transcription factors are essential for the regulation of Th17/Treg homeostasis [70,71]. Th17
cells are a subset of Th cells that produce IL-17 and are implicated in the development
and progression of many inflammatory responses and autoimmune diseases [72]. Many
Foxp3+ T cells in the intestinal tract produce high levels of RoRct and IL-17. Over 25% of
IL-17+ T cells produce Foxp3 at a certain stage of their development [73]. For example, the
immunomodulatory effect of LGG on pathogenic Porphyromonas gingivalis is mediated by
the maintenance of Th17 and Treg homeostasis. Through activation of the TLR4-mediated
signaling pathway, Porphyromonas gingivalis caused an increase in Th17 cells and pro-
inflammatory factors. Immediately upon balance disruption, LGG increased the proportion
of Treg cells through the TLR2 signaling pathway and decreased the proportion of Th17
cells in the CD4+ T cell system to maintain a steady state [74].

2.3.2. Improving Immune Disorders Caused by Colitis in Animal Models

Oral administration of L. rhamnosus HDB1258 can enhance the immune response
by activating the innate immunity of the host, including macrophage phagocytosis and
NK cell cytotoxicity, and by regulating IL-10 and TNF-α in the intestinal microbiota and
immune cells to inhibit systemic inflammation in inflammatory hosts [75]. The strong
antioxidant activity of L. rhamnosus inhibits reactive oxygen species (ROS) production and
phagocytosis of neutrophils, as well as protects cells from cytotoxic damage [76]. ROS can
regulate inflammatory signaling by instantly oxidizing catalytic cysteine residues in key
regulatory enzymes [77]. Lin et al. [78] reported that LGG blocked the activation of the
pro-inflammatory transcription factor NF-κB in the distal small intestine of immature mice
by inducing the release of ROS in epithelial cells and blocking Cul1-deacetylation required
for the activation of the ubiquitin ligase complex. Another study revealed that pilin subunit
(SpaC), which mediates the adhesion of L. rhamnosus [79], contributes to LGG-induced
ROS production in epithelial cells [80]. A study reported that L. rhamnosus 1.0320 treatment
resulted in the decreased expression of IL-1β, IL-, and TNF-α, and increased IL-10 levels [31].
All of these cytokines have been reported to be associated with the pathogenesis of IBD [81].
In addition, Rodrigues et al. [32] observed that L. rhamnosus EM1107 intake significantly
reduced the levels of pro-inflammatory cytokines in rats with colitis, thus contributing to
the improvement of inflammation.

2.4. IBD and Adhesion Anti-Inflammatory
2.4.1. IBD and Inflammation Caused by Adherent Pathogenic Bacteria

In previous studies, adherent invasive Escherichia coli has been repeatedly reported
to be associated with the pathogenesis of IBD, particularly CD. Several studies have
isolated adherent E. coli from the ileal mucosa of patients with CD; However, no virulence
factors have been detected in the genes of typical pathogenic species, which is one of the
characteristics of their high prevalence [82,83]. The common characteristic of these strains
is the adhesion and invasion of intestinal epithelial cells by specific adhesion factors and
the induction of increased IL-8 production by epithelial cells, resulting in an inflammatory
response in intestinal tissues. This has been reported for enterohemorrhagic E. coli strains
to occur via the adhesin AAF or for diffusely adhering E. coli strains via the Afa/Dr
adhesions [84–87].

In addition, a recent study showed that inflammation caused by enterohemorrhagic E.
coli disrupts the balance between pro- and anti-inflammatory proteins [82]. Extracellular
factors (including flagella), elicit an inflammatory response that ultimately leads to tissue
inflammation [88].

Probiotics that colonize the gastrointestinal tract competitively inhibit the adhesion
of pathogens to the intestinal epithelium by occupying ecological niches. Studies have
shown that the adhesion between probiotics and intestinal epithelial cells is mediated by
lectin-like and cell surface protein components [89]. Therefore, probiotics or combinations
of probiotics for specific disease types should be selected based on their capacity to inhibit
or replace specific pathogens [90].
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2.4.2. LGG Exerts Adhesion and Anti-Inflammatory Effects in Animals and In Vitro Models

Recent evidence showed that LGG adheres to the colonic mucosa and exerts local
anti-inflammatory effects both in in vitro and in vivo experimental models. In the in vitro
organ culture models, LGG exhibited consistent adhesion and anti-inflammatory effects.
Furthermore, LGG colonization was confirmed in the human colon one week after con-
sumption. In addition, a reasonable increase in the dose can increase the adhesion and
effectiveness of LGG [91]. Studies have shown that the pilus of LGG was capable of produc-
ing a mucus-binding protein, which enhances its adhesion properties [92]. Furthermore,
SpaC helps LGG induce ROS production in epithelial cells and enables the LGG strain
to stimulate intracellular extracellular signal-regulated kinase/mitogen-activated protein
kinase (ERK)/MAPK signaling in enterocytes [81]. p40 is an LGG-secreted protein that
protects intestinal epithelial cells from inflammation. Another study found that adding a
colonic epithelial cell-derived component to the growth medium of LGG significantly pro-
moted the synthesis and secretion of the p40 protein and enhanced the protective response
of LGG-stimulated intestinal epithelial cells [24]. In addition, another study compared
whether this treatment had an effect on relieving inflammation by inactivating the pili
operon of L. rhamnosus CNCM I-3690: spaFED. It was found that colonic cytokine levels,
colonic permeability, goblet cell (GC) populations and lymphocyte populations in mice
with induced hypo-inflammation treated with the ∆spaF mutant remained significantly
different from those in controls treated with wild-type L. rhamnosus CNCM I-3690 [38]. This
evidence demonstrates that the ciliated structure of L. rhamnosus underlies its interaction
with other bacteria in the intestine and its importance for the protection of the intestinal
environment.

3. Safety Issues in the Application of L rhamnosus

Although probiotics have been used in clinical practice for decades, some safety
issues have arisen due to the exponential growth in their use and ease of availability in
recent years. Several studies have reported safety concerns associated with the use of
L. rhamnosus. Recently, one study reported that LGG exacerbated intestinal ulcers in an
anti-inflammatory, pain-induced enteropathy model [93]. Some studies have reported LGG
overexpression-induced bacteremia, although these studies examined specific populations,
such as young children or patients with metabolic diseases [94]. To better understand the
potential and rare adverse events associated with L. rhamnosus consumption, it is essential
to focus on its strain specificity [95]. In fact, the phenotypic differences observed among
different strains of L. rhamnosus compared to the already commercialized LGG may be
related to the shift from the commensal to opportunistic type of L. rhamnosus isolated
from bacteremia [96]. However, no studies have assessed the shift from symbiotic to
opportunistic species. Therefore, an in-depth study of published clinical records and case
reports remains the best way to avoid the adverse reactions associated with the use of
L. rhamnosus. In addition, there is an urgent need for regulatory agencies to establish
a consistent regulatory framework for probiotic products, with unified management of
production specifications, ingredient labeling, efficacy promotion and risk identification.

4. Conclusions and Outlook

An increasing number of studies have shown that L. rhamnosus can exert a palliative
effect on IBD through multiple mechanisms (Figure 2). Despite the anti-inflammatory
effects of L. rhamnosus in in vitro and in vivo animal models, clinical trial evidence to date
does not support its large-scale application, and further systematic and rigorous large-scale
clinical cohort studies are needed. In these large clinical trials, the feasibility, effectiveness,
adverse events and long-term safety issues of the interventions need to be evaluated to
ensure responsible use. These large clinical trials need to be informed by the rigorous
testing and approval processes in place for other human interventions, ensuring a uniform
and unbiased approach to experimentation and regulation. Well-designed clinical trials
that investigate specific mechanisms of action of probiotics in the pathogenesis of IBD
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will provide new therapeutic options in the future. We expect that future studies will
determine the optimal dose and correct combination of various probiotics that will match
the molecular and cellular pathogenesis of gastrointestinal diseases. These studies may help
improve the efficacy of probiotic approaches. Hopefully, this will lead to the development
of a new generation of probiotics with scientific evidence of their health benefits.
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Figure 2. Protective mechanism of L. rhamnosus against intestinal inflammation. L. rhamnosus protects
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