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Abstract: Alzheimer’s disease (AD) is thought to be caused by the deposition of amyloid-β (Aβ) in
the brain. Aβ begins to aggregate approximately 20 years before the expression of its symptoms.
Previously, we developed a microliter-scale high-throughput screening (MSHTS) system for inhibitors
against Aβ aggregation using quantum dot nanoprobes. Using this system, we also found that
plants in the Lamiaceae, particularly Perilla frutescens var. crispa, have high activity. The cultivation
environment has the potential to enhance Aβ aggregation inhibitory activity in plants by changing
their metabolism. Here, we report on cultivation factors that affected the activity of P. frutescens
var. crispa cultivated in three fields under different cultivation conditions. The results revealed that
the activity of P. frutescens var. crispa harvested just before flowering was highest. Interestingly, the
activity of wind-shielded plants that were cultivated to prevent exposure to wind, was reduced to
1/5th of plants just before flowering. Furthermore, activity just before flowering increased following
appropriate nitrogen fertilization and at least one week of drying from the day before harvest. In
addition, we confirmed that the P. frutescens var. crispa leaf extracts suppressed Aβ-induced toxicity
in nerve growth factor-differentiated PC12 cells. In this study, we demonstrated that flowering, wind,
soil water content, and soil nitrogen content affected Aβ aggregation inhibitory activity, necessary to
suppress Aβ neurotoxicity, in P. frutescens var. crispa extracts. This study provides practical cultivation
methods for P. frutescens var. crispa with high Aβ aggregation inhibitory activity for the prevention
of AD.

Keywords: Alzheimer’s disease; amyloid-β; quantum dot; Perilla frutescens var. crispa; cultivation
method; fertilization

1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia and an acute medical
issue due to the increasing number of AD patients worldwide. It is estimated that the
number of people with dementia will increase from 57.4 million worldwide in 2019 to
152.8 million cases in 2050 [1]. Furthermore, the value of a statistical life-based global
economic burden of Alzheimer’s disease and related dementias was estimated at USD
2.8 trillion in 2019 and was projected to increase to USD 16.9 trillion in 2050 [2]. AD
progressively causes memory loss and cognitive dysfunction, eventually requiring full-time
care [3]. Most studies target amyloid-β (Aβ) peptides that mainly consist of 40 or 42 amino
residues [4]. Aβ grows into oligomers, fibrils, and aggregates and is observed as plaques in
a patient’s brain [5]. Thus, Aβ aggregation is an initiating factor in AD that leads to the
death of neurons [6,7]. Therefore, many studies have been performed aimed at decreasing
Aβ aggregation [8].

Nevertheless, most clinical trials targeting AD patients failed [9]. These results might
stem from Aβ aggregation that begins about two decades before the onset of symptoms [10],
suggesting that treatment for patients in whom AD has developed is too late. Recently, a
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few clinical trials achieved better results using a treatment based on anti-Aβ antibodies
in patients with mild cognitive impairment (MCI) and mild AD. Primarily, the US Food
and Drug Administration approved aducanumab, which is a therapeutic medicine based
on anti-Aβ fibril antibodies, via an accelerated approval pathway [11]. The treatment
of patients with MCI and mild AD with aducanumab showed the removal of Aβ in the
brain and reduced AD pathology [12]. In addition, treatment with lecanemab, an anti-Aβ

protofibril antibody, showed an even greater reduction in cognitive decline in patients
with MCI and mild AD [13]. These achievements support the concept that it is important
to inhibit Aβ aggregation before the onset of AD symptoms. However, treatments with
antibodies are very expensive [14] and are thus not accessible to most people.

Even if Aβ aggregates are removed after the neural network is severely damaged, it is
expected that the network will not recover to its initial state due to its irreversibility. We
believe that it is important to prevent neural networks from being damaged. In addition
to treatment by removing Aβ aggregation with anti-Aβ antibody drugs, we suggest the
importance of adding a preventive effect against Aβ aggregation to the daily diet. Since
food enables us to take any substance affordably and permanently, we assume that food
with Aβ aggregation inhibitory activity contributes greatly to AD prevention. Previously,
we developed a microliter-scale high-throughput screening (MSHTS) system to evaluate
Aβ42 aggregation inhibitors in vitro by using quantum dot (QD) nanoprobes [15]. The
MSHTS system enables high-throughput screening and the accurate evaluation of samples,
such as foods containing various contaminants [16–19]. Generally, atomic force microscopy
and electron microscopy (EM) have been used to directly observe Aβ fibrils [20]. In
particular, the latest cryo-EM provides high-resolution images of the structure of amyloid
fibrils [21]. Although these methods are powerful tools for observing the structure of
fibrils, they are not suited for quantification and high-throughput screening. Generally,
Aβ aggregation is quantified using thioflavin T (ThT) [22], which measures the amount
of fluorescence bound to the β-sheet. However, the ThT assay cannot accurately evaluate
activity in contaminated samples because fluorescence is inhibited by many dyes in the
samples [16]. In contrast, the MSHTS system allows the accurate evaluation of total Aβ

inhibitory activity in various samples, such as crude extracts.
Using the MSHTS system, we have already evaluated the Aβ aggregation inhibitory

activity of commercial dressings, which are processed foods, and reported those findings
in this journal [16]. Furthermore, we applied this system to food plants and found that one
family in particular, the Lamiaceae, displayed high activity [15]. In addition, we attempted
to isolate active compounds from summer savory, a member of the Lamiaceae, revealing
that the main active compound was rosmarinic acid (RA), a polyphenol. Subsequently,
we found that Aβ aggregation inhibitory activity in leaf extracts from Perilla frutescens var.
crispa was higher than from spearmint (Mentha spicata), and had the highest activity among
all tested members of the Lamiaceae [15]. Presumably, this high activity derives from its
rich polyphenol content [23–25]. However, we preliminarily confirmed that the activity
differed, depending on harvest time and cultivation practice, even within P. frutescens var.
crispa. Even in the same plants, the content of polyphenols changed due to the growth cycle
and cultivation conditions, such as fertilization [26–28], including in perilla [29–31].

In this study, we investigated the cultivation factors that affected the Aβ aggregation
inhibitory activity of P. frutescens var. crispa. We evaluate total activity in extracts using the
automated MSHTS system, which allows for high-throughput screening [18]. While some
papers have indicated cultivation methods for P. frutescens var. crispa to increase the content
of polyphenols and other promising bioactive compounds [28,30], it is unclear whether
those contents would contribute to total Aβ aggregation inhibitory activity. Here, we
evaluated the activity of P. frutescens var. crispa cultivated in different fields and fertilization
conditions. Consequently, we found that flowering, wind, nitrogen fertilization, and water
content affected the activity of P. frutescens var. crispa. This study provides practical
cultivation methods for enhancing Aβ aggregation inhibitory activity.
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2. Materials and Methods
2.1. Materials

Human Aβ42 (4349-v, Peptide Institute Inc., Osaka, Japan) and Cys-conjugated Aβ40
(23519, Anaspec Inc., Fremont, CA, USA) were purchased commercially. Thiazolyl blue
tetrazolium bromide (MTT)(M5655) and poly-D-lysine were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Nerve growth factor (NGF) was purchased from Cosmo Bio (Toyo,
Japan).

2.2. Preparation of QDAβ Nanoprobe

The QDAβ nanoprobe was prepared using QD-PEG-NH2 (QdotTM 605 ITKTM Amino
(PEG) Quantum dot; Q21501MP, Waltham, MA, USA, Thermo Fisher Scientific) according
to our previous reports [15,18,32]. QDAβ concentration was determined by comparing
absorbance at 350 nm to unlabeled QD-PEG-NH2.

2.3. Evaluation Using the Automated MSHTS System

The half maximal effective concentration (EC50) values of all plant extracts were
determined by a modified automated MSHTS system, as was described in our previous
report [18]. Specifically, mixed solutions were prepared with six concentrations of extracts,
25 nM QDAβ, and 25 µM Aβ42 in PBS containing 5% ethanol (EtOH) and 2.5% dimethyl
sulfoxide (DMSO) and incubated in a 1536-well plate (782096, Greiner, Kremsmünster,
Austria) at 37 ◦C for 24 h. The images of each well were captured pre- and post-incubation
by an inverted fluorescence microscope (see Section 2.4.). Standard deviation (SD) values
of the central images of the region of interest (432 × 432 pixels) in each well were measured
by the General Analysis program of NIS-Elements (Nikon, Tokyo, Japan). The images on
the highest extract concentration, including insoluble substances, were eliminated because
these affect SD values and disrupt accurate evaluation. EC50 was estimated from the SD
values by Prism software (GraphPad software, San Diego, CA, USA) using an EC50 shift by
global fitting (asymmetric sigmoidal, five-parameter logistic) [15].

2.4. Fluorescence Microscopy

Fluorescence images in the 1536-well plate were observed by an inverted fluorescence
microscope system (ECLIPSE Ti-E, Nikon) equipped with a color CMOS camera (DS-Ri2,
Nikon). QD fluorescence was imaged using a 4× objective lens (MRD00045, Nikon) and a
TRITC filter set (TRITC- A-Basic-NTE, Semrock, NY, USA).

2.5. MTT Assay

Rat adrenal pheochromocytoma, PC12 cells, were obtained from the JCRB Cell Bank
(Osaka, Japan). PC12 cells were maintained in dulbecco’s modified eagle medium supple-
mented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, and 100µg/mL strep-
tomycin, as was described in our previous report [33]. Cells were cultured at 37 ◦C in
humidified air containing 5% CO2 with CO2 incubator. PC12 cells were plated at 1.2 × 104

cells in poly-D-lysine-coated 96-well plates (3860-096, AGC TECHNO GLASS, Shizuoka,
Japan) and incubated for 24 h. After incubation, cells were treated with 50 ng/mL NGF for
24 h for neuronal differentiation. After this step, cells were cultured in a medium without
FBS but containing 50 ng/mL NGF. Cells were treated with extracts and 25 µM Aβ42 for 24 h
by replacing the medium with 1% EtOH/1% DMSO. Cells were then treated with 0.5 mM
MTT for 4 h by medium replacement in reference to the MTT assay [34]. After incubation,
the supernatant of each well was removed, and formazan crystals were dissolved in a 10%
SDS/0.01 M HCl solution. After overnight incubation, absorbance (570 nm) was measured
in each well with (SH-9000Lab, CORONA ELECTRIC, Ibaraki, Japan). Cell viability was
calculated as a percentage relative to cells treated with the control medium (1% EtOH/1%
DMSO).
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2.6. Cultivation of Perilla frutescens var. crispa

P. frutescens var. crispa seedlings were purchased from AW Farm Chitose Co., Ltd.
(Hokkaido, Japan). Seeds were planted around May and harvested regularly. In 2018,
plants were cultivated in Chitose (42◦53′24.5” N 141◦41′41.5” E), Watenbetsu (42◦58′08.8” N
144◦00′02.9” E), and Tomaribetsu (43◦01′48.1” N 144◦07′55.2” E) in Hokkaido, and in 2019,
on the field on a college campus (42◦22′38.1” N 141◦02′12.1” E). In 2020, plants were
cultivated in a plastic greenhouse on a college campus. In 2018, meteorological data was
measured with meteorological equipment installed in each field. In 2019 and 2020, soil
from the plot was sampled at the same time as the harvest from the field on the college
campus. The water content of the soil was calculated from pre- and post-drying weights.

2.7. Preparation of Extracts

Extracts were prepared by extraction with 5 mL of 95% EtOH per gram of fresh leaf
weight at room temperature for seven days in 2018. In 2019/2020, perilla leaf extracts were
prepared by extraction for one day to prepare many samples efficiently. After the EtOH
solution was filtered and concentrated in vacuo, samples were prepared as a 10 mg/mL
extract with EtOH.

2.8. Statistical Analysis

All statistical analyses were performed in Excel (version 16; Microsoft, Redmond, WA,
USA). A two-tailed Welch’s t-test was performed for comparisons between groups. Soil
water content and EC50 were evaluated by linear regression using least squares in Excel.
p < 0.05 was considered statistically significant (*: p < 0.05, **: p < 0.01, ***: p < 0.005).

3. Results
3.1. Principle of the MSHTS System

We evaluated more than a hundred samples of P. frutescens var. crispa extracts for Aβ

aggregation inhibitory activity using the automated MSHTS System [18] (representative;
Figure 1B,C). This system’s uniqueness is in its use of QDs, which are nanoscale crystals
with an overwhelmingly non-photobleaching property (Figure 1A). After incubation of a
mixture of the fluorescent probe QDAβ and Aβ42, QDAβ is incorporated into Aβ42 fibrils.
From the fluorescence images of the mixtures, the variation in brightness was measured
(Figure 1B) as an SD value, which can be considered as the progress of aggregation. Aβ

aggregation inhibitory activity was evaluated by developing an inhibition curve using SD
values (Figure 1C) and calculating the EC50. Lower EC50 values indicate higher activity. If
the inhibition curve did not reach 50% of the percentage of SD values, then a sample was
determined to be not detectable (ND).
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Figure 1. Principle of the MSHTS system for evaluating Aβ42 aggregation inhibitory activity. (A) 
QDAβ is a fluorescent probe prepared by cross-linking Cys-Aβ40 and QD605 via amino polyethylene 
glycol (PEG)(top). QDAβ co-aggregates with unlabeled Aβ42, allowing Aβ42 fibrils to be visualized 
by fluorescence microscopy (bottom). (B,C) Representative analysis of Aβ aggregation inhibitory 
activity of Perilla frutescens var. crispa leaf extract. Mixed solutions of 25 μM Aβ42 and extract were 
added to 1536-well plates and imaged by fluorescence microscopy before and after incubation at 37 
°C for 24 h. (B) The fluorescence images were trimmed to 432 x 432 pixels, and the SD values, mean-
ing the variation in brightness, were measured. (C) The inhibition curve was drawn from SD values, 
and EC50 was calculated using Prism GraphPad software. 
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pan, in 2018 to investigate regional differences in Aβ aggregation inhibitory activity and 
installed meteorological equipment in each field in late August (Figure 2). Plants were 
harvested on three dates (24 and 25 July, 28 and 29 August, and 5 and 10 October). Extracts 
from leaves, stems, and roots were compared in late July. Leaf extracts showed high ac-
tivity in all fields, while stem extracts in Tomaribetsu and root extracts in Chitose and 
Watenbetsu showed no activity (i.e., ND) (Figure 3A). In Chitose and Watenbetsu, roots 
showed no activity, and leaves showed significantly higher activity than stems. Therefore, 
we compared the activity of extracts of leaves harvested on the three dates (Figure 3B); 
the extracts from plants growing in Chitose and Tomaribetsu fields showed higher activ-
ity on October 5 and 10 than on July 24 and 25. Furthermore, we compared the activity of 
leaves harvested on October 5 and 10 in plants growing in different fields: the highest 
activity was observed in extracts from plants grown in the Chitose field, followed by the 
Tomaribetsu and Watenbetsu fields. 

Figure 1. Principle of the MSHTS system for evaluating Aβ42 aggregation inhibitory activity.
(A) QDAβ is a fluorescent probe prepared by cross-linking Cys-Aβ40 and QD605 via amino polyethy-
lene glycol (PEG)(top). QDAβ co-aggregates with unlabeled Aβ42, allowing Aβ42 fibrils to be
visualized by fluorescence microscopy (bottom). (B,C) Representative analysis of Aβ aggregation
inhibitory activity of Perilla frutescens var. crispa leaf extract. Mixed solutions of 25 µM Aβ42 and
extract were added to 1536-well plates and imaged by fluorescence microscopy before and after
incubation at 37 ◦C for 24 h. (B) The fluorescence images were trimmed to 432 x 432 pixels, and the
SD values, meaning the variation in brightness, were measured. (C) The inhibition curve was drawn
from SD values, and EC50 was calculated using Prism GraphPad software.

3.2. Aβ Aggregation Inhibitory Activity of Perilla frutescens var. crispa and Meteorological Data
in Three Fields

At first, we cultivated P. frutescens var. crispa plants in three fields in Hokkaido, Japan,
in 2018 to investigate regional differences in Aβ aggregation inhibitory activity and installed
meteorological equipment in each field in late August (Figure 2). Plants were harvested on
three dates (24 and 25 July, 28 and 29 August, and 5 and 10 October). Extracts from leaves,
stems, and roots were compared in late July. Leaf extracts showed high activity in all fields,
while stem extracts in Tomaribetsu and root extracts in Chitose and Watenbetsu showed no
activity (i.e., ND) (Figure 3A). In Chitose and Watenbetsu, roots showed no activity, and
leaves showed significantly higher activity than stems. Therefore, we compared the activity
of extracts of leaves harvested on the three dates (Figure 3B); the extracts from plants
growing in Chitose and Tomaribetsu fields showed higher activity on October 5 and 10 than
on July 24 and 25. Furthermore, we compared the activity of leaves harvested on October 5
and 10 in plants growing in different fields: the highest activity was observed in extracts
from plants grown in the Chitose field, followed by the Tomaribetsu and Watenbetsu fields.
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Figure 2. Cultivation of Perilla frutescens var. crispa in four fields in Hokkaido. In 2018, plants
were cultivated in three fields (Chitose, Watenbetsu, and Tomaribetsu) in Hokkaido, Japan, where
meteorological equipment was installed. In 2019 and 2020, plants were cultivated under multiple
conditions in only Muroran.
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Figure 3. Aβ aggregation inhibitory activity of Perilla frutescens var. crispa leaves differed depending
on fields and harvest time. (A) EC50 in leaf, stem, and root extracts. Plants were cultivated in three
fields in 2018 and harvested in late July. (B) The activity of Perilla frutescens var. crispa leaves was
harvested in late July, late August, and early October. The activity was determined to be not detectable
(ND) in samples if the inhibitory curve did not reach 50% of the percentage of SD values. Data are
represented as mean ± SD (n = 4 separate experiments). Comparison of EC50 values (***: p < 0.005,
Welch’s t-test).

We also investigated the correlation between meteorological data and Aβ aggregation
inhibitory activity. Meteorological data from August 24 to October 4 were acquired from
each field and were plotted as a daily average (Figure 4). These data appear to show that
low soil water content (Figure 4G) was correlated with the above-mentioned plot-related
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rank in activity (Chitose < Tomaribetsu < Watenbetsu). Wind speed was highest at Chitose
(Figure 4E,F), similar to the activity trend. Thus, we speculated that wind and water content
affect Aβ aggregation inhibitory activity.
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Figure 4. Wind speed and soil water content correlate with regional differences in Aβ aggregation
inhibition activity. Meteorological data was measured in three fields from August 24 to October
4, shown as daily averages. Yellow, red, and blue show Chitose, Watenbetsu, and Tomaribetsu,
respectively. Temperature (A), relative humidity (B), dew point (C), rain (D), wind speed (E), gust
speed (F), soil water content (G), and solar radiation (H). Data represent an average of each day from
every 10 min measurement.
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3.3. Aβ Aggregation Inhibitory Activity of Perilla frutescens var. crispa Was Highest Just before
Flowering and Was Enhanced by the Wind

In 2019/2020, we prepared extracts efficiently with a change in extraction time from
seven days to one day and evaluated many samples to investigate the details of cultivation
conditions. We confirmed no change of Aβ aggregation inhibitory activity by extraction
time (Supplemental Figure S1). In 2019, plots of various conditions with additional fertil-
ization were made after laying compost on the field in Muroran, and P. frutescens var. crispa
was cultivated (Figure 2). Plants cultivated without additional fertilizer were referred to as
the standard (Std) and harvested every four weeks. Activity in the leaves of Std plants was
highest just before the flowering, on 12 September, decreasing thereafter (Figure 5A). Plants
were cultivated in the same soil conditions as Std, but a windbreak was created, enclosing
plants with a plastic sheet (Standard with windbreak; Sw)(Figure 5B). In Sw plants, activity
just before flowering was significantly lower than that of Std plants, with an EC50 that was
five-fold higher (Figure 5A). The activity of Sw plants harvested on October 3 was highest,
but EC50 was still three-fold higher than Std plants harvested on September 5. These results
indicate that wind exposure enhanced Aβ aggregation inhibition activity in P. frutescens
var. crispa.
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Figure 5. Aβ aggregation inhibitory activity showed the highest just before flowering, with wind
enhancement. (A) Aβ aggregation inhibitory activity of leaves in regularly harvested Perilla frutescens
var. crispa in 2019. P. frutescens var. crispa was planted on June 13, and whole plants were harvested
every 4 weeks. Plants flowered on 12 September. The Std is the condition with no additional fertilizer
under all conditions. Plants from Std were also harvested on September 12, during flowering.
(B) Plants in the standard with windbreak (Sw) were cultivated in the same soil as Std and enclosed
with a plastic sheet. Data represent the mean ± SD (n = 3, separate plant). Comparison of the EC50

values vs. Std harvested on September 5 (*: p < 0.05, Welch’s t-test).

3.4. Adjustment of Soil Nitrogen and Soil Water Content Enhanced Aβ Aggregation Inhibitory
Activity of Perilla frutescens var. crispa Just before Flowering

In 2019, P. frutescens var. crispa plants were cultivated under fertilization conditions
other than Std, as shown in Table 1. Specifically, the activities of four major types of
fertilizers were compared: slaked lime and calcium carbonate powder, scallop shell pow-
der (Sp) and granular (Sg) with zeolite, each superphosphate of lime (SPL), ammonium
sulfate (AMS), potassium sulfate (SOP), and a combination of Sp, SPL, AMS, and SOP
(Figure 6A–D). There were no significant differences between any treatments in the activity
of leaves of plants harvested just before flowering. On the other hand, the activity of plants
cultivated on soil enhanced with SPL, AMS, and SOP fertilizer, just before flowering, was
highest in AMS-fertilized conditions (Figure 6E).
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Table 1. Multiple Fertilization Conditions in 2019.

Sample Name Additional Fertilization Amount (g/m2)

Std -
SL-1 Slaked lime 55.5
SL-2 Slaked lime 555.2
Cp Calcium carbonate powder 163.5
Sp Shell powder 170.3

Sg-1 Shell granular (particle size; 0.50–1.00 mm) 340.7
Sg-2 Shell granular (particle size; 1.00–2.00 mm) 340.7
Sg-3 Shell granular (particle size; 3.35–5.60 mm) 340.7

P Superphosphate of lime (SPL) 114.3
N Ammonium sulfate (AMS) 95.2
K Potassium sulfate (SOP) 40.0

PN Combination of P and N
PK Combination of P and K
NK Combination of N and K

PNK Combination of P, N, and K
Sp-PNK Combination of Sp, P, N, and K
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Figure 6. Nitrogen fertilization enhanced the Aβ aggregation inhibitory activity of Perilla frutescens
var. crispa leaves. Plants were cultivated under multiple fertilization conditions and harvested every
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4 weeks. (A–D) Aβ aggregation inhibitory activity of leaves harvested in 2019. Activity in leaves
of plants cultivated in soil with varying amounts of (A) slaked lime (SL), (B) shell powder (Sp),
and shell granular (Sg) fertilizer (Table 1). (C,D) Activity in leaves of plants cultivated in soil with
a combination of ammonium sulfate, lime superphosphate lime, and potassium sulfate fertilizer.
(E) The activity of (C) was compared on September 5, just before flowering. Data represent the
mean ± SD (n = 3, separate plants).

In 2020, to identify an appropriate amount of AMS fertilizer, P. frutescens var. crispa
plants cultivated with six levels of AMS fertilization were harvested every four weeks
(Table 2). Activity in all six fertilization conditions increased until September 9, just before
flowering on September 10 (Figure 7A). Just before flowering, Aβ aggregation inhibitory
activity and total fresh leaf weight from each plant were the highest in the N3 treatment
(Figure 7B,C). In particular, total leaf weight improved from Std to N3 but decreased above
N4. These results show that appropriate nitrogen fertilization increased Aβ aggregation
inhibitory activity and total leaf.

Table 2. Fertilizer conditions of nitrogen in 2020.

Sample Name Amount of Ammonium Sulphate (g/m2)

Std 0
N1 119
N2 238
N3 476
N4 952
N5 1905
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aggregation inhibitory activity in leaves of Perilla frutescens var. crispa cultivated in a plastic green-
house with six levels of ammonium sulfate fertilization (Table 2) and harvested every four weeks
in 2020. (B,C) Activity (B) and leaf weight (C) just before flowering on September 9 in (A). Data
represent as mean ± SD (n = 3, separate plants).
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When P. frutescens var. crispa plants cultivated in all conditions in 2019 were harvested,
soil samples were drawn to analyze soil water content (Table 1). We created a scatter plot
between soil water content and the activity of leaves and performed linear regression
bordering on 20% water content (Figure 8A). The linear regression shows that activity was
high at 20% but decreased markedly when water content exceeded 20%. Therefore, to
test whether the cessation of watering just before harvest would enhance activity, plants
were cultivated in greenhouses in 2020 and watering was stopped every week starting
before the day of harvest. Predictably, soil water content decreased when watering was
stopped (Figure 8C). On the other hand, Aβ aggregation inhibition activity was enhanced
when watering was stopped for one week and higher than on the day before the harvest
date. A scatter plot for this data was created, as shown in Figure 8A, although a linear
regression was not performed due to too few samples (Figure 8D). The plots with water
content exceeding 20% had highest activity. These results indicate that Aβ aggregation
inhibitory activity was enhanced by stopping watering before harvest to reduce soil water
content.
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Figure 8. Drying enhanced the Aβ aggregation inhibitory activity of Perilla frutescens var. crispa
leaves. (A) Scatter plot of soil water content at harvesting and EC50 of leaf extracts from P. frutescens
var. crispa under conditions described in Table 1 harvested on 11 July, 8 August, and 5 September
in 2019. Linear regression was performed on more and less than 20% s water content. (B–D) Plants
were cultivated in greenhouses in 2020, and watering was stopped every week from the day before
the harvest date (15 September) to determine their Aβ aggregation inhibitory activity (C) and soil
water content (B). A scatter plot was created in (D) about water content and EC50 similar to (A).
(A,D) represented as mean, and (B,C) represented as mean ± SD (n = 3, separate plants).

3.5. Suppression Effect of Perilla frutescens var. crispa on Aβ-Induced Neurocytotoxicity

We tested whether the P. frutescens var. crispa extract could suppress Aβ-induced neu-
rocytotoxicity by the MTT assay using NGF-differentiated PC12 cells (Figure 9). The data
show that 25 µM Aβ42 reduced the viability of PC12 cells by 40% relative to the control. The
extract significantly restored cell viability and suppressed Aβ-induced neurocytotoxicity
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the most at 0.781 µg/mL. In contrast, the extracts with more than 25 µg/mL concentrations
reduced cell viability to less than 25 µM Aβ and significantly when the concentration was
100 µg/mL.
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Figure 9. Extracts from Perilla frutescens var. crispa leaves suppressed Aβ-induced cytotoxicity in
NGF-differentiated PC12 cells. PC12 cells were differentiated by NGF for 24 h and treated with
25 µM Aβ42 and leaf extract for 24 h. Cell viability was measured by the MTT assay and shown
as the relative percentage of absorbance of treated samples compared to the control without Aβ

and extract. Each plot and bar graph represent the mean ± SD (n = 3 separate experiments with
extracts, 6 separate experiments in control, and 25 µM Aβ only). Comparison of the values (*: p < 0.05,
**: p < 0.01, Welch’s t-test).

4. Discussion

In this study, we evaluated the Aβ aggregation inhibitory activity of P. frutescens
var. crispa cultivated under multiple conditions using the MSHTS system, which has the
advantage of directly assessing this activity. At first, we evaluated the activity of plants
cultivated in three fields (Figure 3) and found that leaves showed the highest activity
among all plant parts that were assessed. In particular, this study’s highest activity of
N3 (EC50 = 0.0059 mg/mL; Figure 7B) was the second highest in the 504 natural plant
extracts previously evaluated [18]. We speculate that this activity is due to polyphenols
having Aβ inhibitory effect because perilla leaves are rich in polyphenols [23–25]. Several
compounds have been reported to show Aβ inhibitory activity among the polyphenols that
are found in perilla. In particular, RA is the most promising compound since it is abundant
in perilla [23] and has high Aβ aggregation inhibitory activity [15]. Similarly, chalcone [35]
and asaron derivatives [36] isolated from perilla have also been reported as having this
activity. Since perilla has a wide variety of compounds, total activity is considered by their
accumulation and synergistic effect. These secondary metabolites are biosynthesized in
response to environmental stress to protect against their oxidation [29,30].

Overall, the Aβ aggregation inhibitory activity of P. frutescens var. crispa increased until
early September, until flowering, and then decreased after flowering (Figures 5A and 7A).
In perilla, during flowering, the contents of RA and total phenolic compounds become
reduced [28,31]. These contents may have been altered by a change in metabolic pathways.
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The amount of total phenolic compounds in plants decreases with flowering due to the
oxidation caused by the action of polyphenol oxidase and peroxidase [37]. Therefore, perilla
should be harvested just before flowering to avoid a loss of active compounds.

The Aβ aggregation inhibitory activity showed the same trend as wind speed in Perilla
frutescens var. crispa cultivated in the three fields in 2018 (Figures 3 and 4). Furthermore,
Perilla frutescens var. crispa cultivated without wind exposure showed significantly lower
activity (Figure 5). Wind, as an environmental stressor, may promote plant growth and
affect secondary metabolites. Wind promotes heat exchange, gas trade, and photosynthesis
on plant leaves [38]. It was reported that leaf morphology is altered when plants are
exposed to wind, increasing the total phenolics in the leaves [39]. Cultivation with more
wind may enhance the activity of plants.

In 2019, Aβ aggregation inhibitory activity increased in soil with less than 20% water
content in plants cultivated under multiple fertilization conditions (Figure 8A). Further-
more, watering of plants was ceased just before harvest to induce drought stress, and the
cessation of watering for more than one week enhanced the activity (Figure 8C). Phenolic
acids increase in response to drought stress in plants [40]. Plants biosynthesize polyphenols
and flavonoids to defend themselves from drought [41,42]. Abscisic acid (ABA), a plant
hormone, is synthesized in response to drought stress in plants [43]. ABA is involved
in the accumulation of phenolic acids, especially anthocyanin, in plants under drought
stress [44]. Based on the above, we speculate that drought stress promoted the biosynthesis
of compounds that contribute to the Aβ aggregation inhibitory activity in P. frutescens var.
crispa via the ABA response pathway.

Aβ aggregation inhibitory activity in P. frutescens var. crispa was highest with appropri-
ate nitrogen fertilization as N3, and lower activity when excessive fertilization was applied
(Figure 7B). In general, plants contain high levels of polyphenols when cultivated under
low levels of nitrogen fertilization [45]. It may be essential to adjust fertilization according
to nutrient availability in the field. Furthermore, the choice of nitrogen supply reduced the
total phenolic content of leaves in strawberries, and the influence is compound-specific [46].
Perilla contains not only the main active compounds, such as RA, but also other active com-
pounds [23]. Nitrogen fertilization might alter the composition of compounds to enhance
total activity.

We showed that P. frutescens var. crispa leaf extracts suppressed Aβ-induced neurocyto-
toxicity in neuronally differentiated PC12 cells (Figure 9). The methanolic extracts of Perilla
frutescens (L.) Britton similarly rescued the Aβ-induced cytotoxicity of PC12 cells [47]. Fur-
thermore, compounds isolated from a Perilla frutescens (L.) Britton extract also suppressed
Aβ-induced cytotoxicity and exhibited toxicity at high concentrations of 100 µg/mL [36].
In this study, the leaf extract at a high concentration of more than 25 µg/mL reduced cell
viability but was lower than Aβ toxicity (Figure 9). Thus, an appropriate concentration of
perilla extracts is essential so as not to exhibit toxicity.

This study has a limitation: we did not find other compounds that contribute to the
Aβ inhibitory activity of P. frutescens var. crispa. A promising compound seems to be
RA because the extracts from fresh perilla leaves prepared similarly in this study contain
a high content of RA [48]. Furthermore, we previously reported that RA is the active
component of the extract from summer savory (Satureja hortensis) in the Lamiaceae [15].
Even though we confirmed the presence of RA in the perilla extracts, the content was
not enough to assess total activity. Previously, we did not obtain a fraction even equal
to total activity, although we attempted to isolate active compounds from P. frutescens
var. crispa extracts. This result shows that the activity in the extracts may be due to the
synergistic effect of multiple compounds. Total activity is important when assessing the
intake of substances such as food. A known example of this synergistic effect is the co-
administration of epigallocatechin and gallic acid to improve learning ability in a mouse
model of brain senescence [49]. We speculate that multiple compounds show a total
activity in P. frutescens var. crispa extracts through synergistic effects and are trying to
identify those compounds that contribute to this activity. In addition, it is necessary to
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research whether these compounds have blood–brain barrier permeability. In a rat model,
RA reached the brain via the intraperitoneal administration of extracts from Plectranthus
barbatus (Lamiaceae) herbal tea, including RA [50]. Moreover, perilla leaf extracts improved
blocked Aβ aggregates-induced memory impairment and reduced Aβ deposits in the
hippocampus with systemic administration in 5XFAD mice with AD-linked mutations [51].
In addition to treatment with anti-Aβ antibody drugs (e.g., aducanumab, lecanemab),
prevention with foods such as Perilla may protect many people from AD risk. We expect
that this study may contribute to preparing the extracts to show improvement against
AD-like pathology.

5. Conclusions

In this study, we found several cultivating and harvesting factors of Perilla frutescens
var. crispa that enhanced its Aβ aggregation inhibitory activity. The best harvesting time
was just before flowering, and the following cultivation methods were effective: wind,
appropriate nitrogen fertilization, and pre-harvest soil drying. These factors may alter
the biosynthesis of polyphenols that exhibit this activity, although the active compounds
were not identified. Furthermore, we successfully used the MSHTS system to assess
total Aβ aggregation inhibitory activity. We consider this method to be a powerful tool
for identifying substances with activity in plant-derived food. We hope that the active
substances will be discovered and become a preventive and therapeutic agent against AD,
for which no cure has yet been found.
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com/xxx/s1. Figure S1: Amyloid-β aggregation inhibitory activity is not changed on perilla leaf
extracts within one day and seven days of extraction time
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