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Abstract: Alongside the increasing proofs of efficacy of miniaturized NIR instruments in food-related
scenarios, it is progressively growing the number of end-users, even incentivized by the low-cost of
the sensors. While attention is paid to the analytical protocol–from sampling to data collection, up to
the data processing, the importance of error investigation in raw data is generally underestimated.
Understanding the sources and the structure of uncertainty related to the raw data improves the
quality of measurements and suggests the correct planning of the experiments, as well as helps in
chemometric model development. The goal of chemometric modeling is to separate information
from noise; therefore, a description of the nature of measurement error structure is necessary. Among
the different approaches, we present the study of the Error Covariance Matrices (ECMs) and their
decomposition in a bilinear structure as a powerful method to study the main sources of variability
when using miniaturized NIR sensors in the actual way of use. Granulated and lump sugar samples
were chosen as the case study and analyzed with two miniaturized spectrometers working in the
NIR regions around 1350–2550 nm and 900–1750 nm, respectively, in dispersive reflectance mode.
Results show that having some insights on multivariate measurement errors associated with spectra
could be interesting in paving the way for several applications.

Keywords: food analysis; miniaturized-spectroscopy; multivariate error; near infrared; uncertainty

1. Introduction

In recent years, increasing proofs of the efficacy of miniaturized NIR instruments [1]
for various applications [2] in food-related scenarios are spreading over the literature.
Alongside it and incentivized by the low cost of the sensors and the easy-to-use interfaces
provided by the manufacturers, the number of end-users who could use guidance in choos-
ing the acquisition strategies that would better fit their needs is progressively growing [3].
Data collected with portable NIR sensors are often subject to multivariate data analysis.
While more effort is made in sampling properly and optimizing the analytical procedure,
including the final data treatment, fewer studies are directed to the analytical accuracy
and reliability of various miniaturized spectrometers available in the market [4]. However,
there is an even more overlooked aspect: the nature of the measurement errors, thus the
error characterizing the raw data. Multivariate data treatment aims to separate information
from noise: a description of the structure of errors taking the measurement errors into
account is thus necessary [5]. Understanding the sources and structure of uncertainty in
raw data could improve the quality of measurements by helping to find the actual causes
of the error itself [5,6]. In this context, the characterization of the spectroscopic errors and
the identification of the sources of variability that affect them could allow the extraction
of chemical information [7–10] (as it is already confirmed for chemical processes with the
estimation of measurement uncertainty [11,12]). Moreover, it could lead to the development

Foods 2023, 12, 493. https://doi.org/10.3390/foods12030493 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods12030493
https://doi.org/10.3390/foods12030493
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-2311-9333
https://orcid.org/0000-0002-9119-6752
https://orcid.org/0000-0002-2102-9713
https://orcid.org/0000-0001-7986-882X
https://doi.org/10.3390/foods12030493
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods12030493?type=check_update&version=3


Foods 2023, 12, 493 2 of 16

of ad hoc signal preprocessing [13,14] or to the better application of the existing ones [15].
Uncertainty is a permanent part of every measurement from different instruments and
methods [16], and the best thing to do with it is to ensure its monitoring and minimiza-
tion [6]. Indeed, as the development of quantitative linear models in analytical calibration
became ubiquitous, the knowledge of measurement uncertainty in experimental data
analysis showed up as needed for the diagnostics of models (e.g., the figure of merit [17]).

Nevertheless, the high importance of the uncertainty of the measurements is to be
highlighted in the monitoring of measurement systems, and it could provide several
helpful pieces of information about the experimental and instrumental conditions. The es-
timation of spectrometers’ recalibration times and the evaluation of model maintenance
(i.e., the calibration transfer strategies between different instruments and within the same
devices) [18–22] could undoubtedly benefit from the identification and characterization
of the sources of variance related to the analysis in different conditions. As a matter of
fact, if one would intend the instrument life as a process, and every session of analysis as a
steady state of the process, knowing the uncertainties at each stage represents a fundamen-
tal notion of taking them under control [23–26]. The identification of the reliable shape of
the error could undoubtedly help in monitoring the instrumental performances. Indeed,
if adequate care of the outliers is performed during the error estimation, the error of new
spectra could be considered as tolerable or not, paving the way for the monitoring and
maintenance of sensors.

This study has a twofold purpose. On one hand, it aims to understand and characterize
the uncertainty features related to the use in real conditions of two handheld miniaturized
NIR instruments working with different configurations and in different spectroscopic
ranges. On the other hand, it intends to propose a practical and feasible methodology
to investigate raw data uncertainties, usable even by those who are not experts in data
analysis. The scope of this work is to give an intuitive method to apply whose results are
easy to interpret through images and not numbers, which is generally what multivariate
techniques (wildly used explorative multivariate techniques) aim for.

While it is known and already studied that NIR reflectance spectra are dominated
by constant and multiplicative offset noise that have a strong interaction, which occurs
for benchtop and portable sensor signals [27], other sources of correlated noise are not so
investigated. For example, the influence of the timing between the background collection
or performing the measurements in different analytical sessions. This work also sheds light
on these contributions and offers a methodology to investigate their effects.

For this purpose, external dispersive reflectance spectra of sugar (sucrose) in different
forms (lump and granulated sugar) were acquired in replicates with two miniaturized
spectrometers working with different spectral ranges and optical configurations. This sam-
ple has been chosen due to its well-known composition and behavior and the possibility
of having different commercially available packaging, besides the food industry inter-
est, particularly in the confectionery field. The dominant structure in the variability of
replicates and the corresponding factors were studied through preliminary exploratory
analysis with Principal Component Analysis (PCA). Then, the method proposed to check
the measurement errors is the study of the Error Covariance Matrices (ECMs), estimated by
the experimental approach.

2. Materials and Methods
2.1. Samples and Spectrometers

Granulated and lump sugar was purchased from a local supermarket and maintained
at room temperature in a protected environment for the duration of the experiments.

Near-Infrared spectra were acquired by using two miniaturized spectrometers. The pa-
rameters reported below were used and are related to what producers declare.

• AvaSpec-Mini-NIR (Avantes, Apeldoorn, NL, The Netherlands) with a reflection fiber
probe (7 × 400 µm fiber, 2 m length, SMA term), with an integration time of 15 ms and
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the average scan set at 10. For each spectrum, 236 data points were obtained in the
range 972–1701 nm.

• NeoSpectra Scanner spectrometer (Si-Ware Systems, Menlo Park, CA, USA), at a time
scan of 5 s without data interpolation. 74 data points for each spectrum were acquired
in the range 1351–2559 nm. Data were acquired with direct contact analysis.

It is worth noting that there is no harmonization in providing descriptions of instru-
mental parameters and every manufacturer has their own way of doing it.

The possible influence on raw data measurement error due to the time elapsed between
background recording and the analytical session was investigated. Fifteen analytical
replicates consisting in sample repositioning over the reading window were collected
for each sample during six independent analytical sessions. Concerning the background,
two cases were investigated: spectral background acquired before the analysis of each
sample (thus every 15 replicates of the same sample) or at the beginning of each session of
analysis. In the last case, background was recorded, other spectra (not reported here) were
acquired to simulate the use of the spectrometer in an ordinary research facility for control
analysis for approximately 20 min, and then sugar samples spectra were recorded.

For each of the two background conditions, three independent sessions of analysis
were performed. A total of 90 experimental replicates with each instrument was acquired.

A scheme of the resulting dataset for each experiment is in Supplementary Figure S1.
Spectra were acquired with the providers’ app (NS-Scanner v.1.0.2) and software (AvaSoft
Version 8.12) and imported in Matlab R2021a (Mathworks) for further elaborations.

2.2. Methods

Mean absolute and relative standard deviation calculated as the mean over the spectra
of the standard deviation and relative standard deviation calculated for each wavelength
were evaluated as the first step to study the raw data. RMS statistics [28] usually studied
for reproducibility and the mean Signal to Noise ratio [29] was also calculated. The RMS
statistic is defined as the averaged root mean square of differences between the different
subsamples scanned at n wavelengths. The Signal to Noise ratio is defined as the ratio
between the average spectrum and the absolute standard deviation [30].

Exploratory data analysis was conducted to study the main information contained
in the spectra and to manage outlier detection. With these purposes, and to allow the
identification of trends and patterns in the data, related to known variabilities, Principal
Component Analysis (PCA) was used.

Multivariate measurement error was calculated and investigated as proposed by
Leger et al. [27]. As the first step, the error matrix was obtained as the difference between
each replicated spectrum and the mean of the replicates (considered the real value). Sub-
sequently, the variance-covariance (Σ–it is also called covariance matrix) and correlation
matrices were calculated and studied.

The error covariance matrix describes the correlation between the errors at the different
wavelengths. The diagonal of the matrix gives an idea about the errors’ uniformity in the
spectra (homoscedastic), while non-uniform values indicate that errors are not constant
along the spectra (heteroscedastic). The off-diagonal elements give information on the
covariance of the measurement errors. Where the covariance matrix gives the magnitude
of the relationship among the errors, the correlation matrix, derived from the covariance
matrix, indicates the underlying structure of this relationship, giving a piece of complemen-
tary information [5]. Even if these matrices could discourage final users from employing
this mathematical tool, the calculations are quite simple in any programming environment,
and the interpretation of their results is graphical and thus easy-to-see.

Since errors are often dominated by a bilinear structure, PCA can be used to deduce the
main structure by allowing simple interpretation related to the magnitude of the indepen-
dent error components. Each covariance matrix was so decomposed by bilinear modeling
through PCA to identify the main qualitative trends and to compare them at the experi-
mental level. PCA is proposed for this application, although there are sometimes better
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methods [31], because it is at the root of many chemometric approaches, well-known, feasi-
ble, and applicable by many scientists. Moreover, it has proved effective in investigating
NIR spectroscopic measurement errors [27]. PCA decomposition can provide a simplified
representation of the error covariance matrix. The number of factors required to reconstruct
the covariance matrix and their shape can help interpret the underlying errors [32].

The cumulative variance for the PCA on the error covariance matrix was compared
with the cumulative percentage variance for the original residual matrix (Ê) to assess the
contribution of uncorrelated errors. If results are similar the uncorrelated error is low,
the contrary is true if the differences are consistent. The original residual matrix (Ê) is
calculated by subtracting to each spectrum the mean of all spectra. The trends on the
diagonal of the covariance matrices and the correlations were explored and then resumed
as a K index [33]. This index is a redundancy index that could be used to resume the
correlation of a set of multivariate data. It ranges between 0 and 1 by assuming the lowest
value when all the variables are uncorrelated and the highest when they are correlated.
The imbedded correlation is the minimum correlation within the data and in here it is used
to quantify the correlation within the error matrices for different instruments.

Data elaboration and analysis were performed with PLS toolbox 8.9.1 (Eigenvector Inc.,
Manson, WA, USA) and in-house routines programmed in MATLAB 9.10.0.1602886-R2021a
(Mathworks Inc., Natick, MA, USA). The source code is available upon request [34].

3. Results and Discussion
3.1. Spectra

NIR spectral range (800–2500 nm) could be divided into three regions, whose borders
are not severely strict but at least useful for generalization. Bands resulting from electronic
transitions, higher-order overtones, and other sorts of combination modes arise in Region
I (800–1200 nm). Then, the first and second overtones of the XH (X = C, O, N) stretching
vibrations and various types of combination modes appear in Region II (1200–1800 nm).
Finally, Region III contains mainly bands attributed to the combination modes except
for the second overtone of the C=O stretching vibrational mode [35]. As a general con-
sideration, miniaturized spectrometers do not cover all the range of three NIR spectral
regions. AvaSpec-Mini-NIR covers a small part of Region I and almost the entire Region II.
NeoSpectra Scanner covers a part of Region II and Region III.

Spectra acquired in different ranges of spectral radiation and with different instru-
mental technologies (optical fiber or direct contact window) obtains distinct chemical and
physical information as it can be seen from Figure 1, where the raw spectra collected
with the two spectrometers used in this study are shown. It is worth knowing that the
instruments did not automatically correct the scattering effects for the samples. The repro-
ducibility and quality of spectra of the same samples with different compactness for the
two spectrometers are reported in Table 1. The descriptive statistics chosen were used to
have a first look into the data, before further investigations. These statistics are limited by
the lack of direct recognition of the reasons influencing spectra changes. However, even at a
first sight it is clear that the spectra collected by AvaSpec-Mini-NIR are less reproducible for
granulated sugar than for lump sugar. This observation was confirmed by the calculation
of absolute and relative standard deviation values, as well as RSM statistics and Signal to
Noise ratio.

By investigating the values obtained for NeoSpectra Scanner data, it is possible to
identify a lower standard deviation and a higher signal to noise ratio for granulated sugars
than for lumps, whereas a higher standard deviation was estimated for the RMS statistic of
sugar lumps than granulated sugar. The direct comparison of values reported in Table 1
for the two spectrometers showed how the trends between spectra of the type of sugar
samples are inverted and the values obtained for the AvaSpec-Mini-NIR spectra are higher
than those of the NeoSpectra. However, it is important to consider even the differences
in the absolute reflectance values registered. NeoSpectra signals were found with lower
reflection values than AvaSpec-Mini-NIR spectra.
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Figure 1. Spectra of sugar samples acquired with the miniaturized NIR spectrometers (90 acquisi-
tion with each instrument). (a) AvaSpec-Mini-NIR; (b) NeoSpectra Scanner. 

Table 1. Descriptive statistics of sugar spectra calculated on percentage reflectance. 

 
AvaSpec-Mini-NIR NeoSpectra Scanner 

Sugar Lump Granulated 
Sugar 

Sugar Lump Granulated 
Sugar 

Absolute stand-
ard deviation-

mean 
5.9 11.3 0.8 0.4 

Relative standard 
deviation (%)-

mean 
25.5 37.9 5.3 3.05 

RMS-mean 4.8 8.5 0.8 0.3 
RMS-standard 

deviation 
3.9 8.5 0.3 0.18 

Signal/Noise Ra-
tio-mean 

4.0 2.7 19.7 42.4 

Signal/Noise Ra-
tio–standard de-

viation 
0.6 0.4 5.4 19.8 

By investigating the values obtained for NeoSpectra Scanner data, it is possible to 
identify a lower standard deviation and a higher signal to noise ratio for granulated sug-
ars than for lumps, whereas a higher standard deviation was estimated for the RMS sta-
tistic of sugar lumps than granulated sugar. The direct comparison of values reported in 
Table 1 for the two spectrometers showed how the trends between spectra of the type of 
sugar samples are inverted and the values obtained for the AvaSpec-Mini-NIR spectra are 
higher than those of the NeoSpectra. However, it is important to consider even the differ-
ences in the absolute reflectance values registered. NeoSpectra signals were found with 
lower reflection values than AvaSpec-Mini-NIR spectra. 

Differences in the instrumental technologies (e.g., use of optical fiber, dimension of 
the spectral window, light source) strictly influence the path of light and, thus, the ob-
tained signal. The sensors can scan different sample areas depending on the technological 
features, and this could be a key point when dealing with inhomogeneous samples [35]. 
Moreover, the two spectrometers cover different wavelength ranges, thus spectral regions 
are intrinsically characterized by different energies, also correlated to different penetra-
tion ability in the samples. 
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strumentation [36], a strict dependence on the considered application [2] and the particle 

Figure 1. Spectra of sugar samples acquired with the miniaturized NIR spectrometers (90 acquisition
with each instrument). (a) AvaSpec-Mini-NIR; (b) NeoSpectra Scanner.

Table 1. Descriptive statistics of sugar spectra calculated on percentage reflectance.

AvaSpec-Mini-NIR NeoSpectra Scanner

Sugar Lump Granulated Sugar Sugar Lump Granulated Sugar

Absolute standard deviation-mean 5.9 11.3 0.8 0.4
Relative standard deviation (%)-mean 25.5 37.9 5.3 3.05

RMS-mean 4.8 8.5 0.8 0.3
RMS-standard deviation 3.9 8.5 0.3 0.18
Signal/Noise Ratio-mean 4.0 2.7 19.7 42.4

Signal/Noise Ratio–standard deviation 0.6 0.4 5.4 19.8

Differences in the instrumental technologies (e.g., use of optical fiber, dimension of the
spectral window, light source) strictly influence the path of light and, thus, the obtained
signal. The sensors can scan different sample areas depending on the technological features,
and this could be a key point when dealing with inhomogeneous samples [35]. Moreover,
the two spectrometers cover different wavelength ranges, thus spectral regions are intrinsi-
cally characterized by different energies, also correlated to different penetration ability in
the samples.

Consistently with what was already pointed out by the literature on this kind of
instrumentation [36], a strict dependence on the considered application [2] and the particle
size of the sample has to be considered [37,38]. In this sense, other interesting aspects arise
from the evaluation of the compactness of the samples, which influences the spectra at the
reproducibility level.

3.2. Exploratory Analysis
3.2.1. AvaSpec-Mini-NIR

A PCA model was carried out on raw mean-centered spectra. Outliers’ evaluation
was carried out based on the Hotelling’s T2-statistic and Q statistics. The former is a
generalization of Student’s t-statistic used in multivariate hypothesis testing to assess
unusual variation inside the model while the latter is used to identify samples that are
not explained by the model of principal components [39]. One granulated sugar spectrum
was identified as outlier on both T2 and Q. Looking at the contribution plot for both
directions (not shown here), intensity values higher than those of the mean samples and,
generally, more defined shapes were identified. The sample was then removed from
further elaboration.

Figure 2 shows score and loading plots labeled as a function of different factors.
Interestingly, all the samples regardless of their different compactness lied in the 95% ellipse
of the score plot. The tendency emerging from the labeling based on the type of sample in
the PC1 and PC2 space, explaining 99.15 % and 0.76 % of the data variance, respectively,
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manifests that the samples outside the ellipse are all granulated sugars. However, it is worth
noting that the percentage of outside data remains below 5% of the total spectra analyzed.
Regarding the other factors studied in the analysis (background timing and session of
analysis), there are no identifiable patterns in the scores space. The intrinsic variance of
the spectra of granulated sugar seems to be higher than that of the sugar lumps for this
instrument. A rationale for that could be ascribed to the analytical variability included
in the acquisition process: if with the lumps the presentation of the sample to the optical
fiber is more easily standardized, this is not true for the granulated sugar. A standardized
quantity of sample was presented to the spectrometer by incomplete flattening so that
each particle in the sample would present its own surface to the incident light. The results
obtained are in accordance with what emerged from previous works with diffuse reflectance
NIR spectrometers [37,40]: a strong influence on the spectra reproducibility depending on
the packing density and the light paths due to scattering effects emerged.
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Figure 2. PCA models on AvaSpec−Mini−NIR spectra. (a) Score plot PC1 vs. PC colored by samples;
(b) Line loading plot; (c) Score plot PC3 vs. PC4 colored by time of background; (d) Score plot PC1 vs.
PC4 colored by session and time of background where A and B in the legend stands for background
before each sample and before each session, respectively.

It is noteworthy how on the score plot of PC3 and PC4 (0.04% and 0.03% respectively)
it could be identified a trend related to the timing of background acquisition and when
plotting PC1 and PC4 (99.15% and 0.03% respectively) the sessions of analyses result slightly
clustered. Even if these interpretations are qualitative and, as expected, the differences
between samples are not sufficient to group them according to some secondary factors
of acquisition, the distribution of the samples in the PCA scores space could not be seen
as random.
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3.2.2. NeoSpectra Scanner

A PCA was performed on all the sugar spectra by only mean-centering the data.
In this case, the main variance in the spectra represented in the first PC of the scores is
related to the sugar form. The score and loading plots in Figure 3 show clear grouping
on PC1 and PC2 (95.32 and 3.94 % of variance, respectively) related to the compactness
of the sugar. As it could be emphasized from labeling and coloring based on background
timing and acquisition sessions, the distribution of sugar lump spectra could not be seen
as unsystematic for these factors. Besides the non-random distribution, it is not trivial to
find the reason in the loading plot. Indeed, loadings shapes are rather complex and they
represent several scattering contributions [35]: as, e.g., light path lengths, pack density,
and incidence angle.

Foods 2023, 12, 493 8 of 17 
 

 

 
Figure 3. PCA models on NeoSpectra Scanner spectra. (a) Score plot PC1 vs. PC2 colored by sam-
ples; (b) Line loading plot; (c) Score plot PC1 vs. PC2 colored by time of background; (d) Score plot 
PC1 vs. PC2 colored by session and time of background where A and B in the legend stands for 
background before each sample and before each session, respectively. 

The differences between this sensor and the previous one signals and PCA models 
could be explained by the different spectral range, the acquisition window dimensions 
and the technical configuration of the instruments. Of course, not only the range is an 
important factor, but also the acquisition system that for NeoSpectra consists of a window 
with a diameter of 2 cm that covers a larger sample surface than the optical fiber. Moreo-
ver, the acquisition with NeoSpectra assumed that the sample is close to the light source 
and the detector.  

3.3. Multivariate Measurement Error 
Multivariate measurement errors were investigated for the spectroscopic data, as 

common, describing them by means of the error covariance matrices (Σ). The errors were 
estimated by experimental replicates. Σ is one of the most complete ways to characterize 
errors in a vectorial measurement (as a spectrum can be intended). It is a symmetric matrix 
whose size is the number of data points measured by the sensor and it is scale-dependent, 
which means that differences in the scales of values are related to differences in the di-
mension of the error of original data. As previously mentioned, the diagonal elements 
represent the error variance for each wavelength and the off-diagonal values represent 
the covariance between wavelengths. In addition, it is possible to derive the correlation 

Figure 3. PCA models on NeoSpectra Scanner spectra. (a) Score plot PC1 vs. PC2 colored by samples;
(b) Line loading plot; (c) Score plot PC1 vs. PC2 colored by time of background; (d) Score plot PC1 vs.
PC2 colored by session and time of background where A and B in the legend stands for background
before each sample and before each session, respectively.

The differences between this sensor and the previous one signals and PCA models
could be explained by the different spectral range, the acquisition window dimensions
and the technical configuration of the instruments. Of course, not only the range is an
important factor, but also the acquisition system that for NeoSpectra consists of a window
with a diameter of 2 cm that covers a larger sample surface than the optical fiber. Moreover,
the acquisition with NeoSpectra assumed that the sample is close to the light source and
the detector.
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3.3. Multivariate Measurement Error

Multivariate measurement errors were investigated for the spectroscopic data, as common,
describing them by means of the error covariance matrices (Σ). The errors were estimated
by experimental replicates. Σ is one of the most complete ways to characterize errors in a
vectorial measurement (as a spectrum can be intended). It is a symmetric matrix whose
size is the number of data points measured by the sensor and it is scale-dependent, which
means that differences in the scales of values are related to differences in the dimension of
the error of original data. As previously mentioned, the diagonal elements represent the
error variance for each wavelength and the off-diagonal values represent the covariance
between wavelengths. In addition, it is possible to derive the correlation matrix whose
interpretation allows to obtain a scale-independent panoramic of the correlation between
channels of signal acquisition.

In this context, it is worth noting the emphasis needed on the definitions of replicates
and sample since depending on that different sources of variation should be considered
in the evaluation of the measurement error. According to the preliminary exploratory
investigation, Σs of the instruments were calculated considering the sugar forms as two
distinct samples for both sensors. As the “replicate”, the replacement replicate [5] as
intended in the literature was considered. When referring to “session replicates” the same
sample acquired during a single session of analysis is considered (15 replicates for each
session). Moreover, “background replicates” are to be intended as some session replicates
(three groups of session replicates for each sample) acquired under the same condition of
background (before each sample or at the begging of an analytical session). Covariance and
correlation matrices obtained for each type of replicates were calculated using the same
number of replicates and then compared.

3.3.1. AvaSpec−Mini−NIR

The interpretation of error covariance matrices allows the identification of the type
of noises and thus of the sources of errors. Additionally, the identification of the error
variance related to the different elements of a measurement vector (wavelength of spectra)
is permitted according to the heteroscedasticity typical for chemical measurement vectors.
To consider the comprehensive error that occurred during the experimentation, all the
sources of variances introduced by session replicates and/or background replicates were
incorporated by performing the calculation on the overall dataset divided on sample type
basis. Figure 4 shows the measurement error covariance and the correlation matrices
for the two sugar samples under investigation. As expected, and besides the univocal
chemical characteristics, the different packaging form of the samples has an influence on the
deviations of the signal from its real value and so, on its error. This was in congruence with
what was obtained from the preliminary signal studies regarding the standard deviations
and RMS statistic of the signals.

From a visual inspection of Figure 4a,b some preliminary considerations about the
noise structure could arise. Similar structures could be identified for the two samples. Offset
noise and multiplicative noise could be qualitatively identified in the calculated matrices
in agreement with what was found in the literature. These types of errors are inferred to
be the main ones responsible for the typical measurement error in the NIR region [15,27]
and are showed by the fact that the value of the error is all above 0 and it is proportional
to the wavelength, respectively. Shot noise could also be identified, as found in another
study involving this kind of instruments in powder samples analysis [15]. A possible
reason for the presence of this kind of error is related to the extensive electronic component
involved in generating the signal in the instruments. The main effect could be inferred
as the one related to the offset noise due to the almost flat correlation matrix. Besides
that, some regions systematically appear throughout the surface with smaller levels of
correlation proving the influences of other sources of error.
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Figure 4. Measurement error covariance and correlation matrix for sugar lump spectra (a) and
granulated sugar spectra (b) acquired with AvaSpec−Mini−NIR and for sugar lump spectra (c) and
granulated sugar spectra(d) acquired with NeoSpectra Scanner.

The inspection of the error covariance matrices for the two samples showed an inter-
esting difference in the absolute value of the errors even if the general pattern is almost the
same. This could be interpreted by looking at the different reproducibility of the light path
for the two samples ascribable to their intrinsic physico-chemical characteristics.

The presence and the type of errors were validated by applying PCA for decompos-
ing Σ and by comparing the structures and shapes in the loading plots (Supplementary
Figure S2) which are similar, at least for the first two PCs.

The following step was the calculation of the residuals matrix (Ê) that was obtained
by subtracting at each spectrum the mean of all the spectra in the dataset. Subsequently,
a PCA model was carried out with the aim of identifying significative components and
compare the variance values with those of the PCA on the error matrix. This could achieve
an idea of the magnitude of the independent errors. Three components could be chosen
for interpretation by joining the information of log(eigenvector) curve and cumulative
variance. The cumulative variance for the PCA performed on the error covariance matrix
is reported in Table 2, together with the cumulative percentage variance for the original
residuals matrix (Ê). The small differences between these values for the same samples
indicate that the error variance has a small contribution due to independent noise terms.
Moreover, the uncorrelated errors, when comparing the two samples, could be intended as
very similar in magnitude. As a results, it could be possible to state that spectra recorded
for the two sugar samples have different absolute intrinsic errors when using this sensor
and that the error is, mainly, but not only, related to the scattering conditions.

The error variance–covariance and the correlation matrices for the granulated sugar
were also calculated by including the outlier identified during the exploratory analysis
(not shown here). The shape of the overall structure did not change qualitatively, whereas
the absolute value of the covariance matrix resulted as higher as those without the outlier
sample. The errors previously described showed stable values when removing other
random replicates.
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Table 2. Percentage of variance accounted for in the original matrix of residuals as well as in the error
covariance matrix by PCA models of increasing complexity for AvaSpec-Mini-NIR data.

Sugar Lump Granulated Sugar

# of Principal
Components

% Variance in Original
Residuals (Ê)

% Variance in the Error
Covariance
Matrix (Σ)

% Variance in Original
Residuals (Ê)

% Variance in the Error
Covariance
Matrix (Σ)

1 98.464 99.993 99.343 99.998
2 1.404 0.007 0.559 0.002
3 0.074 0.000 0.049 0.000
4 0.032 0.000 0.024 0.000
5 0.012 0.000 0.017 0.000

Study of the Influences of Time of Background and Session

The following steps consisted in considering the error of the individual sugar samples
according to the background timing and then to the session. Considering the two types
of background replicates (A–background acquired before each sample and B–background
acquired at the beginning of the session) the inspection of the diagonal of the covariance ma-
trices was performed (Figure 5a). At first glance, curves show similar shape with different
magnitude, and they seem similar to the curve obtained using samples in all background
and analytical session conditions (Supplementary Figure S3). The diagonal values are
not constant over the wavelengths, and they vary in accordance with the magnitude of
the spectra, indicating non-homoscedastic noise patterns that could be linked to the noise
structured for shot noise and multiplicative noise. An interesting result appeared to be
how the more standardized compactness of sugar lumps obtain qualitatively the same
error structure independently from the background timing, whereas this is not true for the
granulated sugar. In the latter case, the background acquisition before each sample seems
to lead to a lower overall error.

The error covariance obtained from the multivariate error of the session replicates is
reported in Figure 6a,b, where the diagonals of the matrices are reported. Each session
is identified with a number from 1 to 3 and A and B are used to flag the background
conditions. Expectedly, as emerged for the background replicates and depending on the
sample, the absolute values are different, being lower on average for sugar lumps than for
granulated sugars. As for the shapes of the diagonals, the behavior of typical NIR error is
always identifiable but the absolute values are different for different sessions within the
same sample. No remarkable differences could be observed also with the diagonal obtained
using samples belonging to all the sessions. In addition, even if the main contributions
could be inferred as the same, more designated shapes are visible whereas the absolute
value became bigger. The increasing resolution of the error covariance could not be seen as
characteristic of only one spectral region as for the error is not ascribable to specific peaks.
In addition, the discrepancy in values among the sessions is bigger when considering
granulated sugar than for sugar lumps.

The calculation of the correlation K index on the error data matrix (n replicates × p
wavelength) was used to evaluate the total quantity of correlation contained in a data.
An interesting aspect to consider is that in this case the number of p is greater than the
number of n, so the rank of the correlation matrix is n. According to Todeschini et al. [33]
the minimum correlation within the data (15 replicates × 236 data points) is 0.94. The K
value related to the different sessions were calculated. As already emerged from the
visual inspection of the correlation matrix, the correlation in these sets of data approaches
to 1 (K index of 0.99 and 1 were obtained). Unexpected trends over the sessions are non-
identifiable due to the small variations that occur at the third decimal. There is no difference
in the K correlation index error for the granulated sugar and the sugar lumps. This help to
state that the magnitude of independent error is very small in this kind of data.
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3.3.2. NeoSpectra Scanner

The same procedures followed for the AvaSpec-Mini-NIR spectra were applied to
the NeoSpectra Scanner data. The errors and the corresponding characterization through
covariance and correlation matrices were obtained by dividing the dataset according to the
sample type and by using all the replicates for the estimation (90 replicates × sample).

In Figure 4c,d the measurement error covariance and correlation matrices for the two
samples under investigation are reported. As it can be seen, the packaging form of the
samples to the spectrometer influenced the error in the measurements in an opposite way
compared to the previously commented spectrometer. By visual inspecting Figure 4, some
considerations could be achieved about noise. The expected contributions were related to
the offset noise, shot noise, and multiplicative noise, and their patterns can be graphically
identifiable in both of the calculated matrices.

The absolute covariance values were lower for granulated sugar spectra than for the
sugar lump ones, even if the general shapes are the same. PCA was used to decompose Σ

and evaluate the presence and the type of errors and to compare the structures and shapes
in the loading plots (Supplementary Figure S4). Similar behavior was proven.

The cumulative variance for the PCA performed on the error covariance matrix is
reported in Table 3, together with the cumulative percentage variance for the original
residual matrix (Ê). The differences between these values for the sugar lump spectra indicate
that the error variance has a small contribution due to independent noise terms, bigger than
in the case of AvaSpec-Mini-NIR spectra. Observing the values of variance calculated for
the granulated sugar it is worth noting that the variance in the residuals is lower (of about
10%) than that of the error covariance matrix. For the latter, the uncorrelated errors could
be seen as a more consistent contribution. Spectra acquired with NeoSpectra scanner were
identified as part of two groups from the exploratory analysis and the results here reported
show how the measure of the samples have even different absolute error associated.

Table 3. Percentage of variance accounted for in the original matrix of residuals as well as in the error
covariance matrix by PCA models of increasing complexity for NeoSpectra Scanner data.

Sugar Lump Granulated Sugar

# of
Principal

Components

% Variance in
Original

Residuals (Ê)

% Variance in the Error
Covariance
Matrix (Σ)

% Variance in Original
Residuals (Ê)

% Variance in the Error
Covariance
Matrix (Σ)

1 95.38 99.667 87.048 98.464
2 2.407 0.312 5.043 1.404
3 0.822 0.014 2.842 0.074
4 0.364 0.006 1.540 0.032
5 0.224 0.001 0.788 0.034

Study of the Influences of Time of Background and Session

Measurement errors of the two sugar samples were calculated according to the back-
ground timing and then to the sessions. The diagonals of the covariance matrices (Figure 5b)
were investigated by considering two types of background replicates (A–background ac-
quired before each sample and B–background acquired at the begging of the session).
As expected, the change is in accordance with the magnitude of the spectra, indicating
non-homoscedastic noise patterns (as occurred in the curve calculated on the whole data
set–Supplementary Figure S3). It is interesting to note how, even if with different absolute
values and specific shapes, the overall error structures obtained are not really mismatched
with the ones from the other sensor. At shorter wavelengths, there is the maximum percent-
age of reflectance and the maximum covariance in the error, whereas at longer wavelengths
the covariance in the error structure decreases according to the mean spectra. A noticeable
characteristic of the error covariance could be that the more standardized geometrical
setting between sample and spectrometer, possible for the sugar lumps, does not allow
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to obtain an error structure independent from the time at which the backgrounds were
acquired, whereas this seems the result for granulated sugar. This result highlights how the
differences in the spectral range are important when evaluating miniaturized NIR sensors.
Another relevant aspect of extreme importance is the size of the spectral window in relation
to the heterogeneity or homogeneity of the sample. Indeed, in the case of NeoSpectra
Scanner, the presentation to the spectrometer of the sugar lumps did not allow to cover the
entire window influencing the error sources in the procedure by showing that the choice of
miniaturized instruments must rely also on this aspect. The reproducibility over replicates
was obtained by placing the lumps always with the same orientation and alignment to the
detector, which is placed in the middle of the lamps. Despite that, the reproducibility of the
spectra could have been partially influenced by the laboratory light.

The error covariance obtained for the multivariate error of the session replicates is
reported in Figure 6c,d, where the diagonals of the matrices are shown. Each session is
identified with a number and A and B are used to flag the background conditions. Contrary
to what can be seen when calculating the error on the overall spectra of each sample,
when dividing the replicates according to the sessions, the absolute values are on average
lower for sugar lumps than for granulated sugar. These results could suggest that the
reason for the overall outcome is the combination of sources of error from different sessions.
As for the shapes of the diagonals, even if the general NIR tendency is identifiable for
both the samples (and not remarkably different from the one obtained on the whole data
set–Supplementary Figure S3), the variance between wavelengths for some sessions of
sugar lump spectra results low on every channel of acquisition. That is the case for Session
1A and 2A whose noise contributions could be inferred as a low effect of offset noise and
uncorrelated error.

The calculation of the correlation K index on the error data matrix (n replicates × p
wavelength) was used to evaluate the total quantity of correlation contained in the data.
The minimum imbedded correlation within the data acquired within each session (15 repli-
cates × 74 data points) is 0.81.

The K value related to the different sessions were calculated and are reported in
Table 4. The visual inspection of the error correlation matrices evidences the contribution
of more than only offset noise for both the samples. No evident trends over the session
are identifiable. K correlation index errors for granulated sugar were found on average
bigger than those of sugar lumps indicating that for the sugar lump spectra the error in the
correlation matrix was more normal distributed.

Table 4. K correlation indexes for the error matrix of NeoSpectra Scanner data. A indicate background
acquired before each sample. B indicate background acquired before each session of analysis.

Imbedded Correlation Sample
Background A Background B

Session 1 Session 2 Session 3 Session 1 Session 2 Session 3

0.81
Sugar lump 0.85 0.83 0.91 0.87 0.89 0.89
Granulated

sugar 0.93 0.93 0.94 0.94 0.94 0.93

The calculation of the imbedded correlation showed how the error correlation matrix
depends on the number of channels acquired with the spectrometers. It is of general
knowledge that the signal acquisition is mostly an analogic process with a following data
transmission and discretization to turn the signal digital and readable by smartphones
and computers [41]. During this process, not only the sampling of the signal is carried
out, but also the sampling of the noise. The spectrometers under investigation allow the
acquisition with distinct parameters, including the possibility for a higher number of data
points and interpolation options to return smooth signals. The technological development
of this miniaturized systems and the evaluation of the different acquisition conditions are
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strictly related to frequencies and resolution of spectra that could influence the quality of
the spectra in terms of noise.

In addition, these parameters, as well as the data transmission process (through
cable for the AvaSpec Mini-NIR and Bluetooth for the NeoSpectra Scanner), could be
of importance because related to the time of data management and also influencing the
associate estimated measurement error.

The fact that different results are obtained by including different sources of variability
in the calculation proved the importance of the definition of replicate, in accordance with
the previous literature [5]. In addition, it could suggest that estimating the error relative to
the different samples could be of interest if the result has to be used in further calculations
to modify the algorithm [42] or determine uncertainty of models [17,43]. The results set
the scene for further works that could include the investigation and evaluation of other
methods for the estimation of covariance matrices of the measurement errors [44] and the
comparison with covariance matrices constructed [45] by incorporating known sources of
errors. Another interesting aspect could deal with the propagation of error when applying
signal filters (as studied for the Kalman Filter [46]) or spectra preprocessing [47].

4. Concluding Remarks

In this research, several goals were achieved for the use of miniaturized spectrometers
when analyzing a food sample of worldwide interest, sugar, in the lump and granulated
form. Good evidence emerged from this study: performing the background at the be-
ginning of each session or before every sample and doing the measurements in different
analytical sessions influenced the entity of the measurement error but not the type of error
substantially. This means that standard preprocessing methods employed in multivari-
ate analysis can be suitable for preparing the data for multivariate modeling. Anyway,
the influence of these variability sources on the measurement error depends on the sample
and sensor characteristics. Thus, an evaluation of measurements error should be done
before the optimization of every analytical method. As emerged from the literature but
also from this work, miniaturized NIR spectrometers are powerful analytical tools with
potentialities to individuate physical and chemical features in a huge variety of samples.
However, they are still relatively unexplored, and this work lays the foundations for a new
way of employing them, starting from the study of raw data measurements error.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods12030493/s1. Figure S1: Dataset obtained for each instrument;
Figure S2: Loadings plot of the PCA model calculated for AvaSpec-Mini Error Covariance Matrix.
(a) Sugar lump samples; (b) Granulated sugar samples; Figure S3: Diagonal of the Covariance
Matrices calculated over all replicates spectra collect with AvaSpec-Mini-NIR on sugar lump samples
(a) and granulated sugar (b) and with NeoSpectra Scanner on sugar lump samples (c) and granulated
sugar (d); Figure S4: Loadings plot of the PCA model calculated for NeoSpectra Scanner Error
Covariance Matrix. (a) Sugar lump samples; (b) Granulated sugar samples.
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