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Abstract: Lentils are sustainable sources of bioencapsulated macronutrients, meaning physical barri-
ers hinder the permeation of digestive enzymes into cotyledon cells, slowing down macronutrient
digestion. While lentils are typically consumed as cooked seeds, insights into the effect of cooking
time on microstructural and related digestive properties are lacking. Therefore, the effect of cooking
time (15, 30, or 60 min) on in vitro amylolysis and proteolysis kinetics of lentil seeds (CL) and an
important microstructural fraction, i.e., cotyledon cells isolated thereof (ICC), were studied. For ICC,
cooking time had no significant effect on amylolysis kinetics, while small but significant differences in
proteolysis were observed (p < 0.05). In contrast, cooking time importantly affected the microstructure
obtained upon the mechanical disintegration of whole lentils, resulting in significantly different di-
gestion kinetics. Upon long cooking times (60 min), digestion kinetics approached those of ICC since
mechanical disintegration yielded a high fraction of individual cotyledon cells (67 g/100 g dry matter).
However, cooked lentils with a short cooking time (15 min) showed significantly slower amylolysis
with a lower final extent (~30%), due to the presence of more cell clusters upon disintegration. In
conclusion, cooking time can be used to obtain distinct microstructures and digestive functionalities
with perspectives for household and industrial preparation.

Keywords: lentil; thermal treatment; amylolysis; proteolysis; INFOGEST; digestion kinetics;
individual cotyledon cell

1. Introduction

Pulses can be an important part of healthy and sustainable diets (e.g., the Mediter-
ranean diet), as they are a source of (slowly digestible) starch, protein, minerals, and (soluble
and insoluble) fiber [1]. Before consumption, pulses require processing to reach palatability.
During cooking, starch gelatinizes, protein denatures, and the gradual solubilization of
pectin leads to weakening of the cell middle lamella and softening of the seeds [2–4]. As a
result, the mechanical disintegration (e.g., mastication) of cooked pulses causes cotyledon
cells to remain intact and separate rather than break [3,4]. In pulse cells, macronutrients
such as starch and protein are encapsulated within the cell wall. Both the cell wall and
the cytoplasmic protein matrix have been widely reported to form a barrier, slowing and
hindering macronutrient (starch and protein) digestion [5]. Retarded nutrient digestibility
in intact cells has, in turn, been related to in vivo benefits, among which are increased
satiety [6,7] and a low glycemic index [8,9], which is, in turn, correlated to a reduction in
the risk of modern lifestyle diseases [10].

While typical hurdles for pulse consumption are their inconvenient preparation and
typical aroma [11], the rising interest in lentils could be related to their shorter cooking
time [12] and more pleasant aroma compared to other pulses [13,14]. Lentils (Lens culinaris)
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are lens-shaped pulses, with a high protein (20.6–29.2%) and fiber (6.8–14.7%) but low
lipid (0.8–2.2%) content compared to other pulse types [15]. Recently, lentil ingredients are
being increasingly incorporated into several innovative food products, such as crackers,
cookies, and pasta [16,17]. While the properties and application of lentil-based food
ingredients (with or without cellular intactness) are being studied [18,19], pulses are still
mostly consumed in the form of cooked seeds. Therefore, both at the level of industrial and
household preparation, it is important to obtain insight into the effect of cooking on the
nutrient digestibility of lentils.

The influence of cooking time on the microstructural and linked in vitro macronutrient
digestibility of several pulse types has been studied, revealing important intrinsic differ-
ences between pulse types [15], as elaborated below. Most commonly, since individual
cotyledon cells can be considered a representative fraction of disintegrated cooked pulse
seeds, isolated cotyledon cells (ICC) are considered [20–30]. Since this approach entails
the omission of certain fractions (such as cell clusters, fiber-rich seed coat material, and
ruptured cells), it can be considered a reductionist approach [30,31]. The study of ICC
fractions revealed a positive correlation between the applied cooking time and the starch
and protein digestion rate and extent of isolated of black beans, common beans (Phaseolus
vulgaris), and Bambara groundnut (Vigna subterranea) [31–33]. In contrast, cotyledon cells
isolated from, e.g., peas (Pisum sativum) and chickpeas (Cicer arietinum), did not show an
effect of cooking time on the overall macronutrient digestibility [31]. In the context of
ICC, pulse type-specific differences in digestibility have been linked to, among others, the
starch-to-protein ratio and cell wall properties (such as thickness, porosity, and compo-
sition) [5,31,34]. Recently, next to ICC, the effect of cooking time on the microstructural
and (resulting) digestion properties of whole seeds are being studied as well. Consistently,
an increased fraction (or yield) of individual cells upon mechanical disintegration was
reported with increasing seed cooking times [21,32]. For several pulse types (e.g., peas
and chickpeas), studies reported increased amylolysis and proteolysis rates and extents
with increasing seed cooking times due to the separation of cell clusters [31,35]. In contrast,
another study reported a decrease in the macronutrient digestion rate with increasing
cooking times due to decreased cell breakage for Bambara groundnuts [36].

The abovementioned studies indicated that the cooking time can be an important
parameter affecting nutrient digestibility in pulses, with important differences between
pulse types. However, insight into the effect of cooking time on the microstructural and
linked digestive properties of well-accepted lentils is lacking. Therefore, three different
processing intensities (cooking times) were selected at which lentil seeds were palatable
and starch gelatinization was complete, but the seeds showed differences in particle size
distributions upon mechanical disintegration. Starch and protein digestion kinetics were
determined for both the whole cooked seed material and cotyledon cells isolated thereof
and compared and linked to microstructural properties. The use of the INFOGEST con-
sensus static in vitro protocol [37] ensures comparability of the data with other works on
pulse digestibility.

2. Materials and Methods
2.1. Materials

Green lentils (Dupuy type) from Canada (harvested in August 2019) were donated by
Casibeans (Melsele, Belgium). After sorting, the raw seeds (<10% moisture) were stored
at −40 ◦C. Storage below the glass transition temperature prevents biochemical changes
(such as the development of the hard-to-cook phenomenon), ensuring stability of the seeds
until usage [38,39]. The Total Starch Kit was obtained from Megazyme (Bray, Ireland).
KCl, MgCl2(H2O)6, NaOH, and sodium potassium tartrate were purchased from Acros
Organics (Geel, Belgium). NaHCO3, NaCl, and KH2PO4 were obtained from VWR (Leuven,
Belgium). All other chemical reagents and enzymes were purchased from Merck KgaA
(Darmstadt, Germany).
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2.2. Thermal Processing of Lentil Seeds and Isolation of Cotyledon Cells

The applied experimental approach is shown in Figure 1. Whole cooked lentils (CL)
and isolated cotyledon cells (ICC) were produced following a procedure based on Pallares
Pallares et al. (2018) [21]. Upon preparation, the material was frozen in liquid nitrogen
and stored at −40 ◦C until sample characterization and simulated digestion. As reported
earlier, no effect of snap freezing and frozen storage (−40 ◦C) on the microstructural and
digestive properties could be observed [29,32,33].
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protein digestion kinetics in cooked lentil seeds and cotyledon cells isolated thereof.

The cooking times were selected based on preliminary experiments and the literature,
with cooking times from 8 to 43 min reported for presoaked lentil seeds [40–42]. Preliminary
experiments showed that presoaked lentils had an acceptable (palatable) texture upon
cooking for 15, 30, or 60 min. Moreover, the Differential Scanning Calorimetry (DSC)
analysis (see Section 2.3.1, data in Figure S1) indicated complete starch gelatinization for
these thermal treatment times. It was hypothesized that the application of these increasing
cooking times within the palatable range would lead to increasing degrees of (middle
lamella) pectin solubilization and thereby (i) differences in the microstructure (PSD) upon
mechanical disintegration of whole cooked seeds and (ii) isolated cotyledon cell fractions
with possibly different barrier properties, both potentially affecting macronutrient digestion
kinetics [32,33].

2.2.1. Whole Cooked Lentil Seeds (CL)

Raw lentils were soaked in demineralized water (1:10 w/v, 16h, 25 ◦C), whereafter the
soaking water was discarded. To study the impact of cooking time, soaked lentils were
independently cooked in demineralized water (1:10 w/v, 95 ◦C) for each selected cooking
time (15, 30, or 60 min). Upon reaching the required cooking time, samples were cooled to
room temperature on ice, and the cooking water was discarded. Cooked lentils were rinsed
with demineralized water and drained. Solid foods such as lentils require mechanical
disintegration before digestion, either by mastication or processing. Therefore, the cooked
lentils were mixed into a slurry with a Simulated Salivary Fluid (SSF, 1.25:1 m/v) wet basis
under standardized conditions (cfr. Section 2.4.1).

2.2.2. Isolated Cotyledon Cells (ICC)

Lentils cooked for 15, 30, or 60 min (see above) were mixed with demineralized
water (1:1 w/v) and disintegrated (2 min, 3000 rpm) (IKA® T25 Ultra-Turrax, Janke and
Kunkel, Germany). Wet sieving by means of a vibratory sieve system (AS200, Retsch,
Germany) was performed to isolate cotyledon cells from the slurry (amplitude 2.5 mm,
4 min). The fractions between 40 and 125 µm were composed of individual cotyledon cells,
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as confirmed microscopically and by laser diffraction (Section 3.1.1). The cellular yield was
then calculated on a dry weight basis.

2.3. Sample Characterization
2.3.1. Compositional Analysis

The moisture content of both CL and ICC samples was determined in duplicate as the
difference in weight before and after oven drying. For compositional analysis, a portion of
all CL and ICC samples were freeze-dried (Alpha 1–4, LSCplus, Martin Christ, Germany)
and pounded into a ball mill (MM400, Retsch, Haan, Germany), completely disrupting
cellular structures. The starch content was analyzed in duplicate employing a Total Starch
Kit (AA/AMG, Megazyme Inc. Bray, Ireland). The nitrogen content was determined by an
automated Dumas analysis (CHNS-O Elemental Analyzer, CE instrument, Thermo Fischer
Scientific, Waltham, MA, USA) in duplicate. Then, the crude protein content was calculated
employing a conversion factor of 5.4 for legumes [43]. Differential Scanning Calorimetry
(DSC) (TA instruments, Q2000, New Castle, DE, USA) was performed to confirm com-
plete starch gelatinization of all samples in view of the analysis of starch digestibility,
applying the procedure suggested by Salgado-Cruz, Ramírez-Miranda, Díaz-Ramírez,
Alamilla-Beltran, & Calderón-Domínguez (2017) [44] with minor modifications reported by
Noordraven, Bernaerts, Mommens, Hendrickx, & Van Loey (2021) [45]. Thermal transitions
were identified through analysis of the obtained thermograms using TA Universal Analysis
software (Version 4.5A, TA Instruments-Waters LLC, New Castle, DE, USA). DSC data are
included in Supplementary Materials Figure S1.

2.3.2. Microscopy

Representative micrographs were used to qualitatively visualize the disappearance of
starch and proteins in the digestion pellets (i.e., non-bioaccessible, insoluble fraction ob-
tained upon centrifugation of digests, cfr. Section 2.4.3) as a result of digestion. To visualize
starch, a 5% (w/v) Lugol’s iodine solution was used. Micrographs were taken using an
Olympus BX-51 light microscope (Olympus, Optical Co. Ltd., Tokyo, Japan) with cellSense
Standard® software employing a 40× magnification objective. Due to the presence of
aromatic amino acids, pulse proteins are intrinsically fluorescent [32,46]. Therefore, protein
digestion could be visualized under fluorescent light (excitation filter 460–490 nm) using
epifluorescence illumination equipment (X-Cite® 120Q, X-Cite® Fluorescence Illumination,
EXFO Europe, Hants, UK), as reported earlier [47].

2.3.3. Particle Size Distribution

The particle size distribution (PSD) was analyzed using a particle size analyzer em-
ploying a Universal Liquid Module (Beckman Coulter, LS 13 320, Miami, FL, USA) in
duplicate for each sample, as performed by Noordraven et al. (2021) [45]. Briefly, mechani-
cally disintegrated CL and ICC samples were diluted in demineralized water and injected
into the stirred tank (reaching 8–10% obscuration). As the sample was pumped through the
measuring cell (rate 30%), dispersed particles scattered the laser light (main illumination
source wavelength: 750 nm and halogen light for polarization intensity differential scatter-
ing wavelength: 450 nm, 600 nm, and 900 nm). Finally, volumetric PSDs were calculated
applying the Fraunhofer optical model.

2.4. In Vitro Digestion: INFOGEST 2.0

The digestion of produced lentil samples was simulated in vitro using the static
INFOGEST protocol [37]. The activities and concentrations of the used enzymes and bile
salts were analyzed prior to digestion, following the procedures proposed by Brodkorb et al.
(2019) [37]. Independent digestion tubes were prepared for each analyzed digestion time
(5 time points for the gastric and 13 for the small intestinal phase).
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2.4.1. Simulated Oral Phase

According to the standardized INFOGEST protocol [37], in each digestion tube, 1.25 g
of sample (ICC or cooked lentil seeds) were combined with Simulated Salivary Fluid (SSF,
pH 7, 1 mL), CaCl2 (0.0063 mL, 0.3 M), and demineralized water (0.125 mL).

Isolated cotyledon cells were used as such, but whole lentil seeds (solid food) required
disintegration before simulated digestion. Therefore, cooked lentil seeds were mixed with
SSF (1.25:1 m/v, Ultra-Turrax, 2 min, 3000 rpm), since this method allows standardization of
the disintegration step. Moreover, comparison of PSD data (Section 3.1.1, Figure 2) with the
literature data on in vivo masticated bean boluses indicated that this disintegration step
yielded a similar microstructural distribution [48].
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Previous publications by our research unit [29,32] showed that, in the case of a static
in vitro digestion experiment (INFOGEST protocol), salivary amylase had a negligible
effect on the amylolysis kinetics due to its short incubation time (2 min) and immediate
inactivation upon initiating the gastric phase at pH 3 [49]. Therefore, since the aim of this
work was to compare macronutrient digestion trends and rates for differently treated lentil
samples, salivary amylase was not incorporated in the simulated oral phase [29,32].

2.4.2. Simulated Gastric Phase

The simulated metabolites were mixed with simulated gastric fluid (SGF, pH 3, 2 mL)
and CaCl2 (0.0013 mL, 0.3 M). The pH was adapted to 3 (2 M HCl). Demineralized water
and a porcine pepsin solution were added to obtain a final volume of 5 mL and a pepsin
activity of 2000 U/mL. Digestion tubes were incubated under end-over-end rotation (37 ◦C,
120 min, 70 rpm). At 5 predetermined gastric digestion times, independent samples were
taken, and the enzymatic activity was stopped thermally (5 min, 98 ◦C).

2.4.3. Simulated Small Intestinal Phase

Simulated intestinal fluid (SIF, pH 7, 2.125 mL), CaCl2 (0.3 M, 0.01 mL), and fresh bile
solution (160 mM in SIF, 0.625 mL) were added to the chyme. The pH was brought to 7
(1 M NaOH). Then, demineralized water and pancreatic enzyme solution (in SIF) were
added, finally reaching a volume of 10 mL; a bile concentration of 10 mM; and α-amylase,
trypsin, and chymotrypsin activities of, respectively, 200, 100, and 25 U/mL. Thirteen
individual digestion tubes were incubated (180 min, 37 ◦C). At 13 predetermined times,
independent samples were taken, followed by enzyme inactivation.
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For the gastric and small intestinal phases, enzyme blanks (containing no sample but
all simulated fluids and enzymes) were prepared. All thermally inactivated digestion tubes
were centrifuged (5 min, 2000× g, 25 ◦C) (Sigma 4–16 KS centrifuge, Sigma, Osterode am
Harz, Germany), after which the supernatant and insoluble, non-bioaccessible pellet were
separated, snap-frozen, and stored (−40 ◦C) until analysis.

2.5. Quantitative Evaluation of Macronutrient Digestion
2.5.1. Determination of Digested Starch

The extent of starch digestion (%) was evaluated using the dinitrosalicylic (DNS)
method [50,51]. Briefly, 2 mL of (diluted) supernatant was mixed with 1 mL DNS in du-
plicate for each digestion time. After incubation (15 min, 100 ◦C), samples were cooled
down, 9 mL Milli-Q was added, and the absorbance was read at 540 nm. For each sam-
ple, the reducing sugar concentration was calculated in terms of maltose equivalents
using a calibration curve (0.5–2.0 mg/mL maltose) and converted into starch (conver-
sion factor 0.95, Equation (1)). Since no salivary amylase was incorporated into the static
in vitro digestion protocol, starch digestion was quantified as a function of small intestinal
digestion time only.

Digested starch (%) =
maltose equivalents × 0.95

total starch content
× 100 (1)

2.5.2. Determination of Readily Bioaccessible Protein

The course of proteolysis was evaluated as a function of digestion time by applying
the spectrophotometric o-phthaldialdehyde (OPA) method [52,53]. As widely applied, the
readily bioaccessible fraction (NH2TCA) was quantified by measuring α-amino groups released
as a function of the digestion time [29,32,54,55]. Large peptides were precipitated from
thermally inactivated supernatants through the addition of 3.2% TCA. Then, samples were
centrifuged (10,000× g, 25 ◦C, 30 min) (Microfuge 22R, Beckman Coulter Inc., Indianapolis,
IN, USA) and the obtained supernatants filtered (0.25 µm pore size). The resulting fraction
is considered to contain small peptides and amino acids that are readily absorbable (as
such) at the brush border [56]. After the digested samples, enzyme blanks (no samples but
all reagents, NH2initial) were analyzed as well. The readily bioaccessible peptide fraction at
each digestion time was expressed as a proportion (%) of the total amount of α-amino groups
in the (undigested) sample (NH2total). This fraction was obtained by adding 1 mL 6 N HCl to
5 mg of sample and hydrolyzing in duplicate for 24 h at 110 ◦C. After removing the acid by
rotary evaporation (Heidolph Instruments, Schwabach, Germany), the remaining fraction
was redissolved in 5 mL Milli-Q water and filtered.

Fresh OPA reagent was prepared for each set of analyses, as elaborated by Zahir et al.
(2018) [53]. Briefly, 0.4 mL of diluted sample and 3 mL of OPA reagent were mixed, and
after 2 min incubation in the dark, the absorbance was read at 340 nm (in duplicate). The
detected α-amino groups were converted to L-serine equivalents employing a standard
curve of L-serine (12.5–100 mg/mL). Then, the extent of readily bioaccessible protein formed
upon digestion could be expressed as stated in Equation (2).

Readily bioaccessible protein (%) =
NH2TCA − NH2initial

NH2total
× 100 (2)

2.6. Kinetic Modeling and Statistical Analysis

Mean composition values were calculated based on duplicate measurements. Signifi-
cant differences between the mean starch, protein, and moisture contents were assessed
using one-way ANOVA and Tukey’s HSD tests (p < 0.05) (JMP16, SAS Institute Inc., Cary,
NC, USA). The starch-to-protein ratio was calculated from the obtained means as an
indication of the protein matrix surrounding starch and possibly hindering amylolysis.

Each single digestion tube (13 for the small intestinal phase, cfr. Section 2.4.3) rep-
resents an independent evaluation of the same system at a different digestion time [57],
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as recently reviewed [58]. Applying this multi-tube kinetic approach resulted in the de-
scription of the nutrient digestibility of each sample based on 13 independent evaluations.
Through regression (see below), all experimental data of one sample type at different
kinetic points were integrated. Subsequently, the digestive behavior of different samples
was compared in terms of the obtained modeled curves and the estimated parameters.
During the small intestinal phase, macronutrient digestion could suitably be fitted with a
first-order fractional conversion model (Equation (3)), as previously reported in the context
of starch [59] and protein [36] digestion. Cf, the estimated final extent of starch/protein
hydrolysis at extended digestion times, and k, the estimated reaction rate constant, were
simultaneously estimated using kinetic modeling.

C(t) = C f +
(

C0 − C f

)
∗ e−k∗t (3)

In Equation (3), C represents the extent of macronutrient hydrolysis at digestion time
t. C0 is the hydrolysis extent at the beginning of the small intestinal phase (t = 0) (or end
of the gastric phase). Cf and k were simultaneously estimated by nonlinear regression
(SAS version 9.4, SAS Institute, Inc., Cary, NC, USA). For starch digestion, the model
could be simplified (C0 = 0) with salivary amylase omitted from the in vitro digestion
protocol. R2

adj and residual and parity plots were used to evaluate the fit of the modeled
curves. Since consecutive evaluations of one system were used to estimate k and Cf, the
standard error of those parameters is the result of the uncertainty of the independent
measurements. Significant differences between estimated parameters were verified using
95% confidence intervals.

To take into consideration the correlation between simultaneously estimated parame-
ters Cf and k, statistically significant differences among these jointly estimated parameters
were evaluated using the Joint Confidence Regions (JCR) analysis (α = 0.05). The slope of
the tangent to the modeled curve (for t = 0) was determined as the estimated initial rate of
macronutrient digestion (vinitial) [33].

To assess the correlation between amylolytic and proteolytic processes, the digestion
data was normalized by dividing each data point by the estimated Cf value, after which
normalized digestion curves were modeled and plotted.

The repeatability of the complete experimental set-up used in this work, starting from
processing over the enzyme batch characterization and in vitro evaluation of digestion
kinetics, was checked and is shown in Supplementary Materials Figure S2 and Table S1.

3. Results and Discussion
3.1. Characterization of Cooked Lentils and Derived Isolated Cells
3.1.1. Microstructural Characterization

The PSD of isolated cotyledon cells (ICC) and disintegrated cooked lentils (CL), as
affected by thermal treatment time followed by mechanical disintegration, are shown in
Figure 2. PSDs of ICC fractions were unimodal, indicating that this fraction contained one
homogenous fraction of individual cells with sizes between 40 and 400 µm. From this data,
assuming spherical particles, the volume-weighed median particle size (d50) was 110 µm,
107, and 106 µm for cells isolated from lentils cooked for 15, 30, and 60 min, respectively. It
could therefore be concluded that the estimated size of individual cells was independent of
the cooking time (confirmed qualitatively by microscopy). These values are in line with
previously reported diameters for lentil cotyledon cells of 101 µm [60].

For mechanically disintegrated cooked lentils (CL), a unimodal peak with an average
size of around 100 µm could be discerned as well, indicating the presence of individual
cotyledon cells. However, next to individual cells, the PSD of cooked lentils was also
characterized by both a smaller and a larger fraction. The tail towards smaller sizes
(<40 µm) implies the presence of some cellular material released due to breakage (i.e.,
cell wall fragments, starch granules, and proteins). For example, dimensions of 14–35 µm
have been reported for lentil starch granules [60,61]. The fraction of particles larger than
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individual cells (>400 µm) represents tissue fragments, such as cell clusters and seed coat
fragments, as previously reported [18]. Via wet sieving, the fraction (or yield) of individual
cotyledon cells was determined to be approximately 48, 50, and 67 g/100 g (dry matter basis)
for lentils cooked for 15, 30, and 60 min, respectively. A similar yield of 63% was reported
for cell isolation from green lentils for one particular cooking time [19]. Accordingly,
the PSDs of mechanically disintegrated CL (Figure 2a) showed an increasing volumetric
contribution of individual cells with increasing cooking times and a slight decrease in the
other (smaller and larger) fractions. From these PSDs, the fraction of individual cells in
the mechanically disintegrated CL cooked for 15, 30, and 60 min could be calculated to be
43.5 ± 5.6, 48.6 ± 3.7, and 49.2 ± 1.3%, respectively. The volumetric contributions of the
cellular (40–400 µm), subcellular (broken cell material, <40 µm), and super cellular (larger
cell cluster and tissue fraction, >400 µm) to the total volume of the CL samples are shown
in Figure 2b. While the differences in the cellular fraction calculated based on PSDs are
not statistically significant (p < 0.05) for different cooking times, an increasing trend of
the cellular fraction with the increasing cooking times was observed for the cellular yield
obtained based on wet sieving. These results indicate that shorter cooking times lead to
more cell breakage upon mechanical disintegration, on the one hand, and to the presence
of more clusters of cotyledon cells (intact tissue fragments) on the other hand. In contrast,
longer cooking times lead to more complete cell separation and thus a larger (volumetric
and mass) fraction of individual cells.

3.1.2. Compositional Characterization

The macronutrient compositional analysis (Table 1) revealed no significant differences
in the protein contents between raw and whole CL (~22 g/100 g DM). In the literature,
similar protein (21 to 29 g/100 DM) and starch (46 to 50 g/100 g DM) contents were
reported for cooked whole lentils [43,62]. Shifts in a composition can be explained by
the net leaching of dry matter during soaking and cooking, followed by discarding of
those liquids. For ICC, a protein content of 20–21 g/100 g DM was measured, significantly
lower as compared to uncooked lentils but not significantly affected by the applied cooking
time. The starch content of CL was slightly lower as compared to raw lentils, showing
an increasing trend with the cooking time (between 45 and 47 g/100 g DM), but these
differences were not statistically significant. The ICC showed a significantly higher starch
content (61 to 62 g/100 g DM) as compared to raw and cooked whole lentils, with no
significant effect of the cooking time.

Table 1. Macronutrient composition (in g/100 g dry matter) of whole cooked lentil seeds and
cotyledon cells isolated thereof as a function of the applied cooking time. Reported values are means
of duplicate measurements ± standard deviation. Within a column, different superscript letters
indicate significant differences between the reported means (p < 0.05).

Moisture (g/100 g) Starch (g/100 g DM) Protein (g/100 g DM) Starch-to-Protein Ratio

Raw lentil 9.4 ± 0.4 d 48.3 ± 1.0 b 22.3 ± 0.4 a,b 2.17

Isolated cotyledon cells (ICC)

15 min 73.0 ± 0.1 b 62.2 ± 1.0 a 20.6 ± 0.1 c,d 3.02
30 min 73.1 ± 0.2 b 60.8 ± 1.5 a 19.8 ± 0.7 d 3.06
60 min 76.1 ± 0.1 a 62.6 ± 1.7 a 21.2 ± 0.4 b,c,d 2.96

Cooked lentil seeds (CL)

15 min 68.4 ± 0.7 c 44.7 ± 2.2 c 21.7 ± 0.1 a,b,c 2.06
30 min 70.1 ± 0.1 c 45.9 ± 1.6 b,c 22.7 ± 0.1 a 2.02
60 min 75.9 ± 1.0 a 46.9 ± 0.8 b,c 22.3 ± 0.2 a,b 2.10

DM: Dry matter.
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Differences in the overall composition between ICC and CL samples can be explained
by the process of wet sieving, leading to the concentration of cotyledon cells (which are rich
in starch), while other fractions are discarded (especially fiber-rich hulls). Literature reports
on lentil ICC are missing, but similar protein and starch contents were reported for the
ICC of other pulses (e.g., peas and common beans) [31,33]. Generally, in terms of (nutrient)
composition, the consumption of whole CL (or food ingredients derived thereof) rather
than ICC (or powdered fractions enriched in intact cotyledon cells) could be interesting in
view of increasing the protein and fiber intake.

Overall, a starch-to-protein ratio of 2.2 was calculated for raw lentils. For CL and ICC,
starch-to-protein ratios between 2.0 and 2.1 and 3.0 and 3.1 were found, respectively. A
lower starch-to-protein ratio indicates that more protein surrounds starch, which could
potentially exert a barrier effect hindering amylolysis. In comparison, similar starch-to-
protein ratios were reported for whole cooked chickpea and corresponding ICC, while
lower ratios were reported for black beans (seeds and ICC) [31].

The calorimetric analysis (Supplementary Materials Figure S1) showed complete
starch gelatinization in all samples (cooked lentils and isolated cells with different cooking
times). Therefore, possible differences in starch digestibility between samples can be
attributed to the abovementioned process-induced differences (i.e., microstructure and
composition) rather than differences in the starch gelatinization degree and preserved
native organization.

3.2. Effect of Cooking Time on In Vitro Amylolysis

Amylolysis during the in vitro digestion of CL and corresponding ICC is shown in
Figure 3.
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Figure 3. In vitro amylolysis as a function of the small intestinal digestion time of (a) cells isolated
from lentils cooked for (#)15, (∆) 30, or (�) 60 min and (b) whole cooked lentils cooked for (•) 15,
(N) 30, or (�) 60 minutes. Symbols represent experimentally determined data. Lines represent the
data modeled using the fractional conversion model (Equation (3)). Error bars indicate the standard
deviation of the analytical replicates.

3.2.1. Amylolysis Kinetics of Isolated Lentil Cotyledon Cells (ICC)

For ICC, starch hydrolysis followed a similar trend for all applied cooking times, reach-
ing complete starch hydrolysis at the end of the simulation (Figure 3a). The experimental
data were fitted using a fractional conversion model, with the estimated model parameters
shown in Table 2.
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Table 2. Kinetic parameters (± standard deviation) estimated using the fractional conversion model
(Equation (3)) for the in vitro amylolysis of whole cooked lentil seeds (CL) and isolated cotyledon
cells (ICC) for different cooking times. After the rate constant k and final extent of amylolysis Cf, the
initial amylolysis rate (vinitial) and amylolysis extent at 120 min of the small intestinal simulation
(C120) were estimated. Within a column, different letters in superscript indicate significant difference
between means based on 95% confidence intervals.

Cooking Time vinitial (%/min) k (/min) Cf (%) C120 (%) R2
adj

Isolated cotyledon cells (ICC)

15 min 2.9 ± 0.3 b 0.029 ± 0.003 c 101.4 ± 3.2 a 98.2 ± 2.4 a,b 0.99
30 min 3.2 ± 0.2 b 0.031 ± 0.002 b,c 102.3 ± 2.5 a 99.8 ± 2.0 a,b 0.99
60 min 4.2 ± 0.3 a 0.044 ± 0.003 a 92.8 ± 2.1 a 92.3 ± 2.0 b 0.99

Cooked lentil seeds (CL)

15 min 1.8 ± 0.3 d 0.024 ± 0.003 c 75.4 ± 4.3 b 71.3 ± 2.9 c 0.99
30 min 2.5 ± 0.2 c 0.026 ± 0.001 c 97.6 ± 2.1 a 93.2 ± 1.4 b 0.99
60 min 4.3 ± 0.4 a 0.042 ± 0.003 a,b 103.5 ± 2.39 a 102.8 ± 2.2 a 0.99

For lentil ICC, no significant effect of the cooking time on the final extent (Cf) of starch
digestion could be observed (confirmed by JCR analysis, Figure 4a). Similar observations
were made for Bambara groundnuts [32], chickpeas, and green peas [31]. In contrast,
an increase in the final starch digestibility was found with increasing cooking times for
cells isolated from common beans and attributed to changes in cell wall permeability [21].
Although amylolysis followed similar general trends for lentil ICC with different cooking
times, Table 2 shows that both the rate constant (k) and initial rate of starch hydrolysis
(vinitial) increased as a function of the cooking time (linear correlations with R2 of 0.97 and
0.99, respectively, data shown in Supplementary Materials Figure S3).

Figure 4: Joint confidence region (JCR ) analysis (95% confidence level) of 
jointly estimated kinetic parameters estimated using the fractional 
conversion model (Eq. 3) for (a) in vitro amylolysis, and (b) in vitro proteolysis 
of cooked lentils (●, ▲, and ■) and corresponding isolated cotyledon cells ( 
○, ∆, □)  cooked for 15, 30, or 60 minutes, respectively. Full and dotted lines 
represent JCR of whole cooked lentils and isolated cotyledon cells, 
respectively.  
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Figure 4. Joint Confidence Region (JCR) analysis (95% confidence level) of jointly estimated kinetic
parameters estimated using the fractional conversion model (Equation (3)) for (a) in vitro amylolysis
and (b) in vitro proteolysis of cooked lentils (•, N, and �) and corresponding isolated cotyledon cells
(#, ∆, and �) cooked for 15, 30, or 60 min, respectively. Full and dotted lines represent JCR of whole
cooked lentils and isolated cotyledon cells, respectively.

An increase of vinitial with increasing cooking times indicates a possible decrease of the
physical barrier exerted by the cell (wall and protein matrix), relatively facilitating amylases
reaching their substrate. An increase of k with the cooking time implies that the reaction
plateau (Cf) will be reached faster during digestion. Similar trends have been observed for
ICC of several other pulse types [31–33]. Regardless of cooking time, amylolysis in lentil
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ICC followed a fractional conversion model, with the rate of amylolysis decreasing with
the proceeding digestion time. In contrast, for some other pulse ICC (e.g., common beans,
black beans, and Bambara groundnuts), a lag phase, characteristic for the time needed
for enzymes to reach the substrate, could be discerned [31–33]. These differences in the
amylolysis kinetics between lentil ICC and, for example, black and common bean ICC,
could possibly be explained by differences in multiple cellular properties [34]. For example,
black bean ICCs have a lower starch-to-protein ratio (2.3–2.4) [31] and thus possibly a
thicker protein matrix surrounding starch compared to lentils (3.0–3.1). Additionally,
differences in amylolysis kinetics could be attributed to cell wall differences as well, with
lentils possessing a lower pectin content (19.4–22.3%) compared to, e.g., common beans
(28.5–41.2%) [63,64]. In this context, in common beans, gradual pectin solubilization (as
a function of the cooking time) has been linked to the gradually increasing permeability
of the cell wall to digestive amylases and, consequently, a shorter lag phase [33]. Since no
lag phase was observed for lentil ICC, similar to previously reported results on Bambara
groundnuts ICC [32], it could be hypothesized that pectin solubilization might be less
cooking time-dependent compared to common beans. Possibly, in lentil ICC, permeation
through the protein matrix (entrapped within the cell wall), rather than the permeability
and permeation through the cell wall itself, might be a major factor affecting the amylolysis
rate (vinitial and k). In this case, gradual protein hydrolysis would be expected to play an
important role affecting amylolysis kinetics, and factors facilitating proteolysis could also
facilitate amylolysis, as discussed in Section 3.4. From this discussion, it can generally be
concluded that ICC amylolysis kinetics and how these are affected by the cooking time
differ distinctly between pulse types. The underlying reasons could be elucidated by
studying different pulse cell properties (e.g., composition and cell wall permeability) and
correlating them to established digestion kinetics.

3.2.2. Amylolysis Kinetics of Whole Cooked Lentil Seeds (CL)

As for ICC, amylolysis in CL followed a fractional conversion behavior (Figure 3b),
with the estimated parameters shown in Table 2. Mechanically disintegrated CL clearly
showed an increasing trend of k and Cf with an increasing cooking time. Moreover, as can
be seen from Table 2, the cooking time was clearly impacted vinitial (linear relation with R2

of 0.995, data shown in Supplementary Materials Figure S3), as well as Cf and C120.
CL with a shorter cooking time (15 min) showed a significantly (p < 0.05) lower plateau

value (75.4 ± 5.4%) compared to ICC with the same cooking time (101.4 ± 3.2%). Differ-
ences in amylolysis kinetics between cooked lentils with different cooking times can be
attributed to differences in PSD upon mechanical disintegration (Figure 2). Mechanically
disintegrated lentils cooked for 15 min contained slightly more cell clusters (52%) notably
delaying amylolysis compared to lentils cooked for 30 and 60 min (48 and 47%, respec-
tively). However, upon longer cooking times (30 and 60 min), the final starch digestion
extents for CL were not significantly different from their corresponding ICC, all reaching
approximately complete amylolysis upon long simulated digestion times (confirmed by
JCR analysis, Figure 4a). Cell separation upon mechanical disintegration was more com-
plete with these longer cooking times, resulting in more individual cells (48 and 49% based
on the volumetric PSD and 50 and 67% on based on mass) compared to CL with a cooking
time of 15 min (43% and 48%, respectively). In other words, lentils with a short cooking
time showed a significantly attenuated amylolysis compared to the corresponding ICC.
Upon increasing the cooking time, however, starch digestion in whole lentils approached
the behavior of their most characteristic fraction, namely individual cotyledon cells. Similar
overall trends were previously reported for other pulse types such as common beans [21]
and Bambara groundnuts [32].

Another factor possibly contributing to the low starch digestibility of lentils cooked
for a short time (15 min) compared to the isolated cells of the same cooking time could
be the presence of the seed coat, which is rich in dietary fiber and polyphenols, which
can interfere with starch digestion [23,65,66]. Upon longer cooking times, the interactions



Foods 2023, 12, 525 12 of 22

between polyphenols and starch could be broken, rendering the effect on starch digestibility
negligible [67]. In that regard, the total amount of polyphenols in lentils has been shown to
reduce 56% upon cooking times longer than 30 min [68]. Moreover, in the literature on other
pulse types, partial (gastric) degradation of the intracellular protein matrix entrapping
starch has been related to facilitated amylolysis [54]. Possibly, increasing denaturation of
the protein matrix surrounding starch with increasing cooking time could facilitate (gastric)
proteolysis [69–71]. In turn, a more degraded intracellular protein matrix could facilitate
small intestinal amylolysis.

The insights gathered in this work could be used to create foods (and food ingredients)
with macronutrient digestibility, depending on consumer requirements. For example, while
bioencapsulation generally attenuates amylolysis in cooked lentil seeds, consuming lentils
with a shorter cooking time (15 min) could be preferred if an even slower release of starch
digestion products is targeted (e.g., low glycemic index).

It should be noted that measured values for starch hydrolysis, as well as the modeled
final value Cf, slightly exceeded 100% in some cases. This is not realistic but could be
explained by the applied spectrophotometric DNS assay (in terms of maltose equivalents).
During starch hydrolysis by amylases, mostly maltose and maltotriose are formed [72,73].
Other hydrolysis products, such as glucose, can be formed as well [74], causing an over-
estimation of the extent of hydrolysis [73]. Alternative methods to specifically quantify
different starch hydrolysis products (rather than only maltose) have been implemented,
such as glucose quantification (e.g., GOPOD) [35,60,73] and HPAEC-PAD [36]. Generally,
differences in terms of the total starch digestibility were observed, depending on the ap-
plied method [36,73], reaching around 10% in the case of DNS compared to HPAEC-PAD.
However, the delivered overall trends (and rate constants) were similar. In this context, it
should be noted that in vitro digestion assays are not suited to predict the exact extent of
enzymatic macronutrient digestion in vivo [58,73]. Rather, in vitro digestion can deliver
insights into digestive patterns and rates at a given (fixed) enzyme activity and allow the
comparison and evaluation of digestion patterns of different samples under these fixed
conditions [73]. After all, a lower rate of amylolysis in vitro could be hypothesized to lead
to a (s)lower release of glucose into the bloodstream and a higher probability of (more)
undigested starch reaching the colon [58,73]. Therefore, despite being a “black box” ap-
proach in terms of the formed metabolites, the DNS method remains a widely applied,
rapid, and easy-to-use and suitable method for comparing (pulse) samples with different
processing histories in terms of the amylolysis pattern [31,32,75,76].

3.3. Effect of Cooking Time on In Vitro Proteolysis

The formation of readily bioaccessible protein (NH2TCA) upon the in vitro digestion
of CL and corresponding ICC is shown in Figure 5.

For all samples, only about 5% readily bioaccessible proteins were formed during the
gastric phase, which is in accordance with the literature on other pulses such as common
beans and soybeans [53,54]. This can be explained by the specificity of pepsin, preferably
cleaving peptide bonds between aromatic amino acids such as phenylalanine, tryptophan,
and tyrosine [77]. Pulse proteins are typically poor in sulfur-containing amino acids
and tryptophan [78], explaining their lower susceptibility to pepsinolysis. In contrast,
lentil proteins seem to be a much more ideal substrate for small intestinal trypsin and
chymotrypsin, which preferably cleave at C-terminal basic amino acids (e.g., arginine and
lysine) and/or large hydrophobic residues (e.g., phenylalanine and tyrosine) [77,79].



Foods 2023, 12, 525 13 of 22
Foods 2023, 12, x FOR PEER REVIEW 15 of 24 
 

 

(a
).

 I
so

la
te

d
 c

o
ty

le
d

o
n

 c
el

ls
 (

IC
C

) 

 

(b
).

 C
o

o
k

ed
 l

en
ti

l 
se

ed
s 

(C
L

) 

 

Figure 5. The formation of readily bioaccessible proteins as a function of the digestion times of (a) 

isolated lentil cells derived from lentils cooked for (○) 15, (∆) 30, and (□) 60 min, and (b) whole lentil 

seeds cooked for (●) 15, (▲) 30, and (■) 60 min. Symbols represent experimentally determined data. 

Lines represent the data modeled using the fractional conversion model (Equation (3)). Error bars 

indicate the standard deviation of analytical replicates. 

Table 3. Kinetic parameters (± standard deviation) estimated using the fractional conversion model 

(Equation (3)) for in vitro proteolysis of whole cooked lentil seeds (CL) and isolated cotyledon cells 

(ICC) for different cooking times. The estimated kinetic parameters include the rate constant k, final 

extent of proteolysis Cf, and the initial proteolysis rate (vinitial). Within a column, different letters in 

superscript indicate significant differences between means based on 95% confidence intervals. 

Cooking Time  vinitial (%/min) k (/min) Cf (%) R2adj 

Isolated cotyledon cells (ICC) 

15 min 0.798 ± 0.177 c 0.027 ± 0.005 a 34.32 ± 1.82 a,b 0.99 

30 min 1.356 ± 0.186 a 0.040 ± 0.003 a 37.68 ± 0.74 a 0.99 

60 min 1.083 ± 0.162 b 0.041 ± 0.006 a 30.15 ± 1.25 b 0.99 

Cooked lentil seeds (CL) 

15 min 0.528 + 0.101 d 0.022 ± 0.004 a 29.74 ± 1.67 b 0.99 

30 min 0.752 + 0.144 c 0.025 ± 0.004 a 30.21 ± 1.36 b 0.99 

60 min 1.109 + 0.137 b 0.033 ± 0.004 a  38.31 ± 1.24 a 0.99 

3.4. Qualitative Evaluation of Amylolysis and Proteolysis Using Microscopic Observations 
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The experimental data of the small intestinal phase were modeled using a fractional
conversion model with the estimated parameters shown in Table 3 and JCR analysis in
Figure 4b.

Table 3. Kinetic parameters (± standard deviation) estimated using the fractional conversion model
(Equation (3)) for in vitro proteolysis of whole cooked lentil seeds (CL) and isolated cotyledon cells
(ICC) for different cooking times. The estimated kinetic parameters include the rate constant k, final
extent of proteolysis Cf, and the initial proteolysis rate (vinitial). Within a column, different letters in
superscript indicate significant differences between means based on 95% confidence intervals.

Cooking Time vinitial (%/min) k (/min) Cf (%) R2
adj

Isolated cotyledon cells (ICC)

15 min 0.798 ± 0.177 c 0.027 ± 0.005 a 34.32 ± 1.82 a,b 0.99
30 min 1.356 ± 0.186 a 0.040 ± 0.003 a 37.68 ± 0.74 a 0.99
60 min 1.083 ± 0.162 b 0.041 ± 0.006 a 30.15 ± 1.25 b 0.99

Cooked lentil seeds (CL)

15 min 0.528 + 0.101 d 0.022 ± 0.004 a 29.74 ± 1.67 b 0.99
30 min 0.752 + 0.144 c 0.025 ± 0.004 a 30.21 ± 1.36 b 0.99
60 min 1.109 + 0.137 b 0.033 ± 0.004 a 38.31 ± 1.24 a 0.99
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3.3.1. Proteolysis Kinetics of Isolated Lentil Cotyledon Cells (ICC)

For ICC, the final levels of readily bioaccessible proteins of 30 to 37% were estimated.
In comparison, final values of 35–36% were reported for the in vitro digestion of black
bean and chickpea ICCs [31], and values of around 50% were found for common bean
ICC [54]. However, the initial reaction rate (vinitial) was significantly higher for isolated
lentil cells with a cooking time of 30 min compared to both the shorter (15 min) and
longer (60 min) cooking times. An increase in the initial hydrolysis rate with the cooking
time could be explained by increased protein denaturation increasing the susceptibility to
proteases [69,70] and a decrease in the antinutrient content (e.g., trypsin inhibitors) with
increasing cooking times [80,81]. Similarly, an increase in vitro protein digestibility has
been reported upon cooking for several pulses [71].

However, the Cf was significantly lower for isolated cells with a cooking time of 60 min
compared to a cooking time of 30 min, confirming that protein digestibility may decrease
upon prolonged cooking. Further increasing the cooking time (to 60 min) could possi-
bly decrease the susceptibility of protein-to-enzymatic hydrolysis, as seen previously for
Canavalia [82]. The decrease in digestibility upon long cooking times could potentially be
attributed to protein aggregation through the formation of intra- and intermolecular inter-
actions [71,83]. In contrast, other research on protein digestibility in Bambara groundnuts
did not show this trend as a function of the cooking time. Therefore, interactions occurring
between proteins upon (thermal) processing and the consequences for digestibility should
be studied further, for example, using molecular techniques such as SEC-HPLC [84].

3.3.2. Proteolysis Kinetics of Whole Cooked Lentil Seeds (CL)

For whole cooked lentils, an increasing trend could be observed for the k, Cf, and vinitial
values with increasing the cooking time (Table 3), indicating a facilitation of proteolysis
upon thermal treatment. Next to the abovementioned effects (protein denaturation and
inactivation of antinutrients), the PSD upon mechanical disintegration could also play a
role here (Figure 2). Upon shorter cooking (i.e., 15 min), cell separation was less complete,
and more cell clusters remained present, which could, in turn, result in slower and less
complete protein digestion. In this context, delayed proteolysis was observed for large
navy bean flour particles (made up of cell clusters) and clusters of soybean cells [55,85].

For a short cooking time (15 min), all estimated modeling parameters were significantly
lower for CL compared to the corresponding ICC. In contrast, for a cooking time of 60 min,
no significant difference in k and vinitial could be discerned between the CL and ICC. As
mentioned for the case of starch digestion (Section 3.2), the PSD of whole lentils with
a cooking time of 60 min closely approached that of ICC. These findings support the
importance of the process-induced microstructure in determining protein digestibility.
Additionally, polyphenols (present in the seed coat of whole lentils) can slow protein
digestion by forming complexes with proteins [86] but can leach out during cooking, which
could lower their concentration upon longer cooking times [68].

It should be noted that, when using the OPA analysis, only the terminal amino groups
of free amino acids and di- and tripeptides were quantified. In vivo, these small peptides
can be readily absorbed through the intestinal epithelial wall. The applied method does
not make a distinction between amino acids and di- and tripeptides, and the obtained
results are difficult to relate directly to the degree of hydrolysis. More information could
therefore be obtained by hydrolyzing the TCA-soluble (small peptide) fraction, quantifying
the bioaccessible proteins in terms of the amino acid constituents [18,29]. Moreover, larger
soluble protein hydrolysates were not quantified by this method, though these could be
hydrolyzed by brush border enzymes in vivo. Quantification of these alternative fractions
led to different (i.e., higher) proteolysis extents, but overall, similar trends and differences
between samples could be discriminated [18,29,32]. Taking this into account, the quantifi-
cation of TCA-soluble bioaccessible proteins (NH2TCA) remains a useful, sensitive, and
high-throughput method of analysis [87]. It is a much-applied parameter for comparing
the protein digestibility of differently processed samples in general terms [29,32,54,55,88].
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3.4. Qualitative Evaluation of Amylolysis and Proteolysis Using Microscopic Observations

Changes occurring upon in vitro digestion were shown qualitatively using representa-
tive micrographs of pellets obtained upon centrifugation of the digests (cfr. Section 2.4.3)
and are shown for one sample (ICC with a cooking time of 30 min) in Figure 6. Starch
digestion was visualized upon staining of the lentil pellets with Lugol’s iodine reagent.
Polyiodide ions interact with amylose, forming a dark blue-to-black color. The higher the
starch polymerization degree, the higher this interaction and the more intense the formed
color [89]. At the start of the small intestinal phase, no amylolysis had occurred, and the
cells in the digestion pellets appeared dark. With increasing the digestion time, enzymatic
amylolysis caused a decrease in the starch polymerization degree, gradually causing a
shift in the observed color to lighter blue and even brown-yellowish colors. From these
micrographs, it could clearly be observed that cells remained intact upon small intestinal
digestion and were gradually radially emptied. This confirmed that amylolysis occurred
inside cotyledon cells upon the permeation of pancreatic amylase through the cell wall and
intracellular protein matrix, as reported for other pulse ICCs [24,27,33,60]. Interestingly,
upon long digestion times (t = 120 min), some cells still showed a dark color, indicating
these were little affected by pancreatic amylase, as reported previously for, e.g., Bambara
groundnuts [32].
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Figure 6. Representative micrographs of digested pellets of isolated cotyledon cells (with a cooking
time of 30 min) as a function of small intestinal digestion time. First row: gradual amylolysis was
visualized by staining with Lugol (dark blue). Second row: proteolysis was visualized using (green)
fluorescence microscopy (exposure time 500 ms). A magnification of 40× was utilized and the scale
bars represent a length of 200 µm.

Protein disappearance could be evaluated qualitatively as well by observing the
decrease in intrinsic fluorescence of aromatic amino acids present in the digestion pellets
upon digestion [46]. In these images, starch could be observed as dark spots surrounded
by the fluorescent protein matrix [47,54]. Similar protein disappearance patterns were
previously reported for other pulse types [5,7,32].

3.5. Linking Starch and Protein Digestion Kinetics

The (cytoplasmatic) protein matrix present inside pulse cotyledon cells has been
demonstrated to carry out a barrier effect hindering starch digestion but not (yet) for the
case of lentils [31,32,54,60]. Research on common beans and chickpeas revealed that gastric
(pepsin) proteolysis had a significant role facilitating small intestinal amylolysis in common
beans [29,54].

The correlation analysis revealed a positive correlation between the estimated rate
constant of amylolysis and proteolysis, as well as the final extent of starch and protein
digestion (data in Supplementary Materials Figure S4). For example, for the CL, the rate
constant of amylolysis and proteolysis showed a strong linear correlation (R2 of 0.95).
To further assess the correlation between these two hydrolytic processes, the starch and
protein digestion kinetic data were normalized (Figure 7). This data showed that proteolysis
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slightly preceded amylolysis due to pepsinolysis during the gastric phase, during which
starch remained unaffected. A strong (almost linear) relation was observed between starch
and protein digestion in the small intestinal phase for both the CL and ICC and for all
applied cooking times. It could thus be observed that amylolysis and proteolysis occurred
simultaneously, while amylolysis seemed to occur slightly faster than proteolysis. Similar
relations between starch and protein hydrolysis upon in vitro digestion have been reported
earlier for chickpeas [31]. Based on the literature stated above, this indeed indicates that
the proceeding protein hydrolysis could facilitate amylolysis.
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Figure 7. Normalized parameter estimates of readily bioaccessible protein (bright color) formation
and amylolysis (dark color) kinetics during the in vitro small intestinal digestion of isolated cotyledon
cells (ICC, left, dotted lines) and whole cooked lentils (CL, right, full lines) cooked for 15 (-/-), 30(-/-),
and 60 (-/-) minutes. The kinetic parameters for amylolysis and proteolysis were estimated by fitting
the experimental data to a fractional conversion model (Equation (3)). The inserted scatter shows the
correlation analysis of amylolysis and proteolysis, with the grey diagonal (-) indicating the case of
identically progressing proteolysis and amylolysis.
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For the ICC, no effect of the cooking time could be discerned on the increase of amylol-
ysis with proceeding proteolysis. This indicates that the way proteolysis affects amylolysis
in cotyledon cells is not likely dependent on the applied cooking time. Indeed, similar
amylolysis kinetics were observed for the ICC upon different cooking times (Section 3.2),
and small but significant differences in proteolysis kinetics could be discerned (Section 3.3).

In the future, the trends identified in this work for lentils and elsewhere for other
pulse types can be compared and correlated to their microstructural and compositional
properties to unravel the properties and mechanisms governing pulse digestion kinetics.

4. Conclusions

In this study, the effect of the cooking time within the palatable range (15, 30, and
60 min) on microstructural properties (tissue failure mode) and related to the in vitro
digestion functionality of cooked lentil seeds (CL) and cotyledon cells isolated thereof
(ICC) were evaluated. Regardless of cooking time, isolated cotyledon cells showed similar
amylolysis kinetics and small but significant (p < 0.05) differences in proteolysis kinetics.
In contrast, larger differences in the digestion kinetics of whole lentils could be obtained
as a function of the applied cooking time. In this work, the presence of higher fractions
of cell clusters upon mechanical disintegration were linked to (s)lower starch and protein
digestion kinetics for whole lentils with a shorter cooking time (i.e., 15 min) compared to
longer cooking times. The obtained digestion kinetics and correlation analysis indicated
that amylolysis and proteolysis occurred simultaneously, while amylolysis seemed to
occur slightly faster than proteolysis. Although the proceeding proteolysis might facilitate
amylolysis, the rate of amylolysis in CL and ICC seems to be mostly determined by
differences in the microstructural organization as a result of the applied cooking time.

Future research can be directed towards the comparison and correlation of (microstruc-
tural and compositional) pulse properties and their digestive behavior to better understand
the mechanisms and factors determining macronutrient digestion in pulses. Moreover, this
work focused solely on macronutrient release in the upper gastrointestinal tract, revealing
the presence of (encapsulated) starch and protein in the non-bioaccessible pellet fraction at
the end of small intestinal digestion. Research into the subsequent colonic fermentation of
lentils is an important next step.

The results of this work highlight that the digestive functionality of lentils depends
on the (intensity of the) applied processing steps. Depending on the targeted digestive
functionality, the applied cooking time can be adapted to either optimize the energy (starch)
utilization from the seeds (longer cooking times) or, in contrast, minimize the glycemic
index (shorter cooking times). As well as slowed amylolysis, based on the research on
other pulse types, the application of a short cooking time within the palatable range
could lead to improved mineral bioaccessibility as well [90,91], but research in this area
is currently missing.

The current insights can also be used to optimally exploit the nutritional potential
of lentils, for example, by formulating population-specific recommendations for lentil
preparation (at the household level). Additionally, this work highlighted the potential
of innovative (lentil) ingredients with (partial) cellular intactness for the development of
foods with steered digestive functionality, preferably using the whole pulse seeds rather
than isolated cellular fractions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12030525/s1: Figure S1: DSC thermograms obtained for
(A) lentils cooked for 15 or 60 min, and (B) lentil cells isolated from lentils cooked for 15, 30, or 60 min.
These thermograms indicate the complete gelatinization of starch due to the absence of a peak around
68–69 ◦C, with the peak around 55 ◦C representing the gelatinization of retrograded starch. The peak
around 83 ◦C is probably due to the formation of amylose–lipid complexes and/or residual protein
denaturation. Figure S2: Reproducibility of the experimental set-up used in this work evaluated for
in vitro amylolysis as a function of the small intestinal digestion time of whole cooked lentils cooked
for 30 min (N), as used in this work (see Figure 3a). (•) and (�) represent evaluations of lentils of

https://www.mdpi.com/article/10.3390/foods12030525/s1
https://www.mdpi.com/article/10.3390/foods12030525/s1
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the same batch independently cooked, mechanically disintegrated, and in vitro digested in duplicate
using separately characterized enzyme batches. Symbols represent experimental data. Lines represent
the data modeled using the fractional conversion model (Equation (3)). For the three independent
evaluations, the estimated model parameters are not significantly different (p < 0.05). Error bars
indicate the standard deviation of the analytical replicates. Table S1: Estimated kinetic parameters
(±standard error) of the fractional conversion model (Equation (3)) for the in vitro amylolysis of
whole lentil seeds (CL) cooked for 30 min. CL30rep1 and CL30rep2 indicate independent evaluations of
lentils of the same batch independently cooked, mechanically disintegrated, and in vitro digested in
duplicate using separately characterized enzyme batches. Estimated parameters are the rate constant
k and final extent of amylolysis Cf. Within a column, different letters in superscript indicate significant
differences between means based on 95% confidence intervals. The kinetic parameters do not differ
significantly over independent repetitions of the digestion experiments, proving the reproducibility
of the experimental set-up and digestion evaluations. Figure S3: Estimated model parameters for
the amylolysis of (•) whole cooked lentils (CL) and (•) isolated cotyledon cells (ICC) during small
intestinal digestion as a function of the applied cooking time: (a) reaction rate constant k (/min),
(b) initial reaction rate vi (%/min), and (c) final extent of hydrolysis Cf (%). Error bars indicate 95%
confidence intervals of the estimated parameters. Figure S4: Correlation between the estimated model
parameters for amylolysis and proteolysis of (•) whole cooked lentil seeds (CL) and (•) isolated
cotyledon cells (ICC) during small intestinal digestion: (a) reaction rate constant k (/min) and (b) final
extent of hydrolysis Cf (%). Error bars indicate 95% confidence intervals of the estimated parameters.
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