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Abstract: This study evaluates the combination of mild heat with a natural surfactant for the inacti-
vation of L. monocytogenes Scott A in low-water-activity (aw) model systems. Glycerol or NaCl was
used to reduce the aw to 0.92, and different concentrations of rhamnolipid (RL) biosurfactant were
added before heat treatment (60 ◦C, 5 min). Using glycerol, RL treatment (50–250 µg/mL) reduced
bacterial population by less than 0.2 log and heat treatment up to 1.5 log, while the combination of
both hurdles reached around 5.0 log reduction. In the NaCl medium, RL treatment displayed higher
inactivation than in the glycerol medium at the same aw level and a larger synergistic lethal effect
when combined with heat, achieving ≥ 6.0 log reduction at 10–250 µg/mL RL concentrations. The
growth inhibition activity of RL was enhanced by the presence of the monovalent salts NaCl and KCl,
reducing MIC values from >2500 µg/mL (without salt) to 39 µg/mL (with 7.5% salt). The enhanced
antimicrobial activity of RL promoted by the presence of salts was shown to be pH-dependent and
more effective under neutral conditions. Overall, results demonstrate that RL can be exploited to
design novel strategies based on hurdle approaches aiming to control L. monocytogenes.

Keywords: antimicrobial activity; biosurfactant; hurdle technology; Listeria monocytogenes; rhamnolipid;
low moisture foods

1. Introduction

Heat processing is the most extensively utilized commercial food preservation method
to destroy microorganisms and thereby extend the shelf life and ensure the microbiolog-
ical safety of food. However, intensive heat treatments result in undesirable nutritional
and organoleptic changes in the final product [1,2]. The tendency for more natural and
healthy foods has prompted the development of mild processing methods that can replace
traditional heat treatments or reduce their intensity while retaining the nutritional and
sensory properties and safety of products [3,4]. A reduction of treatment intensity can be
achieved when heat is combined with other preservation methods that together ensure
the appropriate inactivation of pathogenic and spoilage microorganisms. Such combined
treatments can also be used to enhance treatment efficiency when intrinsic food properties,
such as low water activity (aw), tend to protect bacteria against heat [5]. Within this context,
hurdle approaches resulting in a synergistic lethal effect are desired in order to significantly
reduce the intensity of each individual preservation method while obtaining foods with
better quality and lower processing cost [6].

On the other hand, the food industry is making increasing efforts to replace chemical
food preservatives by natural alternatives [7]. Although some natural compounds, such
as those from plant essential oils, have a strong antimicrobial effect, they often have low
solubility and a strong impact on the sensorial properties of foods [8,9]. Therefore, hurdle
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approaches wherein natural antimicrobials at lower concentrations are combined with mild
processing are being explored to reduce their negative impact on food products.

Microbial surfactants or biosurfactants (BS) are a natural class of surface-active com-
pounds produced by microorganisms. The possibility of producing BS from renewable
feedstocks or agricultural wastes, their biodegradability and low toxicity align well with
the concept of “green chemistry”, which represents an important tool for innovation and
sustainability, fulfilling actual market needs [10]. The rhamnolipids (RLs) produced by
Pseudomonas aeruginosa are glycolipid biosurfactants with several useful characteristics, and
they are considered promising multipurpose ingredients in food processing [11]. Rhamno-
lipids are approved by the US Environmental Protection Agency (EPA) as antimicrobials
for the washing or spraying of agricultural crops and are classified by the EPA in the lowest
toxicity category (IV), having an acute oral LD50 greater than 5000 mg/kg [12].

Listeria monocytogenes are widespread in diverse natural environments such as soil,
water, plants and the gastro-intestinal tract of humans and animals [13]. They can also
establish and thrive in many food production environments, and their presence and per-
sistence in the food supply chain is a matter of concern, as they are the causative agent of
a serious foodborne illness known as listeriosis [14]. The consumption of contaminated
foods, including chilled meat, poultry, seafood, vegetables, fruits, dairy and ready-to-eat
products, is responsible for outbreaks worldwide [15]. A factor contributing to the success
of the pathogen is its ability to grow over a wide range of pHs (4.5–9.5), salt concentrations
(up to 10%) and aw (down to 0.92) [16,17]. In addition, it can form biofilms and resist
sanitizers [18], increasing its ability to contaminate food products. Finally, the pathogen
has a remarkable aptitude for long-term survival under stressful conditions. For example,
L. monocytogenes ATCC 19115 was reported to survive in culture medium at pH 4.0 and 4◦C
for 19 days in the presence of 21% NaCl [19].

In a previous study, it was demonstrated that a purified RL produced by P. aeruginosa
PA1 inhibited the growth of L. monocytogenes ATCC 19112 and ATCC 7644 by 100% [20].
Further work, conducted with 32 L. monocytogenes isolates, revealed that over 90% were
susceptible to RL with MIC values ranging from 78.1 to 2500 µg/mL. The study also
demonstrated that RL had a synergistic effect when combined with nisin, probably because
both molecules act on the same cell target [21]. The exact mechanism behind RLs’ antimi-
crobial activity remains unclear, but most researchers anticipate that they disturb the cell
membrane due to their amphipathic nature, leading to increased permeability, metabolite
leakage and eventually cellular lysis [21,22].

It is well known that reducing microbial contamination of low aw foods by thermal
processing requires very intensive treatment conditions due to the increased heat toler-
ance of microorganisms [23,24]. Such treatments therefore cause heat damage, leading to
unacceptable quality deterioration. Several membrane-targeting antimicrobials show a
synergistic lethal effect when combined with mild heat treatment [25–27]; however, the
effectiveness of synergistic combinations has hardly been studied in low-moisture systems.
Therefore, in this work, we investigated whether the combination of RL and mild heat treat-
ment is effective, and possibly synergistic, in inactivating L. monocytogenes in low-moisture
systems. Both a nonionic (glycerol) and ionic (NaCl) solute were used for reducing the aw
of a model system, and the effect of RL, heat and their combination was evaluated. Further,
the influence of ionic strength on the growth-inhibitory activity of RL is also studied and
discussed.

2. Materials and Methods
2.1. Biosurfactant

Commercial rhamnolipid solution (99% purity) was provided by Rhamnolipid Inc.
(Tampa, FL, USA), containing approximately 54.4% RhaC10C10 and 24.2% Rha2C10C10 as
major components.



Foods 2023, 12, 570 3 of 14

2.2. Bacterial Strain and Culture Conditions

L. monocytogenes Scott A, acquired from the International Life Sciences Institute (ILSI),
North America [28], was used throughout this investigation. The strain was maintained at
−80 ◦C in Brain Heart Infusion (BHI; Oxoid, Basingstoke, UK) broth supplemented with
25% glycerol. For cell revitalization, a loopful of frozen culture was spread on BHI agar and
incubated for 24 h at 30 ◦C. Stationary-phase cultures were prepared by inoculating a test
tube containing 4 mL of BHI broth with a single colony from the stock plate and incubating
it aerobically in an orbital shaker at 200 rpm (GFL 3005, Burgwedel, Germany) for 19 ± 1 h
at 30 ◦C.

2.3. Inactivation of L. monocytogenes by Heat and RL in Reduced Moisture Systems

A 4 mL stationary phase culture of L. monocytogenes Scott A was transferred to a 10 mL
tube and centrifuged at 3829× g for 5 min. After the removal of the supernatant, the cells
were washed twice with 4 mL of 10 mM sodium phosphate buffer (pH 6.7) and centrifuged
again. The pellet was finally suspended in 7.5 mL of buffer with the appropriate solutes to
adjust the cell concentration to ~1.3 × 109 CFU/mL.

The inactivation assays were conducted in 10 mM sodium phosphate buffer (pH 6.7)
adjusted to aw 0.98 or 0.92 with glycerol (6.95% and 29.63% (w/w) for aw 0.98 and 0.92,
respectively) or NaCl (3.63% and 14.94% (w/w) for aw 0.98 and 0.92, respectively) as model
systems of low-moisture matrices. The water activity was measured using a HygroPalm
AW1 hygrometer (Rotronics AG, Bassersdorf, Germany). When necessary, the buffer was
supplemented with the appropriate RL concentration (1 to 250 µg/mL). For RL treatment
at room temperature, 100 µL of the cell suspension (~1.3 × 109 CFU/mL) was added to an
Eppendorf tube containing 900 µL of the buffer with RL added and incubated for 5 min
at ~20 ◦C. For heat treatment alone or in combination with RL, the same volume of cell
suspension was added to an Eppendorf tube containing 900 µL of the buffer without or
with RL that was previously prewarmed at 60 ◦C in a heating block (VWR, Radnor, PA,
USA), and then the samples were incubated at the same temperature for 5 min. As such,
the initial cell concentration for all RL, heat and the combined RL and heat treatment was
~1.3 × 108 CFU/mL. After treatment, the samples were serially diluted, and the number of
viable cells was determined by the drop plate method [29] (5 µL drops of each dilution) on
BHI agar. Plates were incubated at 30 ◦C for 24 h, and then spots containing 5–50 colonies
were counted, so that the quantification limit was 1000 CFU/mL. The logarithmic reduction
factor (LRF, dimensionless unit) was calculated as log(N0/N), where N0 and N are the
viable cell concentration (CFU/mL) at the start and at the end of the treatment, respectively.

To determine the occurrence of synergistic/additive interactions between the lethal
effect of heat and RL, the LRF of the combined treatment was statistically compared to
the sum of the LRFs of the individual treatments (theoretical additive inactivation), as
described by Feyaerts et al. [30].

2.4. Growth Inhibitory Activity

The minimum inhibitory concentration (MIC) and minimum bactericidal concentration
(MBC) of the RL were determined using the micro-broth dilution technique according to
the Clinical and Laboratory Standards Institute guidelines [31], using concentrations from
2500.0 to 4.9 µg/mL. The MBC was determined by transferring 100 µL from the wells of
the MIC microtiter plates where no growth was observed (after 24 h of incubation) to the
surface of BHI agar plates that were subsequently incubated for 48 h at 30 ◦C. The MBC
was considered the lowest concentration of RL at which no colonies were formed [32].

2.5. Growth Curves

Growth experiments were conducted in BHI medium in 96-well microplates covered
with adhesive foil in an automated microplate reader (Multiskan Ascent, Thermo Fisher
Scientific, Waltham, MA, USA) at 30 ◦C [33]. An aliquot of 20 µL of an overnight culture
diluted to a cell population of 107 CFU/mL was added to 180 µL of BHI supplemented
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with 500 µg/mL of RL, and the optical density (OD, 620 nm) was measured at defined time
intervals. To study the influence of NaCl or KCl on the antimicrobial activity of RL, the
salts were added to the culture medium at concentrations ranging from 1.0% to 7.5% (w/v).

2.6. Microscopy

Fluorescence microscopy was performed with a Ti-Eclipse inverted microscope (Nikon,
Tokyo, Japan) after cell staining with a LIVE/DEAD BacLight Bacterial Viability kit (Thermo
Fisher Scientific) following supplier specifications [34]. Images were acquired and processed
using NIS-Elements (Nikon, Tokyo, Japan) and visualized using the open software ImageJ
(https://imagej.net/ij/index.html, version downloaded on 1 March 2019).

2.7. CMC Determination

The critical micelle concentration (CMC) was determined by surface tension mea-
surements of surfactant dilutions using the Du Nouy ring method on a Sigma700/701
tensiometer (Attention, Helsinki, Finland), and calculated by the equipment software. The
measurements were done in distilled water with different concentrations of NaCl and KCl
as required. The pH of such solutions was adjusted using HCl or NaOH (0.1 M) when
needed.

2.8. Statistics

Inactivation and growth curve data were expressed as the mean of at least three
independent replicate experiments performed on different days. MIC values were ex-
pressed as the mode of at least five independent replicates. One-way analysis of variance
(ANOVA) and t-tests were performed with the software JMP (Version 14; SAS Institute Inc.,
Cary, NC, USA). For the comparison of individual treatments and the determination of
synergistic/additive lethal effects, differences were considered significant when p ≤ 0.05.

3. Results and Discussion
3.1. Effect of RL on Heat Inactivation at Low Water Activity

Figure 1 shows the heat inactivation (60 ◦C, 5 min) of L. monocytogenes Scott A in
sodium phosphate buffer (aw > 0.99) and in the same buffer with reduced aw from >0.99
to 0.98 or 0.92 by the addition of the solutes. While reducing aw to 0.98 by either glycerol
or NaCl did not significantly (p > 0.05) change inactivation, further reduction to aw 0.92
exerted a strong protective effect, decreasing inactivation by 3.5 to 4.3 log cycles compared
to the control (aw > 0.99).

It is well known that bacterial heat resistance increases when reducing the aw of the
treatment medium, as has been documented for L. monocytogenes [35]. This phenomenon is
attributed to the reduced mobility of water molecules and the increased stability of proteins
and ribosomes promoted by the presence of solutes, although this effect is dependent on
the type of solute, treatment temperature and bacterial strain [23,24]. Due to the large
protective effect against heat observed at aw 0.92, further experiments were conducted at
this condition.

Subsequently, we studied the inactivation of L. monocytogenes Scott A by heat (60 ◦C,
5 min) combined with RL at aw 0.92 in comparison with the inactivation of each individual
treatment. To verify whether RL lethality had a concentration-dependent effect, a range
of concentrations from 1 to 250 µg/mL was studied. Using glycerol as a solute, less than
0.2 log cycles of inactivation was observed when RL was added, whereas the heat treatment
(without RL) caused about 1.5 log reduction (Figure 2A). Notably, the combination of both
hurdles considerably boosted the inactivation to around 5.0 log cycles for RL concentrations
from 50 µg/mL to 250 µg/mL, indicating the existence of a synergistic lethal effect. At lower
RL concentrations, the degree of synergy between RL and heat progressively decreased
until it disappeared at 1 µg/mL.

Using NaCl as a solute, RL displayed a concentration-dependent bactericidal effect
at room temperature, with inactivation ranging from 0.4 log cycles at 10 µg/mL to 1.8 log

https://imagej.net/ij/index.html
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cycles at 250 µg/mL (Figure 2B). The synergy of RL with heat was also stronger in the
presence of NaCl than of glycerol as a solute: L. monocytogenes population was reduced by
≥6.0 log cycles at RL concentrations between 25 µg/mL and 250 µg/mL. The above results
suggest that RL may offer potential to make the heat treatment of foods with reduced aw
more effective.

There is no data available regarding microbial inactivation by the combination of
heat and RL; however, there exist similar studies using other natural antimicrobials in
high-moisture matrices. For instance, the population of L. monocytogenes Scott A present in
semi-skimmed milk was reduced by 4 log cycles after combining heat (60 ◦C, 6 min) with
vanillin (1400 ppm) [36]. The combination of essential oils from Laurus mobilis and Myrtus
communis L. (0.2 µL/mL) with mild heat (54 ◦C, 10 min) in buffer systems (pH 7.0) resulted
in the synergistic inactivation of L. monocytogenes EGD-e, reducing the population by 3.5 log
cycles [37]. The thermal resistance of L. monocytogenes STCC 4032 was reduced by 1–4 log
cycles by 0.5 mM D-limonene at 55 ◦C (1 min), depending on whether the compound was
added directly or in the form of a nanoemulsion [38].

It has been demonstrated that the lethality of natural antimicrobials may be reduced
in low-water-activity systems, probably due to lower chances of contact between the com-
pounds and the cell target [39,40]. As such, the inactivation of Salmonella Tennessee by cin-
namaldehyde (125–500 mg/L), carvacrol (125–500 mg/L) or lauric arginate (50–200 mg/L)
after 3 days of incubation (25 ◦C) was dramatically reduced when decreasing aw from
>0.99 to 0.7–0.3 in a glycerol–sucrose model and peanut paste [40]. However, we found
only one study on the effectiveness of synergistic heat and antimicrobial combinations in
low-moisture systems, in which it was reported that the synergetic lethal effect between
heat and oregano essential oil (1–2%) or
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was completely lost in undiluted tahini (aw 0.256–0.335) [39]. The reason for this effect
may be that the antimicrobials are concentrated in the oil phase in undiluted tahini. Our
experiments were conducted in a fat-free medium and showed a strong synergy between
RL and heat at aw 0.92, suggesting that such a hurdle approach could be effective for
processing low-fat low-water-activity foods.
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Figure 1. Logarithmic reduction factor (LRF; log(N0/N)) of L. monocytogenes Scott A by heat treatment
(60 ◦C, 5 min) in sodium phosphate buffer (pH 6.7) at aw > 0.99 (control, white bars), 0.98 or 0.92,
adjusted with glycerol (gray bars) or NaCl (black bars). Error bars represent the standard deviation
of the means of triplicates. Different letters indicate statistically significant differences (p ≤ 0.05) in
the inactivation at different aw levels and using different solutes. The dashed line indicates the LRF
corresponding to the quantification limit of surviving cells (1000 CFU/mL).
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Figure 2. Logarithmic reduction factor (LRF; log(N0/N)) of L. monocytogenes Scott A in sodium phos-
phate buffer (pH 6.7) of aw 0.92 with (A) glycerol or (B) NaCl by heat, RL at different concentrations
and the combination of heat and RL. The white bar represents heat inactivation alone (60 ◦C, 5 min;
without RL added). For each RL concentration, the gray bar presents inactivation by RL at room
temperature (~20 ◦C, 5 min), while the black bar indicates inactivation by the combination of RL and
heat (60 ◦C, 5 min). The dashed line indicates the maximum detectable LRF corresponding to the
quantification limit (1000 CFU/mL). Error bars represent the standard deviations of the means of
triplicates. Asterisk indicates statistically significant differences (p ≤ 0.05) between the theoretical
additive inactivation by heat and RL and the experimental inactivation obtained by the combined
treatment, and therefore the occurrence of a synergistic lethal effect. Lowercase and capital letters
indicate statistically significant differences (p ≤ 0.05) in the inactivation by RL and by the combination
of heat and RL treatment, respectively, among the different RL concentrations tested.

The antimicrobial action of RL is based on disturbance of the cell membrane in-
tegrity [41], although the precise details of the mechanism are unknown. The generation
of reactive oxygen species (ROS) was also proposed to contribute to the bactericidal ef-
fect of rhamnolipids [42]. As a surfactant, RL molecules can self-assemble into structures
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such as micelles, vesicles and lamellas [43] at concentrations above their critical micelle
concentration (CMC). Actually, the role of RL aggregation in its antimicrobial activity is
not well understood: while surfactant monomers can easily insert themselves into the
cell membrane, the presence of molecular aggregates can enhance local surfactant concen-
tration and charge [44]. According to Rodrigues et al. [45], the antimicrobial activity of
RL against two Aspergillus species was associated with increasing micelle size and with
the presence of vesicle-like molecular aggregates. Factors, such as temperature, pH, ionic
strength and surfactant concentration, influence the type, size and charge of molecular
self-assembly structures [46–48], and therefore, it is reasonable to assume that changes in
these parameters will have an impact on RL antimicrobial activity. Temperature influences
CMC, and such an effect is dependent on the type of surfactant. For ionic surfactants, such
as RL, an increase in temperature can reduce the hydration of the hydrophilic head group
favoring the formation of micelles and consequently decreasing their CMC [49].

It is important to note that the combined treatment was more effective with NaCl as
a solute than with glycerol at the same aw and at all RL concentrations tested (Figure 2).
These results suggest that, although heat increases the antimicrobial effect of RL in the
presence of both solutes, NaCl and glycerol interact differently with RL. Possibly, the ionic
nature of NaCl may enhance RL antimicrobial activity compared to glycerol. Given the
strong lethal effect of RL in the presence of NaCl, we proceeded to investigate whether the
combination of RL and NaCl exerted a growth inhibitory effect on L. monocytogenes.

3.2. Growth Inhibitory Activity of RL in Combination with Salts

The growth kinetics of L. monocytogenes in BHI with 0.0%, 1.0%, 2.0%, 5.0% and 7.5%
NaCl with and without 500 µg/mL of RL is shown in Figure 3. In the absence of RL, lag
phases increased and growth rates decreased especially at 7.5% NaCl but not at lower
concentrations (Figure 3A). The addition of RL (500 µg/mL) to the medium impaired
bacterial growth but also rendered the bacteria more sensitive to NaCl, even at the lowest
concentration used (1%) (Figure 3B). At the highest NaCl concentrations (5.0–7.5%), growth
was completely inhibited. The viability staining of the bacterial cells after growing in
culture medium with 5% NaCl added (control), RL (500 µg/mL) and the combination of
both (RL+NaCl) is displayed in Figure 4. Green viable cells were present in control medium
and also after the treatment with RL for 4 h (Figure 4A) and 24 h (Figure 4B), whereas no
live cells were visible after the combined treatment even after only 4 h. Thus, it can be
concluded that NaCl and RL inactivate L. monocytogenes in a synergistic manner.
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Figure 3. Growth kinetics of L. monocytogenes Scott A in BHI medium supplemented with (a) different
concentrations of NaCl, without RL and (b) in combination with 500 µg/mL of RL at 30 ◦C. Data
points represent the mean values of three replicates. Error bars have been omitted for clarity.
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While NaCl is one of the most commonly used food additives, and many foods
depend partly on NaCl for their microbiological stability and safety, the growing pressure
for the reduction of dietary sodium intake is pushing food producers to replace NaCl by
substitutes such potassium salts [50]. Therefore, we evaluated if KCl and RL (500 µg/mL)
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also synergistically inhibited the growth of L. monocytogenes. Remarkably, although KCl
was slightly less inhibitory than NaCl when used alone, it had a stronger synergistic effect
when combined with RL than NaCl (Figure 5). Even at the lowest KCl concentration (1.0%),
growth was completely inhibited in combination with RL (500 µg/mL).
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Figure 5. Growth kinetics of L. monocytogenes Scott A in BHI medium supplemented with (a) different
concentrations of KCl, without RL and (b) in combination with 500 µg/mL of RL at 30 ◦C. Data
points represent the mean values of three replicates. Error bars have been omitted for clarity.

The interaction between RL and NaCl or KCl was investigated in more detail by
determining the MIC and MBC values of RL at different salt concentrations (Table 1). In
the absence of salts, no MIC or MBC value could be determined because growth was not
completely inhibited even at the highest RL concentration. At salt concentrations of 1.0%
and 2.0%, the MIC and MBC values of RL were considerably lower for KCl than for NaCl,
while at 5.0% and 7.5%, there was no difference. These results confirm that KCl has a
stronger synergistic effect than NaCl in combination with RL.

Table 1. MIC and MBC (between brackets) values for RL (µg/mL) against L. monocytogenes Scott A at
different NaCl and KCl concentrations.

Salt Concentration 0.0% 1.0% 2.0% 5.0% 7.5%

NaCl >2500 (-) 2500 (-) 312 (-) 78 (78) 39 (39)
KCl >2500 (-) 312 (625) 156 (156) 78 (78) 39 (39)

-: no MBC observed.

At the neutral pH of the BHI culture medium, the RL carboxyl groups are dissociated,
resulting in a negatively charged structure [51], in which strong repulsive forces exist
between the head groups of RL molecules. Cations of opposite charge (Na+ or K+) shield
these negative charges and thus decrease the repulsive forces and lower the CMC [48,52].
Moreover, the addition of salts increases the micelle size and aggregation number of ionic
surfactants [53]. Thus, micelles are formed at lower surfactant concentration, and more
surfactant molecules are present in the micelles.

Na+ and K+ cations may have a different effect because of their different charge/size
ratio. In water, the radius of a hydrated Na+ cation is larger than that of a hydrated K+

cation [50], and consequently, the binding of Na+ with surfactant molecules is weaker than
that of K+. Sood and Aggarwal [53] reported that the CMC of the anionic surfactant sodium
dodecylbenzene sulphonate was lower in the presence of KCl than in the presence of NaCl.
In line with this behavior, the CMC of RL was lower in KCl than in NaCl considering the
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same molar concentration of both salts (Table 2). However, our antimicrobial assays were
conducted using equal percentage (w/v) concentrations of salts (at pH 7.0), and, under
such conditions, the CMC of RL was lower in NaCl than in KCl (Table 2). Thus, the
enhanced antimicrobial activity of the combination of KCl and RL cannot be only attributed
to decreased CMC, and therefore other specific interactions of K+ cations with cell surface
components or in surfactant micelle organization may account for the observed results.

Table 2. Critical micelle concentration values of RL solutions under different pH and salt levels.

%NaCl 0.0% 1.0% (171 mM) 2.0% (342 mM) 5.0% (855 mM)

pH 5.0 19.6 11.5 10.4 11.9
pH 6.0 93.2 32.0 17.4 14.2
pH 7.0 94.2 35.8 26.3 16.0
pH 8.0 121.4 39.1 25.6 15.5

% KCl 0.0% 1.0% (134 mM) 2.0% (268 mM) 5.0% (670 mM)

pH 7.0 94.2 46.9 38.3 21.7

% KCl 1.3% (171mM) 2.5% (342 mM) 6.4% (855 mM)

pH 7.0 25.5 19.5 13.4

The carboxyl groups of RL molecules become predominantly protonated (uncharged)
when the pH is lower than the pKa, which is 5.6 and 5.9 for di and mono-RL forms,
respectively [43,54]. In previous work, it was observed that the antimicrobial activity of
RL increased under acidic conditions [55], and authors postulated that the electrostatic
repulsion between RL and the cell surface was reduced, favoring cell–surfactant interaction.

If the increased antimicrobial activity of RL at low pH and in the presence of salts
were indeed due to the reduction or shielding of negative charges, it would be predicted
that the cations would have little or no effect under acidic conditions wherein RL are
nonionic. To test this hypothesis, we conducted a new set of experiments in BHI medium
adjusted to pH 5.0. Figure 6 shows that L. monocytogenes Scott A was able to grow in BHI
adjusted to pH 5.0 when 5% NaCl was added (control). Nevertheless, when the culture
broth was supplemented with RL (500 µg/mL), the growth was inhibited independently
of the presence of NaCl. Furthermore, the MIC value of RL at pH 5.0 was 19.5 µg/mL for
both NaCl-supplemented and -non-supplemented media (data not shown). Comparatively,
when RL were utilized under neutral pH (Table 1), the MIC was reduced from >2500
(without NaCl) to 78 µg/mL (with 5% NaCl). These results suggest that the nonionic form
is more effective against L. monocytogenes and confirm that the effect of salts is observed only
at pH values wherein negatively charged RL molecules predominate in solution. As such,
they lend support to the hypothesis that the shielding of negative charges by monovalent
cations makes RL behave as nonionic surfactants favoring their interaction with cells.

Table 2 shows that the CMC of RL decreased as NaCl concentration increased in
solution. The addition of 5% NaCl lowered the CMC from 94.2 to 16.0 at pH 7.0 and the
MIC from >2500 to 78 µg/mL (Table 1). The effect of salt on surfactant CMC was less
evident at pH 5.0, probably due to the predominance of the nonionic form of the RL as
discussed above (Table 2). The increase in pH also increased the CMC of the surfactant
in the absence of salt and at specific ionic strength; however, this was not observed at the
highest salt concentration. Our findings are in agreement with similar reports in literature
regarding the CMC behavior of RL [56,57].

An interesting question is whether the increased antimicrobial effect observed when
the negative charge of RL is reduced or shielded is only due to the decreased repulsion
of RL and the bacterial surface or is also affected by their molecular aggregation. The
morphology of RL molecular aggregates is also governed by pH. An increase of pH from
5.0 to 7.0 induced a shift of RL self-assembly structures from vesicles to lamellas, lipid
particles and micelles [43,56]. It is known that membrane vesicles and micelles can fuse
with bacterial membranes under particular conditions, and it is conceivable that such fusion
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events can strongly enhance the antimicrobial activity of surfactants. However, further
work is needed to investigate the formation of such structures in relation to environmental
conditions (pH, salts) and their interaction with bacterial cells.
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4. Conclusions

A hurdle technology approach combining a rhamnolipid biosurfactant and mild heat
revealed a strongly synergistic effect against L. monocytogenes in a low-water-activity model
using ionic and sugar solutes. Furthermore, the growth-inhibitory activity of RL was also
strongly enhanced by the presence of NaCl and KCl, suggesting that the overall antilisterial
properties of rhamnolipids depend on the ionic strength of the medium and the surfactant
CMC. The results obtained in this work contribute to the understanding of RL antimicrobial
action and may open new perspectives regarding their applications in food processing.
Notably, further research exploring the efficacy of this natural bio-based surfactant in
combination with salts can result in innovative and sustainable strategies to control L.
monocytogenes in the food chain.
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48. Helvacı, Ş.Ş.; Peker, S.; Özdemir, G. Effect of electrolytes on the surface behavior of rhamnolipids R1 and R2. Colloids Surf. B
Biointerfaces 2004, 35, 225–233. [CrossRef] [PubMed]

49. Demissie, H.; Duraisamy, R. Effects of electrolytes on the surface and micellar characteristics of sodium dodecyl sulphate
surfactant solution. J. Sci. Innov. Res. 2016, 5, 208–214. [CrossRef]
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