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Abstract: Nowadays, with the rapid development of biotechnology, the CRISPR/Cas technology
in particular has produced many new traits and products. Therefore, rapid and high-resolution
detection methods for biotechnology products are urgently needed, which is extremely important for
safety regulation. Recently, in addition to being gene editing tools, CRISPR/Cas systems have also
been used in detection of various targets. CRISPR/Cas systems can be successfully used to detect
nucleic acids, proteins, metal ions and others in combination with a variety of technologies, with great
application prospects in the future. However, there are still some challenges need to be addressed.
In this review, we will list some detection methods of genetically modified (GM) crops, gene-edited
crops and single-nucleotide polymorphisms (SNPs) based on CRISPR/Cas systems, hoping to bring
some inspiration or ideas to readers.

Keywords: CRISPR/Cas-based detection; trans-cleavage; genetically modified organisms detection;
gene-edited products detection; single-nucleotide polymorphisms detection; challenges and prospects

1. Introduction

Transgenic technology has been applied in plants, animals, microorganisms and other
fields. According to the data of International Service for the Acquisition of Agri-biotech
Applications (ISAAA) in 2019, biotech crops were planted by 29 countries. China grew
3.2 million hectares of biotech crops (2% of the global total), and this was predicted to in-
crease in due time globally [1]. In many countries and international organizations, relevant
legislation, regulatory measures and evaluation criteria have been adopted to guarantee
food traceability, safety supervision of genetically modified (GM) crops and freedom of
choice for consumers [2–5]. With large-scale planting an application of global GM crops and
frequent trade circulation under global integration, as well as the continuous promotion of
the transgenic industrialization process of China, the task of transgenic supervision will
become more and more important, thus making the detection of GM organisms (GMOs)
particularly essential [6,7]. In order to implement the No.1 Central Document in 2021,
better supervision capacity for GMOs and establishment of a simple, fast, accurate and
economic transgenic detection method is imperative, and its requirements will become
higher and higher. Polymerase chain reaction (PCR) [8], multiplex PCR [9–13], quantitative
PCR (qPCR) [14–17], droplet digital PCR (ddPCR) [18], loop-mediated isothermal amplifica-
tion (LAMP) [19–21], recombinase polymerase amplification (RPA) [22,23], next-generation
sequencing (NGS) [24–29], Southern blot [30–32], gene chip [33,34] depending on the
nucleic acid-based methods, and enzyme-linked immunosorbent assay (ELISA) [35,36],
lateral flow assay (LFA) [37], Western blot [38,39] depending on immunological meth-
ods, and electrochemical [40], surface plasmon resonance (SPR) [41], and piezoelectric
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genosensors [42] are commonly used to detect GMOs. The detection of GMOs is mainly
based on protein and nucleic acid. Protein-based detection methods often require the
preparation of antibodies, which have a long cycle, high cost, and can only detect foreign
proteins with limited detection targets. Moreover, protein-based detection methods can
only detect fresh or primary samples of crops, and have limitations on the detection of
processed or deeply processed products. The nucleic acid-based detection methods are
more accurate, reliable, stable and widely used. Among many nucleic acid detection meth-
ods, PCR technology is one of the most developed transgenic detection methods, with
accurate results, high sensitivity and strong specificity. PCR has been used as the standard
test method for food regulations in many countries.

In recent years, clustered regularly interspaced short palindromic repeats/CRISPR-
associated proteins (CRISPR/Cas) [43] has become the most popular tool to create a new
situation for gene function research and biological breeding [44,45]. Gene-edited products
are divided into three categories according to the different repair mechanisms after double-
stranded DNA (dsDNA) breaks. Site-directed nuclease systems 1 (SDN1) refers to the fact
that no template or any exogenous gene is introduced, only one or a few base insertion or
deletion (indels) and substitution of nucleotides. SDN2 refers to an introduced homologous
template, which leads to one to several base mutations (<20 bp) in the genome through
homologous recombination. SDN3 refers to the insertion of large exogenous genes at target
sites through homologous recombination. After gene editing of diploid plants, a single cell
of the plant will produce three kinds of mutation results–single allele mutation, also known
as heterozygous mutation, double allele mutation, in which two alleles have different types
of mutations, and homozygous mutation, where two alleles have the same mutation [46].
Gene editing is site-directed modification of the genome, leaving fewer traces in the recipi-
ent. Gene editing is different from transgenic technology, which inserts genetic material into
the recipient, and the regulatory measures differ from country to country. The current mea-
sures taken by our country are that if the gene-edited products contain exogenous genes,
they will be regulated as GMOs. If not, they can be simplified. Therefore, the detection
strategy for GMOs and gene-edited products with and without exogenous genes is different,
especially SDN1 and SDN2. Sanger [47], NGS [48–50], T7 endonuclease I (T7EI) [51–53] and
restriction fragment length polymorphism (RFLP), also known as the cleaved amplified
polymorphic sequence (CAPS) [54–56], are frequently used in scientific research and can be
used to detect gene-edited products. In addition, amplified fragment length polymorphism
(AFLP) [57,58], at critical temperature PCR (ACT-PCR) [59,60], the amplification refractory
mutation system (ARMS) also known as allele-specific PCR (AS-PCR) [61], ddPCR [57,62],
high-resolution fragment analysis (HRFA) [63], high-resolution melting (HRM) [64], het-
eroduplex mobility assay (HMA) [65,66], single-strand conformational polymorphism
(SSCP) [67], polyacrylamide gel electrophoresis (PAGE) [68], and ligation detection reaction
(LDR) [69] can be used in detection.

Among the regulatory requirements for GMOs or gene-edited products in China is
the on-site inspection results. However, most of the above detection technologies require
complex pretreatment of samples, precision instruments, professional steps and analysis,
and are time-consuming, so they are not portable for rapid on-site detection. Therefore,
new detection methods for biotechnology products are urgently needed. CRISPR/Cas
not only plays an important role in gene editing, but also serves as a tool for molecular
detection based on trans-cleavage activity. CRISPR/Cas has been successfully applied in
clinical diagnosis, food safety, biological breeding and others. At present, Class 2 systems,
represented by Cas9, Cas12a (Cpf1), Cas12b, Cas13a (C2c2) and Cas14a (Cas12f1), are
the most studied and used single-protein effectors, and have the advantages of simple
operation, high specificity and sensitivity [70]. For Cas12, Cas13 and Cas14, when the
guide RNA captures the nucleic acid targets, the Cas/RNA/target ternary complex forms,
activating the trans-cleavage activity of Cas to cleavage the single-stranded DNA/RNA
(ssDNA/ssRNA) [71–73]. The characteristics of Cas9, Cas12, Cas13 and Cas14 are listed
in Table 1. When combined with different methods, the CRISPR/Cas system successfully
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achieved highly sensitive detection of targets. Examples include DNA [74–80], RNA [81–87],
protein [88–90], Na+ [91], Pb2+ [86], ATP [91,92], uric acid and p-hydroxybenzoic acid [93].
In general, CRISPR/Cas systems may be a good choice to achieve ultra-sensitive detection.

Table 1. The characteristics of Cas9, Cas12, Cas13 and Cas14.

Cas Protein Cas9 Cas12a (Cpf1) Cas12b Cas13a (C2c2) Cas14a (Cas12f1)

CRISPR system
classification

Class 2
Type II-A

Class 2
Type V-A

Class 2
Type V-B

Class 2
Type VI-A

Class 2
Type V-F1

Nuclease domain HNH and RuvC RuvC RuvC 2 x HEPN RuvC
PAM/PFS NGG (T)TTN TTN non-G no

Guide RNA sgRNA
(~100 nt)

crRNA
(40–44 nt)

crRNA
(40–44 nt)

crRNA
(64–66 nt)

crRNA
(~140 nt)

Target dsDNA ds/ssDNA ds/ssDNA ssRNA ssDNA
trans-cleavage no ssDNA ssDNA ssRNA ssDNA

Note: PAM, protospacer-adjacent motif; PFS, protospacer-flanking sequence.

In this review, we list some methods for GMOs, gene-edited products and single-
nucleotide polymorphisms (SNPs) detection based on the CRISPR/Cas system combined
with multiple detection techniques. Then, the current challenges and prospects for targets
detection will be discussed in the end, hoping to bring some inspiration or ideas to readers.

2. CRISPR/Cas Systems in Detection of GMOs, Gene-Edited Products and SNPs

When crRNA specifically captures the targets, the formation of the Cas/crRNA/target
ternary complex will activate the trans-cleavage activity of Cas12, Cas13 and Cas14 effectors.
Based on the CRISPR/Cas system, it can be used to detect different target nucleotide
sequences simply by changing the crRNA.

Because the detection strategy for GMOs and gene-edited products with and without
exogenous genes is different, in this section, we will separately list some CRISPR/Cas-
based detection methods for GMOs and gene-edited products. At the same time, there are
only a few articles on the detection of gene-edited products. Considering the characteristics
of gene editing, the detection methods of mutations of a single base or a few bases can
draw from the detection methods of SNPs.

2.1. CRISPR/Cas Systems in Detection of GMOs

Wu et al. 2020 [94] combined LAMP and CRISPR/Cas12a for visual detection of GM
soybean powders with a 254 nm UV light (Figure 1a). This was verified by experiment
that the concentration of magnesium ion was important to the CRISPR/Cas12a system.
Additionally, the limit of detection (LOD) was 0.05%. The author designed a reaction
vessel—after LAMP reaction at the bottom of the tube, the Cas12a reagent at the top of the
tube flowed to the bottom of the tube for detection, which was portable and contamination
free. In the same year, Wu et al. 2020 [95] developed a portable biosensor for visual
dual detection of the CaMV35S promoter and Lectin gene in soybean powders, which
was named Cas12a-PB (Figure 1b). The target DNA were amplified by dual PCR and
LAMP in the reaction tube, then the products of amplification were separated into three
different chambers, and every chamber contained CRISPR/Cas12a detection systems with
an LOD of 0.1%.

Cao et al., 2022 [96] established MPT-Cas12a/13a that combined multiplex PCR and
transcription for simultaneous detection of CaMV35S and T-nos (Figure 1c). Because
the CRISPR/Cas12a and CRISPR/Cas13 systems can specifically bind different crRNAs
and targets, the systems were used to detect DNA-CaMV35S and RNA-T-nos, producing
yellow fluorescence at 556 nm and green fluorescence at 520 nm, respectively. The LOD
was 13 copies of CaMV35S and 11 copies of T-nos. Liu et al. 2022 [97] proposed PE-
MC/SDA-CRISPR/Cpf1 to detect CaMV35S with the LOD down to 14.4 fM (Figure 1d).
In the presence of CaMV35S, P1 and P2 were designed for hybridization to produce M
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stand. Then, the M stand can be employed as primers to combine with the strand ST
to promote the downstream reaction to produce X and Y stands. The primer X strands
can bind to ST, facilitating the next round of reaction and generating a large number of Y
strands. The Y strands can activate the trans-cleavage of CRISPR/Cpf1, which led to the
breakage of the probes. This ingenious amplification method enabled the CaMV35S to
have a low background interference. Liu et al. 2021 [98] developed a CRISPR/Cas12a-
based detection technique by combining RPA, which was named RPA-Cas12a-FS, to
detect food-borne microorganisms and GMOs (Figure 1e). Rapid DNA extraction and
RPA were used to complete the sample preparation in a short time. After the reaction
of CRISPR/Cas12a systems, the samples were measured for fluorescence intensity. The
LOD was 10 copies/µL.
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Figure 1. CRISPR/Cas systems in detection of genetically modified organisms (GMOs). (a) CRISPR/Cas
system for visual detection of CaMV35S promoter with a 254 nm UV light [94]. (b) Cas12a-PB detec-
tion system [95]. (c) MPT-Cas12a/13a detection system [96]. (d) PE-MC/SDA-CRISPR/Cpf1 detec-
tion system [97]. (e) Recombinase polymerase amplification (RPA)-Cas12a-FS detection system [98].
(f) RPA-Cas12a-LFB detection system [99]. (g) A colorimetric gene-sensing platform for detection of
transgenic rice [87].

Those above methods are based on fluorescence detection, and gold nanoparticle-
based colorimetry assay combined with CRISPR/Cas systems is also an attractive detection
method. Wang et al., 2020 [99] constructed a highly sensitive procedure based on CRISPR-
Cas12a that combined with RPA and LFA, which was named RPA-Cas12a-LFB, for the
rapid, visual detection of both P-CaMV35S and T-nos screening elements (Figure 1f). The
test strips were laid with gold nanoparticles labeled FITC antibodies, and the test line
(T line) and the control line (C line) were labeled with goat anti-rabbit IgG and biotin
ligand, respectively. When there was a target, the dual-labeled reporter (FITC, Biotin) will
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be degraded, and AuNP complex will gather in the T line for color development, which
the result was positive. In contrast, AuNP complex will gather in the C line. The LOD
was 10 copies and 0.01% GM crops of Bt11 and MON863 samples. Yuan et al., 2020 [87]
had designed a novel colorimetric gene-sensing platform that can visually detect GM rice,
African swine fever virus (ASFV), and miRNAs within an hour (Figure 1g). In this method,
the trans-cleaved substrate was a universal linker ssDNA/ssRNA, which can hybridize
to the AuNPs-DNA probes. When there is a target, the linker ssDNA/ssRNA will be
cleaved. The probe pair cannot hybridize and thus becomes dispersed. When there is
no target, the linker ssDNA/ssRNA will not be cleaved. The probe pair can hybridize to
form an aggregated state. Cross-linked and dispersed Au nanoparticle probes will show
different colors, and negative and positive samples will be detected. The LOD was 0.01%.
The appearance of a test strip enriches the signal output manner.

Wang et al., 2020 [100] combined CRISPR/Cas systems and LFA, which was named
CASLFA, to identify Listeria monocytogenes, GMOs and ASFV in two strategies (Figure 2a).
The AuNP-DNA probes, streptavidin and streptavidin-biotinylated DNA probe were
preassembled into the conjugate pad, T line and C line, respectively. Biotin was labeled on
the amplicon by PCR or RPA using biotinylated primers. After the samples flow through
the conjugate pad, AuNP-DNA probe 1 will hybridize with the target sequences behind
the protospacer-adjacent motif (PAM) in the DNA unwinding-based hybridization assay.
Or AuNP-DNA probe 2 will hybridize with the target sequences in sgRNA 2 in the sgRNA
anchoring-based hybridization assay. The biotin will be captured on the T line, and excess
AuNP-DNA probes were captured at the C line. The LOD of the CASLFA method was
hundreds of gene copies. Duan et al. 2022 [101] used crude extraction DNA combined
LAMP with CRISPR-Cas12a to detect the pCaMV35S promoter in transgenic papaya leaves,
and another three transgenic sequences in GMOs (Figure 2b). Two rubber chambers were
made as reaction chambers for LAMP and Cas solution, and a flow strip was held on the
top pf the reaction vessel. After LAMP reaction, the Cas chamber was manually extruded to
allow the solution to flow into the LAMP solution. The detection results can be determined
by the flow strip or by examining with a 470 nm blue light. Huang et al. 2020 [102]
combined CRISPR/Cas systems and recombinase-aided amplification (RAA) with color
change in gold nanorods (GNRs) to realize visible detection of NOS terminator in samples
(Figure 2c). In the presence of the target, the ssDNA linker was cleaved by Cas12a, and
residual magnetic beads (MBs) will be removed by magnet. Sucrose was hydrolyzed by the
released invertase, and the produced glucose was oxidized to H2O2. GNRs were etched by
·OH, and determines the color of the solution. The LOD of this method was 0.1 wt %, and
can be semi-quantified of GM ingredients between 0.1 and 40 wt %.

The electrochemical biosensor is also a highly sensitive detection method. Ge et al.,
2021 [103] designed a dual-mode electrochemical biosensor for sensitive and reliable de-
tection of GM soybean SHZD32-1 without amplification (Figure 2d). As the signal unit,
Fe3O4@AuNPs/DNA-Fc is Fe3O4 nanoparticles were coated with AuNPs, on the surface
of which ruthenium complex (Ru) and DNA-ferrocene (DNA-Fc) were immobilized. In the
presence of the target, the DNA-Fc was cleaved by CRISPR/Cas12a. The electrochemical
label Fc will fall off the surface, leading to the decrease in the signal from Fc and the
increase signal from Ru. The LOD was 0.3 fM. Zhu et al., 2022 [104] designed an isoCRISPR
assay that combined CRISPR/Cas12a systems with rolling circle amplification (RCA) for
label-free detection (Figure 2e). When gRNA bound to the target, the RCA primer was
degraded and the RCA process ended, leading to a low fluorescence. On the contrary,
the primer of RCA can hybridize with the padlock probes that bound with G-quadruplex
sequence, thus the amplicon was labeled by G-quadruplex. Then, the RCA amplicon can
be detected using N-methyl mesoporphyrin IX (NMM), a G-quadruplex dye, leading to
a high fluorescence. The LOD was approximately 45 pM.
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Figure 2. CRISPR/Cas systems in detection of GMOs. (a) CASLFA detection system [100]. (b) A flow
strip or visual detection of P-CaMV35S and another three transgenic sequences in GMOs by using
a portable device based on CRISPR/Cas [101]. (c) A visible detection combined with color change in
gold nanorods (GNRs) based on CRISPR-Cas12a [102]. (d) A dual-mode electrochemical biosensor
for detection of SHZD32-1 without amplification [103]. (e) isoCRISPR assay detection system [104].

2.2. CRISPR/Cas Systems in Detection of Gene-Edited Products and SNPs

Gene-edited products, which leave no trace in the recipient, cannot detect universal
components in the same way as GMOs. This requires the selection of the specific sequence
with a suitable PAM site for detection.

Liang et al., 2018 [105] used preassembled CRISPR/Cas9 and CRISPR/Cpf1 to detect mu-
tations in gene-edited polyploid and diploid plants, which was named PCR/ribonucleoprotein
(RNP). This method can distinguish homozygous mutants, biallelic from heterozygous
mutations, and also be used for detection of mutagenesis induced by TALEN protein, and
mutant screening without affected by background noise SNPs, especially apply to polyploid
plants. Furthermore, considering that there might be no suitable PAM sequence near the
mutation site, the primers are designed to insert the PAM sequence. Therefore, sequence
independent detection was allowed for any site. Xiao et al., 2020 [106] demonstrated that
CRISPR/Cas12a systems enabled to identify the biallelic mutants in Thp-1 cells induced by
CRISPR/Cas9 and detect different insertions (Figure 3a). Furthermore, this method showed
single-base resolution for DNA detection. Wang et al., 2022 [107] developed Cas12aFVD
biosensing platform that coupled with RPA for visible detection of mutants in gene-edited
rice (Figure 3b). Cas12aFVD can detect single-base mutants with an LOD of 12 copies/µL
in 40 min. This method can be applied in the laboratory and on site in one tube.

For gene-edited products of SDN1 and SDN2 with known editing sites and sequences,
ACT-PCR, ddPCR, AS-PCR, CRISPR/Cas, etc., one or more methods can be used for
preliminary screening. The suspected or positive samples obtained through screening
can be further determined by Sanger or NGS, which can greatly reduce the workload.
For gene-edited products of SDN3 with known editing sites and sequences, it can be
detected according to the current detection strategy of GMOs. For gene-edited products
with unknown editing sites and sequences, according to the popular editing sites and
common off-target sites, T7EI, RFLP, AS-PCR, HRFA, SSCP, etc., one or more methods can
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be used for preliminary screening. The suspected or positive samples obtained through
screening were further determined by Sanger or NGS. At present, Sanger, NGS, T7EI, and
RFLP are widely used, and the application of other methods is relatively few. The selection
of detection methods is closely related to gene-editing efficiency, mutation types and plant
ploidy. In addition, each method has its own limitations, which can be selected according
to specific needs.
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Li et al., 2018 [108] created one-step HOLMESv2 with CRISPR-Cas12b to discriminate
SNP/single-nucleotide mismatch (SNM) and detect RNA (Figure 3c). When Cas12b com-
bined with asymmetric PCR, Cas12b successfully distinguished the SNP locus without
the PAM sequence. That meant it can cleave the ssDNA without a PAM sequence. The
author also proved that 18–20 nt sgRNAs were more effective. The LOD of HOLMESv2
was 10−8 nM. Li et al., 2018 [109] developed HOMLES to detect SNP loci with a minimum
detectable concentration of 10 aM combined (Figure 3d). At the same time, for the PAM
mutants and the 1st–7th single-base mismatch, fluorescence signals changed significantly.
That meant the detection was more sensitive in this region.

Teng et al., 2019 [110] developed a Cas12b-mediated DNA detection (CDetection) com-
bined with RPA to distinguish the SNP in the human genome using selected tuned guide
RNA (tgRNA), achieving single-base resolution detection (Figure 3e). Gootenberg et al.,
2017 [71] combined Cas13a with RPA to establish a molecular detection platform, termed
SHERLOCK, to distinguish pathogenic bacteria, SNPs of Zika virus (ZIKV) African versus
American RNA targets, SNPs, and identify cell-free tumor DNA mutations (Figure 3f). The
author chosen five loci of health-related SNPs and benchmarked SHERLOCK detection
using 23andMe genotyping data. SHERLOCK distinguished both homozygous and het-
erozygous genotypes with high significance, and detected SNP-containing alleles as low as
0.1% of background DNA. Additionally, the author found that after lyophilized and subse-
quently rehydrated, reaction reagents can still be available for detection. Harrington et al.,
2018 [73] found that Cas14a required stricter complementarity for recognition of ssDNA,
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and improved the accuracy detection of SNP without the PAM sequence (Figure 4a). Then,
the author used a phosphorothioate-containing primer to amplify HERC2 gene from both
blue-eyed and brown-eyed individuals. Cas14a-DETECTR showed strong activation in
recognition of the blue-eyed SNP. Ma et al., 2020 [111] described the MeCas12a system to
distinguish between SARS-CoV-2 and MERS-CoV and SNPs (Figure 4b). The author tested
many divalent ions, and found that manganese ion (Mn2+) enhanced the signal of crRNA,
effectively improved the Cas12a detection system. The LOD of MeCas12a was five copies
of SARS-CoV-2 RNA in 24 patient samples in 45 min.
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double-stranded capture probe to eliminate the need for the PAM sequence [113].

Microfluidic technology can also be applied in CRISPR/Cas detection systems.
Chen et al., 2021 [112] introduced a nucleotide mismatch to improve the universality of the
detection of SNP (Figure 4c). The biochip was pre-loaded with CRISPR/Cas12a reagents to
automate the process. The biochip can test eight samples at the same time and distinguish
the homozygous wild type, the homozygous mutant type and the heterozygous mutant
type. Lee et al., 2021 [113] designed a probe containing a PAM sequence and a target
capture sequence, and eliminated the need for a PAM sequence with lower noise from
the wild type (WT) (Figure 4d). In addition, the author was able to detect up to 10 aM
single-nucleotide variants (SNVs) and 0.1% of the mutation with a fluorescence and elec-
trochemical readout. Wang et al., 2022 [114] developed a visualization system based on
Cas12a and G4-DNAzyme to identify Bacillus anthracis, and SNP targets in samples. All
the reactions were carried out continuously in thermos cups, and the CatG4R antisense
DNA was used as the detection probe of Cas12a reaction. When crRNA bound with
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the target dsDNA, Cas12a will cleavage CatG4Rz. After CatG4 nucleic acid was added,
CatG4 and hemin can form an activated G-quadruplex-hemin complex, which catalyzed
ABST2− and H2O2 to produce ABST− and turn the solution green. If no target, the solution
remained colorless.

Pardee et al., 2016 [115] developed an assay to detect SNP between African and
American Zika Virus which was named NASBACC. The process of nucleic acid sequence-
based amplification (NASBA) began with reverse transcription to create an RNA/DNA
duplex. Then, RNase H degraded the RNA to form ssDNA. Using primer containing
the T7 promoter, dsDNA was synthesized and then transcribed to generate RNA. In the
presence of RNA target and the PAM sequence, the dsDNA was synthesized and cleaved
by CRISPR/Cas9. It was unable to activate the sensor H, and the color will not change. In
the absence of RNA target, the dsDNA was intact, generating the sensor H trigger sequence,
then the sensor H was activated. The activated sensor H regulates translation of LacZ,
which regulated color change by converting a yellow substrate (chlorophenol red-b-D-
galactopyranoside) to a purple product (chlorophenol red). Blanluet et al., 2022 [116] found
that end-point fluorescence was not suitable for distinguishing between WT and SNPs, thus
analyzed the Michaelis–Menten kinetic effects of SNP versus WT activation activated Cas12
trans-cleavage activity. Through calculating the apparent catalytic efficiency k ∗ cat/KM
to identify SNPs and WT, the authors found that the 60 SNPs yielded a lower k ∗ cat/KM
than the WT.

2.3. Comparison of Advantages and Disadvantages of Detection Methods

The detection accuracy and sensitivity of all the above methods are very good. Some
of them are quite portable and faster than the traditional detection methods for GMOs,
gene-edited products and SNPs. However, those methods still have defects in some aspects,
and cannot be well applied in practice.

Wang et al., 2020 [99], Duan et al., 2022 and Wang et al., 2022 [107] use the rapid
genomic extraction method. This method is simple, rapid and meet the requirements of
on-site detection. However, compared to the genomic extraction kit in the laboratory, the
residue of protein, RNA or salt ions may affect the trans-cleavage efficiency of Cas effectors.
Almost all of the above detection methods require target nucleic acid amplification (Table 2).
Isothermal amplification methods do not require precision instruments, and is simple
and fast to operate. Compared to isothermal amplification, PCR is time-consuming and
not suitable for on-site detection. However, PCR has higher amplification efficiency and
accuracy than LAMP, RPA, RAA and RCA methods, and it is widely used for nucleic acid
amplification. The fluorescence-based detection requires ultraviolet/blue light sources, flu-
orescence spectrometer or other instruments that does not require complex data processing
and analysis. Some results can be directly judged by the naked-eye through different colors,
which is very portable. Although the use of portable instruments, naked-eye detection also
requires testing in darker environments. The lateral flow assay-based detection method is
highly operable and portable, but it requires the selection of appropriate antigen/antibody,
antigen/antibody concentration and buffer, which is more complex than fluorescence-
based detection. However, the lateral flow assay-based detection has low throughput, and
accuracy dependent on the specificity of the antibody. The electrochemical-based detection
method provides linear output, low power consumption, and good resolution, repeata-
bility and accuracy without contamination by other gases. Nevertheless, electrochemical
biosensor is affected by the temperature range, cross-influence of different gases and short
service life.
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Table 2. CRISPR/Cas systems in detection of GMOs, gene-edited products and SNPs.

System Name Cas Effectors Target Amplification Readout LOD Time References

- Cas12a CaMV35S promoter PCR/LAMP Fluorescence detection/
naked eye 0.05 wt % ≥50 min [94]

Cas12a-PB Cas12a CaMV35S promoter/
Lectin gene

Dual ordinary/rapid
PCR/LAMP

Fluorescence detection/
naked eye 0.1 wt % ≥30 min [95]

MPT-Cas12a/13a Cas12a/Cas13a CaMV35S and T-nos Multiplex PCR Fluorescence detection/
naked eye 13 copies/11 copies <2 h [96]

PE-MC/
SDA-CRISPR/Cpf1 Cpf1 CaMV35S Multiple cascade strand

displacement amplification
Fluorescence detection/

naked eye 14.4 fM ~3 h [97]

RPA-Cas12a-FS Cas12a
Foodborne pathogenic
bacteria/GMO/meat

adulteration
RPA Fluorescence detection 10 copies (GMOs) ~45 min [98]

RPA-Cas12a-LFB Cas12a P-CaMV35S/T-nos RPA Fluorescence detection/
lateral flow strip 10 copies/0.01 wt % ~40 min [99]

- Cas12a/Cas13a Transgenic
rice/ASFV/miRNAs PCR/RPA Naked eye 0.01 wt % (GMOs) ~1 h [87]

CASLFA Cas9 Pathogenic microorgan-
ism/GMO/virus PCR/RPA Fluorescence detection/

lateral flow strip 0.01 wt % (GMOs) ~40 min [100]

- Cas12a P-CaMV35S and HPT/NPTII
and T-nos LAMP Fluorescence detection/

naked eye/lateral flow strip 25 copies/100 copies ≤40 min [101]

- Cas12a T-nos PCR/RAA Fluorescence detection/
naked eye

0.1 wt %/0.1 to 40 wt
% semi-quantified >1 h [102]

- Cas12a GM soybean Amplification-free Fluorescence detection/
electrochemistry 0.3 fM ~1 h [103]

isoCRISPR Cas12a GMO RCA Fluorescence detection/
electrochemistry 45 pM ~2.5 h [104]

PCR/RNP Cas9/Cpf1 Gene-edited wheat/rice PCR Gel analysis WT: D1/D1: WT
of 1:20 >3 h [105]

- Cas12a Gene-edited Thp-1 cells PCR Fluorescence detection 10 pg ~2 h [106]

Cas12aFVD Cas12a Gene-edited rice PCR/RPA Fluorescence detection/
naked eye 12 copies ≤40 min [107]
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Table 2. Cont.

System Name Cas Effectors Target Amplification Readout LOD Time References

HOLMESv2 Cas12b SNP/SNM/RNA Asymmetric PCR/LAMP Fluorescence detection 10−8 nM <2.5 h [108]

HOMLES Cas12a SNP PCR Fluorescence detection 10 aM ~1 h [109]

CDetection Cas12b SNP PCR/RPA Fluorescence detection 10−18 M ~1 h [110]

SHERLOCK Cas13a Pathogenic bacteria/
SNPs of ZIKV RPA/RT-RPA Fluorescence detection 0.1% of background

DNA (SNPs) ~1 h [71]

Cas14a-DETECTR Cas14a SNP Phosphorothioate
amplification approach Fluorescence detection - ~1 h [73]

MeCas12a Cas12a SNP RAA/RT-RAA Fluorescence detection/
naked eye 5 copies ~45 min [111]

- Cas12a SNP PCR Fluorescence detection/
naked eye - ~1.5 h [112]

- Cas12a SNV PCR Fluorescence detection/
electrochemistry 10 aM >1 h [113]

- Cas12a Bacillus anthracis/SNP PCR/RPA Fluorescence detection/
naked eye 1 copy ~1.5 h [114]

NASBACC Cas9 SNP between African and
American ZIKV

Nucleic acid
sequence-based amplification Naked eye 2.8 fM ~3 h [115]

- Cas12a SNP - Michaelis–Menten
kinetic effects - - [116]

Note: GMO, genetically modified organism; SNP, single-nucleotide polymorphism; SNM, single-nucleotide mismatch; SNV, single-nucleotide variant; PCR, polymerase chain reaction;
LAMP, loop-mediated isothermal amplification; RPA, recombinase polymerase amplification; RAA, recombinase-aided amplification; RCA, rolling circle amplification; RT-RPA, reverse
transcription-RPA; RT-RAA, reverse transcription-RAA.
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Optimization can be performed in three steps—nucleic acid extraction, amplification
and readout methods. First, for nucleic acid extraction, especially seed materials, the
research and development and innovation of portable simple extraction devices should
be sped up. The DNA direct extraction method and a nucleic acid extraction test strip,
using cell lysate as template for direct amplification, can omit nucleic acid purification
step. However, it is also necessary to consider how to overcome the adverse effects of
inhibitors, such as intracellular ions and proteins on nucleic acid amplification. Secondly,
for nucleic acid amplification, nucleic acid thermostatic amplification technology, such as
RPA, removes the dependence of traditional PCR technology on large-scale instruments
and has a good application prospect. However, how to reduce the cost of nucleic acid
thermostatic amplification enzyme, improve the stability of transportation and preservation,
and optimize the primer design still need to be further studied. Last, the detection is
generally divided into real-time detection and end-point detection. The end-point detection,
such as a nucleic acid test strip and the chromogenic method, is closer to the fast and
visual detection requirements. How to avoid aerosol pollution and ensure sensitivity and
specificity are key to application.

3. Challenges and Prospects

The CRISPR/Cas detection system exhibits many excellent characteristics, such as low
cost, low speed, mild conditions, simple operation, rapid and high accuracy. However,
research on the field of the CRISPR/Cas detection system is only into a few years, and
still in the laboratory stage, and there are some disadvantages that cannot be ignored.
First, the off-target effect is one of the problems since the advent of gene editing, and
may lead to false-positive or -negative results, which should be considered [117–120]. The
structure of different Cas effectors and the unsuitable sequence and secondary structure
of guide RNA [121,122] have significant influences on the off-target effects. In fact, the
mismatch between guide RNA and target is the main reason. Zetsche et al., 2015 [123]
found that the mismatch within the first 5 nt on the 5′ end of the spacer sequence can be
accurately identified, but the others cannot. Fu et al., 2013 [124] found that the specificity
of CRISPR/Cas was complex and depended on the target site. Sometimes, the single and
double mismatches in the 3′ end of the guide RNA showed good tolerance, but the double
mismatches in the 5′ end shown low activities. At the same time, the author also found
that reducing the concentration of the CRISPR/Cas and the guide RNA did not reduce the
off-target effects. If the guide RNA has a high GC content, the hybridization between RNA
and DNA can be more stable [125]. Constructing high-fidelity Cas9 effectors [126,127],
optimizing guide RNA structure [128,129], and high GC content may solve off-target effects.
Second, most Cas effectors require a PAM/protospacer-flanking sequence (PFS) contained
in the target sequences, in order to accurately identify the target sequence, except the Cas14
effector. Further, different Cas effectors have their own bias for recognizing PAM/PFS
(SpCas9, FnCas12a and LbCas12a recognize PAM as NGG, TTN and TTTN). This means
that a target sequence may only be recognized by only one Cas effector. Hence, the selection
of PAM/PFS limits the use of this method. In some cases, there are mutation sites for which
no or no suitable PAM sequence is available, requiring additional insertion. By designing
the PAM sequence at the appropriate position of the primer, the amplifications will have
the PAM sequence recognized by Cas effectors. Therefore, sequence-independent detection
can be performed at any site. By inserting PAM/PFS at suitable locations in the primers, the
amplicon with PAM sites can be used for subsequent experiments [106–108]. In addition,
Cas is a tool for nucleic acid detection and not non-nucleic acid target detection. Nucleic
acid aptamers need to be designed to achieve non-nucleic acid target detection by indirectly
detecting aptamers. However, PAM has the potential to alter the aptamer concept, thus
reducing the binding ability of the aptamer to the target. Third, it is still difficult to achieve
standardization, as well as multiple and quantitative detection. The concentration ratio
of Cas effectors to RNA, the pH, concentration of Mg2+ and Mn2+ of the buffer, and the
reaction temperature may interfere with the reaction process and sensitivity of Cas effec-
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tors. Because of the indiscriminate trans-cleavage of Cas effectors, and the easily saturated
detection signal, it hinders the multiple and quantitative detection by using CRISPR/Cas
detection systems. The standardization problem can be solved to some extent by on-site
calibration and unified systems. A droplet-based microfluidic device [130,131] coupled
with CRISPR/Cas maybe a good choice for detection. Forth, many methods require nucleic
acid amplification before CRISPR/Cas detection to obtain a lower LOD. PCR amplifica-
tion, RPA or other amplification methods usually suffer from problems such as secondary
structures of primers or templates and contaminants, and undoubtedly increase the com-
plexity of detection. At present, there is no better method to avoid this. The only way to
minimize the complexity of sample processing is to optimize the amplification methods
and procedures. Fifth, all the above methods have different disadvantages and need to be
optimized in three steps—nucleic acid extraction, amplification, detection methods, such
as low throughput, instrument dependence or complex design. Through combining and
optimizing several methods, exploring the optimal detection conditions, simplifying the
process of sample pretreatment, reaction steps and readout mode, developing portable de-
vices may be a better choice. Last, the storage and transport of Cas protein and guide RNA
are also a challenge for detection. If the storage temperature of Cas protein and guide RNA
is not sufficient, repeated freezing and thawing during transportation will cause degrada-
tion and inactivation. Although the binding of Cas protein and guide RNA into a binary
complex will prevent degradation and inactivation [132], it is not a permanent solution.
Lyophilizing Cas protein and guide RNA, or improving the storage and transportation
equipment would solve this problem.

The CRISPR/Cas system has unique glamour in high sensitivity and specificity detec-
tion, and there is no need for professional experimental steps and analysis. The CRISPR/Cas
system can be combined with a variety of amplification methods, readout methods, devices
to achieve versatile detection of nucleic acid and non-nucleic acid targets in the fields
of clinical diagnosis, environmental testing, food safety, biological breeding and others.
While many applications of CRISPR testing have been published, CRISPR nucleic acid
testing is still in its infancy and has much room for improvement. With the exploration of
CRISPR/Cas systems combined with nanomaterials, 3D printing technology, the internet,
big data, automation, and artificial intelligence, it will have a great application prospect in
the future.

At present, the biotechnology revolution and industrial transformation are accelerat-
ing. As more diverse traits and products continue to emerge, molecular characterization
information and related databases are very limited and imperfect, rapid and accurate de-
tection methods will become a great challenge for standard detection, and the optimization
of mutation detection technology remains a future endeavor. This should be achieved to
accelerate the research into testing standards and methods for biotechnology products, so
as to protect the intellectual property rights of researchers and provide strong technical
support for national security supervision and monitoring.
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