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Abstract: The fungal community in Qu plays a key role in the formation of turbid rice wine (TRW)
style. The Sichuan Basin and its surrounding areas have become one of the main TRW production
regions in China; however, the fungal community in Qu and how they affect the characteristics of
TRW remain unknown. Therefore, this study provided insight into the fungal biomarkers in Qu from
Guang’an (GQ), Dazhou (DQ), Aba (AQ), and Liangshan (LQ), as well as their relationships with
compounds in TRW. The main biomarkers in GQ were Rhizopus arrhizus, Candida glabrata, Rhizomucor
pusillus, Thermomyces lanuginosus and Wallemia sebi. However, they changed to Saccharomycopsis fibu-
ligera and Mucor indicus in DQ, Lichtheimia ramose in AQ, and Rhizopus microsporus and Saccharomyces
cerevisiae in LQ. As a response to fungal biomarkers, the reducing sugar, ethanol, organic acids, and
volatile compounds were also changed markedly in TRWs. Among important volatile compounds
(VIP > 1.00), phenethyl alcohol (14.1–29.4%) was dominant in TRWs. Meanwhile, 3-methyl-1-butanol
(20.6–56.5%) was dominant in all TRWs except that fermented by GQ (GW). Acetic acid (29.4%)
and ethyl palmitate (10.1%) were dominant in GW and LW, respectively. Moreover, GQ biomarkers
were positively correlated with acetic acid and all unique important volatile compounds in GW. DQ
biomarkers had positive correlations with unique compounds of acetoin and ethyl 5-chloro-1,3,4-
thiadiazole-2-carboxylate in DW. Meanwhile, the AQ biomarkers were positively correlated with
all AW unique, important, and volatile compounds. Although there were not any unique volatile
compounds in LW, 16 important volatile compounds in LW were positively related to LQ biomarkers.
Obviously, biomarkers in different geographic Qu played vital roles in the formation of important
volatile compounds, which could contribute specific flavor to TRWs. This study provided a scien-
tific understanding for future efforts to promote the excellent characteristics of TRW by regulating
beneficial fungal communities.

Keywords: Qu; Sichuan basin; turbid rice wine; fungal biomarker; volatile compound; correlation
analysis

1. Introduction

Turbid rice wine (TRW) is one of the most popular alcoholic beverages in east Asia [1].
In China, it is consumed mainly by Han and ethnic minorities in the southern rice-growing
regions because of its rich nutrition, such as amino acids, polypeptides, vitamins, and other
bioactive components [2,3]. TRW is generally made by semisolid-state fermentation of
glutinous rice, millet or other cereals [4] with TRW starter (Qu) in a relatively closed pottery
jar [5]. In this case, the stand or fall of Qu directly affects the quality of TRW products.

Foods 2023, 12, 585. https://doi.org/10.3390/foods12030585 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods12030585
https://doi.org/10.3390/foods12030585
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0001-6681-1509
https://orcid.org/0000-0002-2940-7440
https://doi.org/10.3390/foods12030585
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods12030585?type=check_update&version=1


Foods 2023, 12, 585 2 of 15

However, Qu is a common spontaneous fermentation product and its microorganism struc-
tures are affected by various factors, such as climate, temperature, humidity and natural
environment microorganisms, etc. [6,7]. Thus, the community structure of Qu usually
has its own unique characteristics compared with different regions, which is probably
the main reason that determines the style of TRW in different regions. In recent decades,
numerous studies have shown that fungi in Qu are more important than bacteria during
the TRW fermentation, and fungal community structure is closely related to TRW quality
characteristics [6,8]. However, it is not clear which fungi mainly respond to this correlation.

In China, TRW fermentation has a history of about 4000–5000 years, and it was first
introduced from the Central Plains to the Han inhabited areas of the parallel fold ridge
valley belt in the eastern Sichuan Basin, and then spread to the entire Han area in the
Sichuan Basin during the Han Dynasty (250–100 BC). Later, with the civil war and cultural
exchanges, it further spread to ethnic minority areas around the Sichuan Basin, to the Yi
inhabited areas in the northern Yunnan–Kweichow Plateau, located south of the Sichuan
Basin, during the Three Kingdoms period (220–280 AD); and to the areas inhabited by
the Gyalrong Tibetans in the eastern Qinghai–Tibet Plateau, located west of the Sichuan
Basin, during the Ting Dynasty (636–1911 AD). At present, the Sichuan Basin and its
surrounding areas have developed into one of the main production areas of Chinese TRW.
In these regions, due to the differences in geographical characteristics, climate conditions,
temperature, humidity, and other environmental conditions, the different TRW brewing
regions, although firstly originated from the parallel fold ridge valley belt in the eastern
Sichuan Basin, have developed their own unique Qu, which leads to the distinct regional
characteristics of TRW from these areas. The Han’s TRW is mainly suitable for the Han
people of China, Yi’s TRW is suitable for the people of Yi and other ethnic minorities in
the northern Yunnan–Kweichow Plateau, and Tibetan’s TRW is suitable for the people
of Gyalrong, Kham Tibetan, and the Qiang ethnic minority in the eastern Qinghai–Tibet
Plateau. However, it is unclear which fungal structures characterize the uniqueness of these
Qu and how they respond to the regional features of their TRW.

Therefore, this study focused on how the fungal biomarkers of Qu respond to the
regional characteristics of TRW in the rim of the Sichuan Basin, China. The fungal structures
were explored in Qu from the parallel fold ridge valley belt, the northern Yunnan-Kweichow
Plateau, and the eastern Qinghai–Tibet Plateau around the rim of the Sichuan Basin,
respectively. In addition, the reducing sugar, ethanol, organic acids, and volatile compounds
were further analyzed in TRW fermented by these Qu. To date, this is the first systematic
report on the correlation between fungal biomarkers in Qu and the style of corresponding
TRW from the rim of the Sichuan Basin in Southwest China.

2. Materials and Methods
2.1. Sample Collection

Four samples of starters (Qu) were obtained from different geographical areas around
the Sichuan Basin in China (Figure 1), including Guang’an City (GQ, local market) and
Dazhou City (DQ, Sichuan Dongliu Rice Wine Co., Ltd., Chengdu, China) in the parallel fold
ridge valley belt, Aba Tibetan and Qiang Autonomous Prefecture (AQ, Sichuan Aba Heishui
Wines Co., Ltd., Chengdu, China) in the eastern Qinghai–Tibet Plateau and Liangshan Yi
Autonomous Prefecture (LQ, Sichuan Liangshan Dezhou Wines Co., Ltd., Chengdu, China)
in the northern Yunnan–Kweichow Plateau. All samples were stored at 4 ◦C before analysis.
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vogene Co., Ltd. (Beijing, China) for Illumina HiSeq2500 platform sequencing (Illumina, 
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Figure 1. Sampling distribution of the four Qu from different geographical areas in the rim of the
Sichuan Basin.

2.2. DNA Extraction and Sequencing

Total genomic DNA of Qu was extracted using PowerSoil® DNA isolation kit (Mobio, Mo-
bio Technologies Inc., Vancouver, BC, Canada) and analyzed by agarose gel electrophoresis and
NanoDrop 2000c spectrophotometer (Thermo Scientific, Thermo Fisher Scientific Inc., New
York, NY, USA). The V4 hypervariable regions of fungal 18S rRNA gene were amplified by the
528F (5′-GCGGTAATTCCAGCTCCAA-3′) and 706R (5′-AATCCRAGAATTTCACCTCT-3′)
primers. The purified PCR products were sent to Novogene Co., Ltd. (Beijing, China) for
Illumina HiSeq2500 platform sequencing (Illumina, San Diego, CA, USA). All samples
were repeated in triplicate.

The effective data were denoised using the Divisive Amplicon Denoising Algorithm
2 (DADA2), and the final amplicon sequence variants (ASVs) were then generated by
removing the redundant and low occurrence (n < 5 within all samples). QIIME2’s class-
sklearn algorithm was used for species annotation for each ASV using a pre-trained Naive
Bayes classifier.

2.3. Rice Wine Fermentation on a Lab-Scale

The main brewing process of turbid rice wine is depicted in Figure 2. At room
temperature, 250 g glutinous rice was soaked in distilled water for 4 h, then drained and
steamed for 35 min at 100 ◦C. After the glutinous rice cooled down to room temperature,
it was mixed with 1 g Qu and transferred into a pottery jar. Then, the mixture was
supplemented with 200 mL distilled water to ferment at 25 ◦C for 3 days. A 50 mL
fermentation broth of each TRW sample was stored at 4 ◦C prior to testing. TRW fermented
by GQ, DQ, AQ, and LQ was named GW, DW, AW, and LW, respectively. All experiments
were repeated in triplicate.
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Figure 2. Schematic diagram of turbid rice wine fermentation.

2.4. Reducing Sugar and Ethanol Analysis

The reducing sugar was determined by the 3,5-dinitrosalicylic acid (DNS) assay [5]. The
ethanol content was determined using a gas chromatograph (GC-2020 Plus, Shimadzu, Japan)
equipped with a capillary column of WONDA CAP WAX (30 m × 0.25 mm × 0.25 µm) and
detector of DET1 [9].

2.5. Non-Volatile Organic Acids Analysis

Organic acid analysis was carried out via HPLC (Waters 2695, Waters Corporation, Mil-
ford, MA, USA) equipped with an Aminex HPX-87H ion exchange column (300 × 7.80 mm,
9 µm film thickness, Bio-Rad Laboratories, Inc., Hercules, CA, USA) at a temperature of
60 ◦C [10]. The injection volume was 20 µL, and the mobile phase was 7 mmol/L H2SO4
solution (pH 2.2) at the flow rate of 0.60 mL/min. The ultraviolet detector was set at 210 nm.

2.6. Volatile Compounds Analysis

The volatile compounds were extracted via headspace solid phase microextraction
(SPME) equipped with a 75 µm Carboxen/PDMS StableFlex fiber (Supelco, Bellefonte, PA,
USA) for 30 min at 80 ◦C and transferred to a gas chromatography inlet to desorb at 250 ◦C
for 10 min. Then, they were analyzed by an Agilent 6890N GC coupled with an Agilent
5973i quadrupole mass detector (Agilent Technologies, Inc, Palo Alto, CA, USA) [10]. The
separations were carried out by a HP-5MS capillary column (30 m × 0.25 mm, 0.25 µm film
thickness, Agilent Technologies, Inc, Palo Alto, CA, USA).

2.7. Statistical Analyses

The differential fungi and volatile compounds in samples were discovered via partial
least squares discriminant analysis (PLS-DA) with SIMCA software (version 14.1) (Umetrics,
MKS Umetrics AB, Umea, Sweden), then the important volatile compounds with variable
importance for the projection (VIP) > 1.00 were visualized by circus (http://mkweb.bcgsc.
ca/tableviewer/visualize/ accessed on 2 August 2022). The fungal biomarkers in Qu were
analyzed by linear discriminant analysis effect size (LEfSe) with the Kruskal–Wallis test
(p < 0.05), Wilcoxon test (p < 0.05), and LDA threshold score > 2.00 on the Galaxy website
(http://huttenhower.sph.harvard.edu/galaxy/, accessed on 2 August 2022). The chemical
data were analyzed using IBM SPSS software (version 21) by one-way analysis of variance
(ANOVA) with least significant difference (LSD) test at p = 0.05. Correlation analysis was
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performed using Spearman’s correlation between fungal communities and volatile compounds
on the online platform of OmicShare tools (https://www.omicshare.com/tools/Home/Soft/
ica2, accesses on 3 September 2022) and visualized via the Cytoscape software (version 3.9.1).

3. Results
3.1. Fungal Profiles of Different Qu

A total of 25 fungi genera and 28 fungal species were found in different Qu from the rim
of the Sichuan Basin (Figures S1 and 3A). The dominant genera were Rhizopus, Lichtheimia,
Saccharomycopsis, Saccharomyces, and Candida, which accounted for more than 96% of the
total abundance of fungi in each Qu. At species level, Rhizopus arrhizus (R. arrhizus) was
predominant in Qu, accounting for 75.1%, 65.0%, 49.8%, and 53.8% in GQ, DQ, AQ, and
LQ, respectively. However, the sub-dominant fungi in Qu were obviously different, which
were Candida glabrata (C. glabrata, 10.4%) and Saccharomycopsis fibuligera (S. fibuligera, 7.47%) in
GQ, S. fibuligera (27.9%) and Rhizopus microsporus (R. microspores, 3.84%) in DQ, Lichtheimia
ramose (L. ramose, 41.8%) and Saccharomyces cerevisiae (S. cerevisiae, 6.24%) in AQ, and R.
microsporus (21.6%) and S. cerevisiae (20.0%) in LQ (Figure 3A). These results indicated that the
fungal structure in Qu was significantly affected by the different geographical environments
around the Sichuan Basin. The PLS-DA further showed that fungal communities were
obviously divided into four groups based on all fungi in Qu, where R2X and R2Y were 0.664
and 0.966, respectively, and Q2 of the model was 0.911 (Figure 3B). Among these species,
12 fungi were verified as biomarkers (Figure 3C) and most dominant species belonged to
biomarkers. R. arrhizus (75.1%), C. glabrata (10.4%), Rhizomucor pusillus (R. pusillus, 0.469%),
Pichia kudriavzevii (P. kudriavzevii, 0.192%), Lichtheimia corymbifera (L. corymbifera, 0.257%),
Thermomyces lanuginosus (T. lanuginosus, 0.456%), and Wallemia sebi (W. sebi, 0.309%) were
the biomarkers in GQ, S. fibuligera (27.9%) and Mucor indicus (M. indicus, 1.18%) in DQ, R.
microspores (21.6%) and S. cerevisiae (20.0%) in LQ, while AQ only had one biomarker of L.
ramose (41.8%) (Figure 3C). In general, the predominant fungi and biomarkers in Qu might
contribute to the different chemical characteristics in corresponding TRW.
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score plot of fungi among different Qu. (C) The fungal biomarkers analyzed using the linear discrimi-
nant analysis (LDA) effect size (LEfSe) method by the statistically significant LDA threshold of >2.0.
Results are shown as the mean from three biological replicates.

3.2. The Chemical Indexes in TRW

Chemical indexes of rice wine often reflect the quality or type of TRW. Reducing
sugars in GW and DW from the parallel fold ridge valley belt area (181.9–248.9 g/L) were
obviously higher than AW and LW from the plateau area (121.6–128.1 g/L) (Figure 4A). By
contrast, the ethanol contents in TRW fermented by Qu from plateau (11.4–12.4%) were
higher than that from the parallel fold ridge valley belt area (4.56–5.85%) (Figure 4B). The
composition and amounts of organic acids are also important contributors to the sour taste
of rice wine [4,11]. A total of 7 organic acids were identified and quantified, including
L-lactic acid, succinic acid, quinic acid, pyruvic acid, citric acid, tartaric acid and shikimic
acid (Figure 4C). GW had the highest content of total organic acids (1.14 g/L), then followed
by AW (0.921 g/L) and by DW (0.669 g/L) and then LW (0.553 g/L). L-lactic acid was
absolutely predominant in GW (85.8%), DW (69.3%), AW (67.5%), and LW (41.2%). Except
for GW (1.65%), succinic acid was also dominant in DW (19.0%), AW (22.8%), and LW
(40.5%). Additionally, tartaric acid was only detected in GW and DW, but shikimic acid
in GW.
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3.3. Volatile Compound Profiles in TRW

Volatile compound, the main source of aroma, is one of the main factors affecting the
quality characteristics of alcoholic products [12]. A total of 162 volatile compounds were
identified in TRWs, including 27 alcohols, 48 esters, 10 aldehydes, 21 ketones, 17 acids,
17 alkanes, and 22 other compounds (Figure S2). Of these, 108 were found in GW, 92 in
DW, 87 in AW, and 52 in LW (Figure S3). Except for 31 volatile compounds which were
commonly shared in all TRWs, 34, 21, and 20 unique volatile compounds were discovered
in GW, DW, and AW, respectively (Figure S3B). Interestingly, there were not any unique
compounds in LW. The AW had the highest content of total volatile compounds with
51.7 mg/L, followed by DW with 47.9 mg/L, LW with 37.2 mg/L, and GW with 20.5 mg/L
(Figure 4D). Among them, alcohols contributed the greatest to DW (57.8%), AW (77.3%),
and LW (58.2%), while there was only 25.2% in GW, in which acids were the most abundant,
at 35.6%. In DW, AW, and LW, acids made up 2.45–6.68%. Esters were the second abundant
volatile compounds, accounting for 19.1%, 13.2%, 10.3%, and 23.3% in GW, DW, AW,
and LW, respectively. The ketones were higher in GW (10.6%) and DW (14.8%) than in
AW (3.34%) and LW (6.43%). The aldehydes, alkanes, and other compounds made up
0.597–6.53%. Obviously, the different Qu led to different profiles of volatile compounds
in TRWs.

All TRWs indicated distinct differences based on the types and contents of volatile
compounds (Figure 5A). The 58 most important volatile compounds with VIP > 1.00
accounted for 79.0%, 82.1%, 92.5% and 88.8% in GW, DW, AW, and LW, respectively,
including 12 alcohols, 19 esters, 5 aldehydes, 5 ketones, 8 acids, 3 alkanes, and 6 other
compounds (Figures 5B,C and 6). Among them, acetic acid (29.4%) and phenethyl alcohol
(19.6%) were dominant in GW. However, they changed to phenethyl alcohol (29.3%),
3-methyl-1-butanol (20.6%), acetoin (7.70%), and (R, R)-2, 3-butanediol (6.20%) in DW,
3-methyl-1-butanol (56.5%) and phenethyl alcohol (14.1%) in AW, and 3-methyl-1-butanol
(34.0%), phenethyl alcohol (17.0%), and ethyl palmitate (10.1%) in LW. The acetoin was
3.69 mg/L in DW; interestingly, it was not detected in other TRWs. Furthermore, the
GW, DW, and AW had 4, 2, and 13 unique important volatile compounds (VIP > 1.00),
respectively (Figure 6). Therefore, different geographical Qu also greatly affected the
compositions of important volatile compounds in TRWs.
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3.4. Correlations between Fungi and Volatile Compounds

Fungi in Qu are closely linked to the formation of volatile compounds in TRWs [7].
A total of 22 fungal species were significantly correlated with 158 volatile compounds
(|r| ≥ 0.7, p < 0.05) (Figure 7A). Most biomarkers in Qu had positive correlation with
almost all unique compounds in its corresponding TRW, which confirmed the contribution
of biomarkers to the formation of specific flavor compounds.

Furthermore, 58 important volatile compounds exhibited correlations (|r| ≥ 0.7,
p < 0.05) with the fungi present in Qu (Tables S1–S3), which were visualized in Figure 7B.
In GW, acetic acid, 2-methyl-2-phenyl-1,3-dioxolane, lauric acid, and 1-octanol were only
positively correlated with one or more of the GQ biomarkers, while 2 (5H)-furanone,
2, 5-dimethylbenzaldehyde, formic acid, methyl 2-ethylacetoacetate, methyl pyruvate,
and 1-methoxy-2-propanol were positively correlated with the GQ biomarkers, but also
with one or more of non-biomarkers, including Aspergillus penicillioides, Rhizomucor miehei,
Diutina rugosa, Millerozyma farinose, and Syncephalastrum monosporum. In DW, acetoin
and ethyl 5-chloro-1,3,4-thiadiazole-2-carboxylate were positively associated with DQ
biomarkers (S. fibuligera and M. indicus) and the non-biomarker Saccharomycopsis malanga,
but negatively correlated with the GQ biomarker R. pusillus, T. lanuginosus, and the AQ
biomarker L. ramosa. In AW, stearic acid, propylene glycol, and all unique important
volatile compounds of AW were only positively correlated with the AQ biomarker L.
ramose, and all unique important volatile compounds of AW had negative correlations
with DQ biomarkers. 3-Methyl-1-butanol, ethyl oleate, (S)-(+)-citramalic acid, (S)-(+)-
1,2-propanediol, 4-hydroxyphenethyl alcohol, ethyl myristate, ethyl acetate, furaneol,
and farnesol were only positively correlated with LQ biomarker S. cerevisiae; cis-1, 2-
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cyclohexanediol, methyl isobutyrate, methyl acrylate, and S-methyl thioacetate had positive
correlations with the LQ biomarker R. microspores and the non-biomarker Aspergillus niger
(A. niger), while ethyl palmitate, ethyl linoleate, and benzaldehyde were all positively
correlated with S. cerevisiae, R. microspores, and A. niger.
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Figure 7. Visualization of the correlation network according to significant correlations between fungal
species and volatile compounds in corresponding rice wine samples. (A) All fungal species and
volatile compounds; (B) fungal biomarkers and important volatile compounds (VIP > 1.00). Only
significant edges are drawn in the network using the Spearman’s correlation test (|r| ≥ 0.7 with
p < 0.05). The size of the nodes representing fungi (red circle) indicates the size of degree value.
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4. Discussion

Fungi in Qu are considered a crucial influence on the quality of TRW [5,6,13]. As one of
the main TRW production regions in China, the Sichuan Basin and its surrounding areas has
formed its own characteristics of TRWs; unfortunately, the fungi in Qu and how they affect
the specific compound formation in TRWs had never been elucidated. Therefore, analysis
of fungi in Qu and further exploration of their correlations with chemical characteristics of
TRW are essential to deeply understand the cause of the regional TRW formation around
the Sichuan Basin.

The fungal community of Qu was distinctly different in various geographical lo-
cations [2,6,14–16]. Thus, fungal biomarkers could distinguish different Qu [6,17]. In
this study, fungal biomarkers in Qu were obviously different (Figure 3C). GQ had the
most biomarkers, which might be the reason for the most unique volatile compounds
in GW (Figure S3B). Additionally, C. glabrata and S. fibuligera, as the biomarkers of Qu
from hill and mountain areas, were also widely found in Hong Qu from hill areas in
Fujian province [18–20]. L. ramose, S. cerevisiae, and R. microspores, as biomarkers of Qu
from plateaus, were commonly found in Da Qu around China [21]. In general, the fungal
communities in Qu from the rim of the Sichuan Basin varied between geographic locations.

Responding to the differences in fungal communities, the chemical characteristics
of TRWs had distinct difference. R. arrhizus can produce L-lactic acid [22]. It was the
most abundant fungus in GQ, which might result in the large amount of L-lactic acid in
GW (Figure 4C). S. fibuligera can secrete amounts of extracellular hydrolases to hydrolyze
polysaccharides into sugars [23,24], and then sugars are converted into ethanol by S.
cerevisiae [25]. In GQ and DQ, S. fibuligera was in higher relative abundance, while S.
cerevisiae was in low abundance (Figure 3A), resulting in higher reducing sugars and lower
ethanol content in GW and DW (Figure 4A,B). C. glabrata could utilize both glucose and
xylose to produce alcohols [2,26]. It had higher abundance than S. cerevisiae in GQ, which
might be the main producer of alcohols in GW. L. ramose and R. microsporus can produce
hydrolases to hydrolyze polysaccharides into fermentable sugars [27–29], which would
then be efficiently converted to ethanol by S. cerevisiae. The high abundance L. ramose
and R. microsporus in AQ and in LQ, respectively, together with the higher abundance S.
cerevisiae, resulted in higher ethanol content and lower reducing sugars in AW and LW
(Figures 3A and 4A,B). Obviously, those predominant fungi in Qu led to different chemical
characteristics of TRWs.

Volatile compounds were one of the main influences on the sensory characteristic
of TRW [1]. Of the important volatile compounds (VIP > 1.00), phenethyl alcohol, was
dominant in all TRWs (14.1–29.3%) (Figure 6), which might play a vital role in the flavor of
TRW, since it had quietly elegant rosy and honey aromas and was used as an important
characteristic component of rice wine [5]. 3-Methyl-1-butanol, one of the major aliphatic
alcohols [13] with a banana flavor [30], had been characterized as an important aroma
compound in Qingke liquors from the Qinghai–Tibetan plateau [31], which also showed
high proportions in TRWs except GW. It accounted for the highest proportion in AW (56.5%)
and LW (36.0%) (Figure 6), suggesting that it might be the most important compound
affecting the specific flavor of AW and LW from plateaus. However, in GW, the acetic
acid with vinegar aroma was the highest, which might lead to the different flavor of GW
from other TRWs with lower acetic acid content (Figure 6). Additionally, unique important
compounds in TRWs might be one of the reasons for the characteristic flavor of TRWs. For
instance, formic acid in GW could endow it a sour, strong irritation flavor [32], and acetoin
in DW could give it a pleasant buttery odor [33]. In LW, although there were no unique
compounds, the esters such as ethyl palmitate, ethyl oleate, and ethyl linoleate with higher
content might give a unique flavor to LW (Figure 6). These esters have their own aromas,
for example, ethyl palmitate has fruity, candy, and perfume-like aromas [8]; ethyl oleate has
a faint, floral note; ethyl linoleate has a waxy, creamy, fatty, coconut odor [34]. Therefore, the
dominant or unique important volatile compounds, which made important contributions to
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the distinctive flavor of TRWs, were a significant difference in TRWs fermented by different
regional Qu.

The metabolism of fungi in Qu can produce complex compounds during TRW brewing,
and a compound is usually the result of combined actions of fungi [8]. Of GQ biomarkers
and important volatile component variable (VIP > 1.00), the acetic acid with the highest
content in GW (6.04 mg/L) (Figure 6) was positively correlated with R. arrhizus, R. pusillus,
T. lanuginosus, and P. kudriavzevii (Figure 7B, Table S1). Additionally, the unique important
compounds of GW, namely formic acid, methyl 2-ethylacetoacetate, methyl pyruvate, and
1-methoxy-2-propanol, all had highly positive correlations with the GQ biomarkers R.
arrhizus, C. glabrata, R. pusillus, T. lanuginosus, and W. sebi (Figure 7B, Table S3), which
directly certified the functions of these fungi on the formation of unique flavor in GW.
Among those biomarkers, R. arrhizus, as the most abundant fungus in GQ, could hydrolyze
racemic acetates to produce (R)-(+)-alcohols and acetic acid [35], which might be the main
cause of the massive amount of acetic acid in GW (Figures 3A, 6 and S2). C. glabrata,
the second dominant fungus in GQ, could produce more esters and important terpene
substances with the high activity of β-glucosidase [36], which might increase the floral
and fruity aroma in GW. In DW, the unique important compounds acetoin and ethyl 5-
chloro-1,3,4-thiadiazole-2-carboxylate were positively associated with the DQ biomarkers S.
fibuligera and M. indicus (Figure 7B, Table S3). Acetoin, in particular, with a pleasant buttery
odor and as a key aroma contributor in wines [33,37] showed the high ratio of 7.70% in DW
(Figure 6), which implied its key contribution to the special flavor of DW. The content of
acetoin in Zaopei increased when S. fibuligera was inoculated in Sichuan-style Xiaoqu [23],
suggesting that S. fibuligera with high abundance in DQ might also produce acetoin in DW
by itself or by influencing other microorganisms. In AW, all unique important volatile
compounds were positively correlated with L. ramose (Figure 7B, Table S3). L. ramose, as
one of the main functional microbes involved in the main flavor compounds’ development
in Daqu [38], was also predominant in AQ and was determined as a biomarker (Figure 3),
which implied it was irreplaceable in generating the unique flavor of AW. In LW, the ethyl
oleate, (S)-(+)-citramalic acid, and furaneol in higher proportions had positive correlations
with S. cerevisiae; methyl isobutyrate and methyl acrylate in higher proportions were
positively correlated with R. microspores; and ethyl palmitate (10.1%) and ethyl linoleate
(3.35%) had positive correlations with S. cerevisiae and R. microspores (Figures 6 and 7B,
Tables S1 and S2). S. cerevisiae, as an effective ethanol producer, is widely used in making
wine, bread, and beer [17] and could produce secondary metabolites, such as amino acids,
organic acids, and volatile flavor substances [39]. R. microsporus could secrete amylases
to hydrolyze starch into sugar for further microbial utilization [29] and was positively
correlated with volatile alcohols, acids and esters [18]. Moreover, it could produce lipase to
synthesis ethyl oleate under solid-state fermentation [40], which might be the reason for the
higher content of ethyl oleate in LW (Figures S2 and 6). Consequently, the LW biomarkers
S. cerevisiae and R. microspores were the main contributory factors to the particular flavor
production in LW. In short, most biomarkers in Qu showed strongly positive correlation to
the important volatile compounds in corresponding TRW, thus proving their key role in
the formation of the unique style of TRW.

Notably, the correlation analysis was based on statistical methods but did not imply
that these compounds were directly produced by these fungal biomarkers, which might
account for the positive association of some non-biomarkers with important volatile com-
pounds (Tables S1–S3). Metagenomics, transcriptomics, metabonomics, and community
reconstruction can be used to further investigate the functions of these fungi.

5. Conclusions

In the current study, R. arrhizus was found absolutely predominant in Qu from differ-
ent regions in the rim of the Sichuan Basin; however, Qu from different areas had different
fungal biomarkers. The biomarkers in GQ mainly were R. arrhizus, C. glabrata, R. pusillus, T.
lanuginosus, and W. sebi, while S. fibuligera and M. indicus were the biomarkers in DQ, L.
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ramose in AQ, and R. microsporus and S. cerevisiae in LQ. Responding to fungal biomarkers,
the chemical characteristics were also markedly changed in TRWs. GW and DW had
higher reducing sugars and lower ethanol contents, which were opposite to AW and LW.
Among important volatile compounds (VIP > 1.00), acetic acid (29.4%) and phenethyl
alcohol (19.6%) were dominant in GW. However, they shifted to phenethyl alcohol (29.3%),
3-methyl-1-butanol (20.6%), acetoin (7.70%), and (R, R)-2, 3-butanediol (6.20%) in DW,
3-methyl-1-butanol (56.5%) and phenethyl alcohol (14.1%) in AW, and 3-methyl-1-butanol
(34.0%), phenethyl alcohol (17.0%), and ethyl palmitate (10.1%) in LW. Moreover, biomark-
ers in Qu showed strongly positive correlation to the important volatile compounds in
corresponding TRW. Among these, GQ and AQ biomarkers were positively correlated with
all unique important volatile compounds in GW and AW, respectively. Meanwhile, GQ
biomarkers had positive correlation with acetic acid, DQ biomarkers with acetoin and ethyl
5-chloro-1,3,4-thiadiazole-2-carboxylate, and LQ biomarkers with 16 important volatile
compounds in LW. This study provides a more comprehensive and in-depth insight into
the regional Qu from the rim of the Sichuan Basin and may improve the quality and flavor
of TRW by regulating the key fungi in Qu.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12030585/s1, Figure S1: Fungal communities in 4 regional
Qu varieties at genus level. Results are shown as the mean from three biological replicates; Figure S2:
Heatmap of volatile compound contents in rice wine fermented using different Qu. The contents
of volatile compound were processed logarithmically; Figure S3: Types of volatile compound in
rice wine fermented using different Qu: A. Stack graph of types of volatile compound classified
into esters, alcohols, ketones, acids, aldehydes, alkanes, and other compounds; B. Venn diagram
of types of volatile compound in different rice wine samples. Table S1: The correlation coefficient
(|r| ≥ 0.7, p < 0.05) between fungi and important volatile compounds with≥ 1 mg/L of total volatile
compounds through all TRWs; Table S2: The correlation coefficient (|r|≥ 0.7, p < 0.05) between fungi
and important volatile compounds with < 1 mg/L of total volatile compounds through all TRWs;
Table S3: The correlation coefficient (|r| ≥ 0.7, p < 0.05) between fungi and the unique important
volatile compounds in respective TRW.
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