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Abstract: Emerging portable near infrared (NIR) spectroscopic approaches coupled with data analysis
and chemometric techniques provide opportunities for the rapid characterization of spray-dried
products and process optimization. This study aimed to enhance the understanding of applying
NIR spectroscopy in spray-dried samples by comparing two sample preparation strategies and
two spectrometers. Two sets of whey protein–maltodextrin matrixes, one with a protein content
gradient and one with a consistent protein content, were spray-dried, and the effect of the two
preparation strategies on NIR calibration model development was studied. Secondly, a portable NIR
spectrometer (PEAK) was compared with a benchtop NIR spectrometer (CARY) for the moisture
analysis of prepared samples. When validating models with the samples with focused protein
contents, the best PLS protein models established from the two sample sets had similar performances.
When comparing two spectrometers, although CARY outperformed PEAK, PEAK still demonstrated
reliable performance for moisture analysis, indicating that it is capable as an inline sensor.

Keywords: spray drying; NIR spectroscopy; PLS regression; food composition analysis; process
optimization

1. Introduction

Drying is one of the crucial steps in food and ingredient processing given its utility
in extending shelf life and improving the functionality of ingredients. Spray-drying has
been found to be a highly versatile drying method for the transformation of a liquid feed to
a powder. Spray-drying produces powders with a low moisture content and a high bulk
density, which results in storage stability and a reduced cost of packaging and transporta-
tion [1]. Due to good commercial and economic feasibility, the industrial applications of
spray-drying have expanded to a wide range of powder products including dairy and
beverage products [2,3]. The emerging trend in using spray-dried microencapsulation to
protect heat-sensitive and bioactive compounds has led to the further use of spray drying
for oils [4] and flavors [5]. Whey protein isolate (WPI) and maltodextrin are commonly
used as wall materials for the preparation of microcapsules due to their low costs and
wide availability [4]. A rapid method to characterize WPI and maltodextrin would en-
hance our understanding of the microencapsulation process and improve the qualities of
microcapsules.

Process analytical technology (PAT) is an initiative led by the Food and Drug Ad-
ministration (FDA) that promotes the development of in-process sensing technologies to
improve manufacturing control, enhance process understanding, improve product quality,
and reduce waste [6]. The food industry has adapted this approach by using multivariate
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measurements and chemometric analysis for the process monitoring and quality control of
dried apple chips [7,8], honey [9], starches [10], infant formula [11,12], dairy products [13],
citrus microcapsules [14], protein powder [15], and edible oils [16,17]. Among the instru-
ments applied in PAT solutions, near infrared spectroscopy (NIR) has been the most popular
analyzer because NIR requires no sample preparation, providing possibilities for on-line or
in-line rapid measurements [18]. The recent emergence of low-cost portable miniature NIR
spectrometers has further expanded the popularity of NIR. Portable spectrometers provide
excellent flexibility in the rapid and non-destructive analysis of a drying process, which
is not possible with bench top spectrometers [19]. The quality of spray-dried products
depends on the feed characteristics as well as the drying conditions such as the liquid feed
rate, drying gas flow rate, inlet and outlet temperature, etc. [20,21]. A PAT solution for
spray drying could greatly simplify the process control by providing rapid feedback of the
product quality, shortening the troubleshooting process and reducing defective products
and thus reducing waste and energy cost.

NIR spectroscopy is based on the Beer–Lambert Law. The chemical vibrations and
their overtones and combinations share a linear relationship with the absorbance of light at
certain wavelengths (feature bands). The wavelength region of NIR includes overlapped
feature bands of common chemical vibrations in foods. Through chemometric tools such
as partial least square regression (PLS), the chemical information in NIR spectra can be
extracted to calibrate prediction models. A typical procedure for establishing NIR predic-
tion models includes sample preparation, sample characterization, model calibration, and
model validation. Calibration samples are the foundation of prediction models. Calibration
algorithms establish models by correlating the chemical composition of calibration samples
to corresponding NIR spectra. To validate the model performance, the models predict the
composition of validation samples and compare the results to reference values acquired
through conventional analysis. PLS is the most popular tool to establish NIR prediction
models [22] and has been widely applied in analysis of agricultural and biological materials.
The chemical compositions of agricultural samples vary slightly across samples, and a large
number of samples (>80) is often required to establish a robust linear relationship between
compositions and the spectra [23,24]. This sample preparation approach can be referred
to as a local set. For formulated food samples, it is possible to design a calibration sample
set with a wide distribution of certain compositions, which can be referred to as a global
set. Models built on a global set have a greater working range than those built on a local
set, meaning that the prediction results are more accurate when it comes to outliers. A
global set could also decrease the sample set size required for a robust model, as the linear
relationship of the analyte and the spectrum is strong in contrast to the spectral noise.

Although portable NIR spectrometers have become a valuable resource in composition
analysis, and NIR spectroscopy has been applied for the characterization of spray-dried
products, to the best of the authors’ knowledge, no investigation exists on the charac-
terization of WPI–maltodextrin matrixes through NIR. When characterizing spray-dried
samples through NIR spectroscopy, there are several challenges. The differences in the
particle size and morphology of spray-dried powders lead to undesired interference in NIR
analysis [21]. The variation of the homogeneity of sample characteristics between batches
also adds complexity to the application of NIR in spray-drying. Moreover, the preparation
of a large number of calibration samples is time consuming and labor intensive. The overall
goal of this study was to enhance the understanding of applying NIR spectroscopy in
spray-dried samples. Specifically, this study aims to compare NIR protein models built
on a heterogeneous set of spray-dried WPI–maltodextrin matrixes with various protein
contents (global set) and a homogeneous set with a focused protein content (local set). This
study also aims to compare the performance of a portable NIR spectrometer for moisture
analysis with a benchtop NIR spectrometer. In addition, several chemometric optimization
techniques (preprocessing and data partition) were evaluated to enhance the robustness of
the prediction models.
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2. Materials and Methods
2.1. Materials

Hilmar™ 9000 Whey protein isolate was supported by Hilmar Ingredients (Hilmar,
CA, USA). Maltodextrin (DE10) and N-OSA modified starch (CAPSUL®) were provided by
Ingredion (Westchester, IL, USA).

2.2. Sample Preparation

The feed solutions were prepared by dissolving 100 g of solid mixture into 400 g of
deionized water to achieve a 20% (w/w) solid concentration. The solid mixture included
maltodextrin DE 10 (MD10), modified starch, and whey protein isolate (WPI). The mass
ratio of MD10 and modified starch remained at 4:1 across samples, and the WPI content
varied depending on the experimental design. Two sets of samples were prepared in
order to compare the global and local approaches (two protein content distributions of
samples for NIR calibration modeling). As shown in Table 1, set A (global set) comprised
16 calibration samples with WPI contents varying from 10% to 25% (w/w) of the total
solid with a 1% increment. Thereafter, five validation samples were spray-dried with
approximate WPI contents of 12%, 15%, 18%, 21%, and 24% (w/w). On the other hand,
Set B (local set) comprised 20 spray-dried samples, each with approximately 15% (w/w)
WPI content. Overall, a total of 41 whey protein–maltodextrin matrixes were prepared and
spray-dried in this study.

Table 1. Composition of soli mixtures for the preparation of set A samples.

Sample Name CAPSUL (g) MD10 (g) WPI (g)

C10 18.2 72.1 10.0
C11 17.8 71.2 11.0
C12 17.6 70.4 12.0
C13 17.4 69.6 13.1
C14 17.3 68.8 14.0
C15 17.0 68.3 15.3
C16 16.8 67.2 16.0
C17 16.6 66.4 17.1
C18 16.4 65.6 18.1
C19 16.2 64.8 19.0
C20 16.1 64.1 20.1
C21 15.8 63.2 21.1
C22 15.6 62.4 22.1
C23 15.4 61.6 23.1
C24 15.2 60.9 24.1
C25 15.1 60.0 25.0
V12 8.9 35.1 6.0
V15 8.5 34.1 7.6
V18 8.3 32.8 9.1
V21 7.9 31.6 10.5
V24 7.6 30.5 12.1

CAPSUL: modified starch; MD10: maltodextrin DE10; WPI: whey protein isolate.

2.3. Spray Drying

A lab-scale spray-dryer (BÜCHI Mini Spray Dryer B-290, Flawil, Switzerland) was
used for the preparation of samples. The inlet temperature was 160 ◦C and the outlet
temperature was controlled at 85~90 ◦C by adjusting the feed rate from 4.5 to 7.5 mL/min.
The aspirator flow rate was 35 m3/h, and the spray gas flow rate was 667 L/h. Right after
spray drying, powders were transferred into glass (2 oz. clear glass straight-sided squat jar,
Qorpak, PA, USA), sealed, and stored at room temperature.
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2.4. Protein Analysis

A combustion nitrogen analyzer, rapid N exceed® (Elementar, Ronkonkoma, New
York, NY, USA), was used for the protein analysis. In total, 250 mg aspartic acid was used
as the blank and triplicates of 250 mg sample were loaded into the equipment. The nitrogen
to protein factor was 6.25.

2.5. Moisture analysis

A Mettler Toledo HR83-P Halogen Moisture Analyzer (Columbus, OH, USA) was
used to carry out the moisture analysis. Approximately 1 g of sample was loaded onto
an aluminum plate, and the drying temperature was set at 90 ◦C. The moisture content is
expressed as % w.b. (wet basis).

2.6. Acquisition of NIR Spectra

Two types of NIR equipment were used in this study for characterization of spray-
dried powders. A portable NIR spectrometer was employed to collect NIR spectra of
samples in a jar. The spectrometer included a miniature spectrometer module, PEAK
XNIR (Ibsen Photonics A/S, Farum, Denmark), a tungsten–halogen fiber light source
(ASB-W-020, Spectral Products, Putnam, CT, USA), and an NIR reflectance probe (R600,
StellarNet Inc., Tampa, FL, USA). The InGaAs detector in the spectrometer module was
cooled to −20 ◦C, and the exposure time was set at 20.32 ms. The scan mode was set to
Hadamard. The spectra comprised 214 bands between 1650 nm to 2400 nm. Triplicate
scanning was performed, and the samples were shaken thoroughly between the replicates
to ensure homogeneity.

A benchtop NIR spectrometer (Varian CARY 5G, Agilent Technologies, Inc., Santa
Clara, CA, USA) was also used to collect NIR spectra in the diffuse reflectance mode.
Samples were loaded onto a disk of the diffuse reflectance accessory (Cricket™, Harrick
Scientific Products, Inc., New York, NY, USA), and the sample surface was evened by a
flat spatula. Zero/baseline correction was performed. Duplicate scanning was carried
out with 1600 bands between 900 nm and 2500 nm. The resolution of the spectrometer
was 1 nm. The spectral data acquired by both spectrometers were then analyzed using
MATLAB (Version R2021b, The Mathworks, Natick, MA, USA).

2.7. Spectral Analysis
2.7.1. Preprocessing

Preprocessing is a necessary step in spectral analysis. Spectral variations and baseline
shifts often exist in NIR spectra due to instrumental noise, changes in sample morphology
and density, differences in the path length between spectrum scanning, and the use of
fiber. To decrease the impact of the undesired interference, Savitzky–Golay filtering (SG),
standard normal variate transformation (SNV), and first derivative were used. SG reduces
instrumental noise by smoothening NIR spectra through polynomial fitting [25,26]. A
second-degree SG filter with a 25-point window was applied to the spectra of the set A
samples, and a third-degree filter with a 9-point window was used for the set B samples.
SNV was used to reduce vertical baseline shift [27]. The derivative method, on the other
hand, is effective in reducing additive and multiplicative baseline variations.

2.7.2. Data Partition

To simulate the preparation of external validation samples, sample set A included
validation samples that were spray-dried following the completion of calibration samples.
However, when external validation samples are unavailable, dividing the existing set of
samples into a calibration set and validation set could also be used to validate the robustness
of the calibration models [28]. For the protein model calibration, sample set B was divided
into calibration sets and validation sets through systematic sampling, the Kennard–Stone
algorithm (KS), and the Joint XY (SPXY) algorithm. Systematic sampling first ranked the
samples based on their y values (protein, moisture, etc.), and every fourth or third sample
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was selected as a validation sample. The unselected samples became the calibration set.
The KS algorithm selects samples based on their distance in the instrument response data
space and has been widely used in NIR spectroscopy for data partition [29–33]. The SPXY
algorithm selects samples in a similar way as KS algorithm but focuses on the distance in
both the instrumental response space and the dependent variable space to capture more
information regarding the relationship of the samples [34]. The samples for moisture
models were selected in a similar manner as before.

2.7.3. Development of the Calibration Models

In this study, leave-one-out cross validation was performed to determine the optimal
number of latent variables to avoid overfitting. The model robustness was evaluated using
the coefficient of determination for calibration (R2

c) and for validation (R2
v), root mean

square error of calibration (RMSEC), and root mean square error of validation (RMSEV).
The variable importance in the projection (VIP) [35] for each model was computed for the
interpretation of NIR spectra.

2.7.4. Comparison of Global and Local Protein Models

To establish NIR calibration models, a large number of samples is usually required for
a robust model, and it is a common practice that the samples used in model calibration have
a small range of y values. For formulated samples such as spray-dried powder, it is possible
to design a sample set that includes samples with evenly distributed y values within a
range to establish a global calibration model. It was hypothesized that a global sample set
can calibrate a robust NIR model with a limited number of samples due to the additivity
of the dependent variable and the instrumental response. To test this hypothesis, a series
of protein calibration models were established based on sample sets A and B. In set A,
16 calibration samples were used to establish protein calibration models with three different
preprocessing methods. Those models were validated by 5 validation samples in set A. In
set B (excluding one outlier), 13 samples were selected through rank systematic sampling,
KS, and SPXY to establish calibration models. The remaining 6 samples in set B were
used to validate the performance of the models internally. Among the models established
through different data partition methods, KS and SPXY data partition algorithms have
shown performance advantages compared to systematic sampling in the validation phase.
Thus, KS and SPXY were used to select 13 samples from 16 calibration samples in set A to
establish calibration models, which were validated by the same samples that were used to
validate set B models. Then, all 21 set A samples were used to establish a calibration model
which was validated by all 20 set B samples.

2.7.5. Comparison of a Benchtop NIR Spectrometer and a Portable NIR Spectrometer

A reflectance NIR spectrometer (PEAK) for spray-dried powders was developed to
characterize the moisture content of spray-dried powders. To evaluate the effectiveness
of scanning through a glass jar with this NIR spectrometer in the wavelength range from
1650 nm to 2400 nm, spectra were acquired from the spray-dried samples by PEAK and a
benchtop NIR spectrometer (CARY). Combining set A and set B, a total of 82 spectra were
collected from the two spectrometers. The spectra were preprocessed by SNV+SG and first
derivative, respectively, before being divided by systematic sampling (Sys), KS, and SPXY,
respectively, where 28 samples were selected as the calibration set and the remaining 13 as
the validation set. Moisture models with various combinations of preprocessing methods
and data partition methods were calibrated and validated. The model robustness during
the calibration phase and validation phase would provide evidence for the effectiveness
of the NIR spectrometer and the strategy to maximize spectrometer performance through
preprocessing and data partition.
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3. Results and Discussion
3.1. Descriptive Statistics of Spray Dried Whey Protein Matrix

The descriptive statistics of moisture content and protein content are shown in Table 2.
The moisture content of the 21 set A samples ranges from 5.97 % to 8.76%, and the 20 set
B samples range from 5.02% to 7.19%. The moisture content was in a typical range for
spray-dried powers after three weeks of storage. For protein content, set A comprises
samples formulated with a gradient of WPI from 10% to 25%, and the standard deviation
of set A protein content reflects that trait. The protein content of sample set B, on the other
hand, was designed to be distributed close to the mean value.

Table 2. Mean moisture content (w.b.) and protein content of two sample sets.

Sample Set Mean Moisture Content (%, w/w) Mean Protein Content (%, w/w)

A 7.35 ± 0.87 16.27 ± 4.32
B 6.01 ± 0.56 13.75 ± 0.52

A + B 6.66 ± 0.99 15.04 ± 3.36

3.2. Comparison of Global Protein Model and Local Protein Model

For the comparison of global and local protein models, a total of 12 calibration models
were established as shown in Table 3. To establish the local protein models that focus on a
narrow distribution of protein content, 13 calibration samples were selected from set B, and
the 6 remaining samples became the validation samples. Among the calibration samples
in set A, 13 samples were also selected to establish global protein models, which were
validated by the same validation samples used for their corresponding local models. All
models except one (SNV, set B, KS, R2

C = 0.75) achieved good linear fitting in the calibration
phase (R2

C > 0.90). In the validation phase, models established from set B have RMSEVs
lower than 0.25%, and the RMSEVs range from 0.21% to 0.75%. Due to the relatively small
variation in the protein content of set B (standard deviation = 0.56%) and small calibration
sample size (13), the chemical information contained in the NIR spectra was more suscepti-
ble to instrumental noise and other interference, and thus the models resulted in poorer
linear fitting to the validation samples and higher predication errors in the validation phase.
Overall, across all models in the validation phase, the models based on set B samples
demonstrated greater robustness with an average RMSEV of 0.17% compared to set A’s
average RMSEV of 0.46%, which was expected since the local validation samples have simi-
lar characteristics to the local calibration samples. Similar results were also reported [36]
where global models built on different temperatures underperform when compared to
local models built on room temperature. However, in this study, one global model (first
derivative, set A, SPXY) achieved an R2

V of 0.67 and RMSEV of 0.11%, which supported
the hypothesis that a well-trained global protein model could predict the properties of
spray-dried whey protein matrix with a narrow protein content distribution due to the
linear relationship of the protein content and NIR spectrum.

Table 3. Validation performance of global protein models (set A) and local protein models (set B).

Data Partition KS SPXY
Preprocessing Sample Set #LV R2

C RMSEC (%) R2
V RMSEV (%) #LV R2

C RMSEC (%) R2
V RMSEV (%)

None A 6 0.99 0.39 −1.83 0.57 6 0.99 0.39 −1.86 0.41
B 6 0.93 0.07 0.68 0.19 6 0.91 0.10 0.53 0.17

First
derivative

A 4 1.00 0.09 −0.27 0.48 5 1.00 0.04 0.67 0.11
B 7 1.00 0.01 0.37 0.25 7 1.00 0.01 0.48 0.14

SNV A 6 1.00 0.06 −3.87 0.52 5 1.00 0.14 −13.98 0.69
B 4 0.75 0.16 0.75 0.12 5 0.91 0.10 0.21 0.16

#LV: number of latent variables employed in the model; R2
C: coefficient of determination for calibration; RMSEC:

root mean square error of calibration; R2
V: coefficient of determination for validation; RMSEV: root mean square

error of validation.

Among the three preprocessing methods, two data partition methods, and two types
of sample distribution (set A vs. set B), no single preprocessing method or data partition
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method resulted in improved overall robustness. This result supports the finding that the
ability of preprocessing and data partition methods to reduce interference and select a
representative calibration set depends on the sample characteristics, spectrometer, measur-
ing environment, etc. [25]. However, some combinations of methods resulted in greater
model robustness than others. Spectra of both set A and set B preprocessed with first
derivative established models with the least RMSEV (0.11%) and the third least RMSEV
(0.14%) when divided by SPXY, which might be a result of interference on the data partition
methods. Based on the differences in samples in the instrumental response (X) space
and/or dependent variable (y) space, where the distance between samples represents the
difference in their chemical characteristics, data partition methods select samples that are
vastly different from each other to generate a representative calibration set. However, the
difference also includes interference such as instrumental noise, powder morphology, and
particle size [21], which disrupts the function of data partition methods. After reducing the
interference with the preprocessing, some data partition methods can distinguish samples
with more accurate information and thus improve the robustness of predictive models.

To further explore the robustness of a global protein sample set (A) in the characteriza-
tion of a local sample set (B), all 21 set A samples were preprocessed with first derivative to
establish a calibration model, which was then validated by all 20 set B samples including
the outlier with 15.62% protein content. The prediction result is demonstrated in Figure 1.
The model utilizes four latent variables and an R2

C of 1.00, RMSEC of 0.19%, R2
v of 0.73,

and RMSEV of 0.27%. Although the linear fitting on the validation samples (R2
v) is not as

close as the calibration samples, the prediction error in the validation phase (RMSEV) was
similar to the one in the calibration phase (RMSEC). Furthermore, linear fitting might not
be a good measurement of robustness in this situation where the validation samples had
a narrow protein content distribution and an outlier was present. The prediction results
suggested that the global protein model can be used to characterize the samples with
focused protein content. A similar strategy might also be viable in other focused protein
content ranges depending on the application of the global model, and in calibration models
for other chemical components whose relationship with NIR spectrum can be described by
the Beer–Lambert Law.
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established with 21 global protein samples.

Identification of Feature Bands

As shown in Figure 2, the variable importance in the projection (VIP) of the protein
model established with all 21 set A samples provided insight into the feature wavelengths
of protein content in the spray-dried samples. Thirteen peaks (1132, 1196, 1410, 1486, 1676,
1754, 1900, 1972, 2066, 2151, 2269, 2310, 2419 nm) with a VIP greater than 1 illustrated
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the feature bands of NIR spectra (first derivative) that played an important role in the
prediction of protein content, which were corresponding to certain chemical vibrations
associated with protein. The peak at 2151 nm has the highest VIP (3.18). As shown in
Figure 3, the increase of WPI concentration in the powder clearly shifted the spectral
trend at 2151 nm and 2066 nm. The peak of 2151 nm has been found to be a result of the
combination of the N-H bend second overtone, C-H stretch, C=O stretch, N-H in-plane
bend, and C-N stretch [37]. A study on corn protein [24] also pointed out the significance of
this spectral band for protein content, as a few wavelengths from this region were sufficient
to develop multiple linear regression models for the prediction of corn protein content.
Other feature bands identified based on VIP are also associated with chemical vibrations in
protein. The value of 2066 nm is associated with the C=O carbonyl stretch second overtone
of primary amide, 1676 nm with the C-H stretch first overtone, 1900 and 1972 nm with the
NH2 bend, and 1410 and 1486 nm with the N-H stretch first overtone [37]. The findings of
protein feature bands provide a direction for the simplification of predictive models that
can be employed for the processing control of spray-drying by a rapid characterization of
spray-dried powders. It also solidifies the significance of those chemical vibrations for the
characterization of protein in spray-dried whey protein.
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3.3. Comparison of a Benchtop NIR Spectrometer and a Portable NIR Spectrometer for
Moisture Calibration

As shown in Table 4, 18 moisture predictive models were established based on the
spectra acquired from PEAK (1650 nm to 2400 nm) and CARY (950 nm to 2500 nm). The
calibration phase applied three preprocessing methods (no preprocessing, first derivative,
and SNV) and three data partitioning methods (systematic sampling (Sys), KS, and SPXY).
Overall, CARY has shown a more robust performance across various combinations of
preprocessing and data partition methods than PEAK. CARY models have good linear
fittings for calibration with the lowest R2

C = 0.95, and this performance continued in the
validation phase with the lowest R2

v = 0.87. In terms of the root mean square errors, CARY
models achieved low errors in both calibration and validation phases, with RMSEC ≤0.23%
and RMSEV ≤0.29%. The best combination of preprocessing and data partition, in terms
of RMSEV, was first derivative coupled with SPXY, which resulted in the lowest RMSEV
(0.12%) among all models. This combination was also the best for protein prediction
based on CARY, as previously discussed, which supported the hypothesis that an optimal
calibration strategy can be found for a certain NIR scanning condition [25]. Depending on
the characteristics of the sample, the spectral scanning environment, and the design of the
spectrometer, preprocessing coupled with data partitioning has the potential to dampen
noises in relation to measurements and select a representative calibration set containing
most chemical information in the NIR spectra.
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Table 4. Validation performance of moisture predictive models established based on a portable NIR
spectrometer (PEAK) and a benchtop spectrometer (CARY).

Spectrometer Preprocessing Data Partition #LV R2
C RMSEC (%) R2

V RMSEV (%)

PEAK None Sys 4 0.92 0.30 0.82 0.39
KS 4 0.93 0.25 0.87 0.39

SPXY 4 0.88 0.33 0.93 0.26

First derivative Sys 3 0.96 0.21 0.85 0.36
KS 3 0.95 0.22 0.21 0.41

SPXY 3 0.93 0.28 0.81 0.28

SNV Sys 3 0.90 0.33 0.84 0.37
KS 3 0.90 0.32 0.83 0.40

SPXY 3 0.87 0.36 0.92 0.28

CARY None Sys 4 0.97 0.19 0.96 0.19
KS 3 0.95 0.23 0.94 0.23

SPXY 4 0.98 0.15 0.90 0.29

1st derivative Sys 3 0.98 0.15 0.96 0.18
KS 4 0.98 0.14 0.95 0.16

SPXY 3 0.97 0.18 0.94 0.12

SNV Sys 3 0.95 0.22 0.93 0.25
KS 4 0.96 0.20 0.91 0.16

SPXY 4 0.96 0.21 0.87 0.13

As for models based on PEAK spectra, the R2
C range from 0.87% to 0.97% and R2

v
varies from 0.60% to 0.93%. A wider range compared to CARY models also appeared
in RMSEC and RMSEV, ranging from 0.16 to 0.37 and 0.26 to 0.40, respectively. These
differences can be explained by the use of a fiber optic cable and the glass layer in the
light path that inflict more noise in PEAK spectra, while in CARY, the samples were
loaded into the instrument with less environmental interference. The best combination of
preprocessing and data partitioning method was surprisingly no preprocessing coupled
with SPXY (R2

v = 0.93, RMSEV = 0.26%).
The principle of preprocessing methods is essentially transforming the spectrum to

remove the instrumental noise and baseline shifts. However, editing the information
contained in the spectrum comes with a risk that valuable information could be lost in
preprocessing [25,38] which has been found in other studies [8,21]. Furthermore, the
use of the fiber optic cable and the glass wall in the light path added uncertainty to the
performance of commonly used preprocessing methods. Although it is reported that
silicone glass has a limited impact on NIR spectra below 2700 nm [39], the difference in the
thickness of the glass layer in sample containers is still an interfering factor. In terms of
data partitioning methods, SPXY once again showed advantages as all SPXY models had a
lower RMSEV compared to their counterparts. Overall, the best-performing PEAK model
reached a similar level of linear fitting to CARY models, which suggested that PEAK can
be used as a rapid moisture characterization tool for spray-dried whey protein matrixes.

4. Conclusions

The results from this study indicated that it is possible to establish an NIR multivariate
model based on a spray-dried whey protein sample sets with a wide distribution of protein
content for the characterization of samples with a much smaller variance of protein content
(R2

V = 0.73 and RMSEV = 0.27%). VIP identified the feature bands for protein based on
the PLS model, and the band at 2151 nm was found to be significant for the prediction of
protein content. The feasibility of a portable NIR spectrometer was validated by predicting
the moisture content of spray-dried powders through a glass container and a fiber optic
cable, where the best-performing PLS model was validated with an R2

V of 0.93 and RMSEV
of 0.26%. This study found that the best combination of preprocessing and data partitioning
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methods for the benchtop NIR spectrometer was the first derivative coupled with SPXY,
which resulted in a strong performance of the PLS calibration model for protein content
and moisture content. Although the preprocessing methods evaluated in the study did
not improve the performance of moisture models based on PEAK, SPXY models showed
advantages in the validation phase. Finally, the portable NIR sensor with the wavelength
range of 1650 nm to 2400 nm has potential for the real-time characterization of spray-
dried powders.

Author Contributions: Conceptualization, Z.T., Y.L. and J.I.; methodology, Z.T.; software, Z.T.;
validation, Y.L.; formal analysis, Z.T.; investigation, Z.T.; resources, Y.L. and J.I.; data curation, Z.T.;
writing—original draft preparation, Z.T.; writing—review and editing, Y.L., Z.T. and J.I.; visualization,
Z.T.; supervision, Y.L. and J.I.; project administration, Y.L.; funding acquisition, Y.L. and J.I. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Center for Advanced Research in Drying (Award No. 2113915),
an Industry University Cooperative Research Center supported by National Science Foundation.

Data Availability Statement: The datasets generated for this study are available on request to the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Selvamuthukumaran, M.; Tranchant, C.; Shi, J. Spraying Drying Concept, Application and Its Recent Advances in Food Processing.

In Handbook on Spray Drying Applications for Food Industries; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–29. ISBN 9780815362456.
2. Schuck, P.; Jeantet, R.; Bhandari, B.; Chen, X.D.; Perrone, Í.T.; de Carvalho, A.F.; Fenelon, M.; Kelly, P. Recent advances in spray

drying relevant to the dairy industry: A comprehensive critical review. Dry. Technol. 2016, 34, 1773–1790. [CrossRef]
3. Shishir, M.R.I.; Chen, W. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends Food Sci. Technol.

2017, 65, 49–67. [CrossRef]
4. Yakdhane, A.; Labidi, S.; Chaabane, D.; Tolnay, A.; Nath, A.; Koris, A.; Vatai, G. Microencapsulation of Flaxseed Oil—State of Art.

Processes 2021, 9, 295. [CrossRef]
5. Mohebbi, M.; Faridi, A. Encapsulation of Flavors by Spray-Drying Techniques. In Handbook on Spray Drying Applications for Food

Industries; CRC Press: Boca Raton, FL, USA, 2019; pp. 182–201. ISBN 9781119130536.
6. Food and Drug Administration Guidance for Industry, PAT-A Framework for Innovative Pharmaceutical Development, Manufac-

turing and Quality Assurance. 2004. Available online: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulato
ryInformation/Guidances/ucm070305.pdf (accessed on 22 July 2022).

7. Kapoor, R.; Malvandi, A.; Feng, H.; Kamruzzaman, M. Real-time moisture monitoring of edible coated apple chips during hot air
drying using miniature NIR spectroscopy and chemometrics. Lwt 2022, 154, 112602. [CrossRef]

8. Malvandi, A.; Feng, H.; Kamruzzaman, M. Application of NIR spectroscopy and multivariate analysis for Non-destructive
evaluation of apple moisture content during ultrasonic drying. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 269, 120733.
[CrossRef]

9. Sivakesave, S.; Irudayaraj, J. Prediction of Inverted Cane Sugar Adulteration of Honey by Fourier Transform Infrared Spectroscopy.
J. Food Sci. 2001, 66, 972–978. [CrossRef]

10. Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. J.
Agric. Food Chem. 2002, 50, 3912–3918. [CrossRef]

11. Kang, R.; Wang, X.; Zhao, M.; Henihan, L.E.; O’Donnell, C.P. A comparison of benchtop and micro NIR spectrometers for infant
milk formula powder storage time discrimination and particle size prediction using chemometrics and denoising methods. J.
Food Eng. 2022, 329, 111087. [CrossRef]

12. Henihan, L.E.; O’Donnell, C.P.; Esquerre, C.; Murphy, E.G.; O’Callaghan, D.J. Quality Assurance of Model Infant Milk Formula
Using a Front-Face Fluorescence Process Analytical Tool. Food Bioprocess Technol. 2018, 11, 1402–1411. [CrossRef]

13. Paradkar, M.M.; Irudayaraj, J. Determination of cholesterol in dairy products by infrared techniques: FT-NIR method. Int. J. Dairy
Technol. 2002, 55, 133–138. [CrossRef]

14. Yoplac, I.; Avila-George, H.; Vargas, L.; Robert, P.; Castro, W. Determination of the superficial citral content on microparticles: An
application of NIR spectroscopy coupled with chemometric tools. Heliyon 2019, 5, e02122. [CrossRef] [PubMed]

15. Ingle, P.D.; Christian, R.; Purohit, P.; Zarraga, V.; Handley, E.; Freel, K.; Abdo, S. Determination of Protein Content by NIR
Spectroscopy in Protein Powder Mix Products. J. AOAC Int. 2016, 99, 360–363. [CrossRef] [PubMed]

16. Wójcicki, K.; Khmelinskii, I.; Sikorski, M.; Sikorska, E. Near and mid infrared spectroscopy and multivariate data analysis in
studies of oxidation of edible oils. Food Chem. 2015, 187, 416–423. [CrossRef] [PubMed]

http://doi.org/10.1080/07373937.2016.1233114
http://doi.org/10.1016/j.tifs.2017.05.006
http://doi.org/10.3390/pr9020295
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070305.pdf
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070305.pdf
http://doi.org/10.1016/j.lwt.2021.112602
http://doi.org/10.1016/j.saa.2021.120733
http://doi.org/10.1111/j.1365-2621.2001.tb08221.x
http://doi.org/10.1021/jf011652p
http://doi.org/10.1016/j.jfoodeng.2022.111087
http://doi.org/10.1007/s11947-018-2112-7
http://doi.org/10.1046/j.1471-0307.2002.00045.x
http://doi.org/10.1016/j.heliyon.2019.e02122
http://www.ncbi.nlm.nih.gov/pubmed/31388576
http://doi.org/10.5740/jaoacint.15-0115
http://www.ncbi.nlm.nih.gov/pubmed/26960288
http://doi.org/10.1016/j.foodchem.2015.04.046
http://www.ncbi.nlm.nih.gov/pubmed/25977045


Foods 2023, 12, 467 12 of 12

17. Yang, H.; Irudayaraj, J.; Paradkar, M.M. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy.
Food Chem. 2005, 93, 25–32. [CrossRef]

18. Pomerantsev, A.L.; Rodionova, O.Y. Process analytical technology: A critical view of the chemometricians. J. Chemom. 2012, 26,
299–310. [CrossRef]

19. Zhu, C.; Fu, X.; Zhang, J.; Qin, K.; Wu, C. Review of portable near infrared spectrometers: Current status and new techniques. J.
Near Infrared Spectrosc. 2022, 30, 51–66. [CrossRef]

20. Fazaeli, M.; Emam-Djomeh, Z.; Ashtari, A.K.; Omid, M. Effect of spray drying conditions and feed composition on the physical
properties of black mulberry juice powder. Food Bioprod. Process. 2012, 90, 667–675. [CrossRef]

21. Maltesen, M.J.; van de Weert, M.; Grohganz, H. Design of Experiments-Based Monitoring of Critical Quality Attributes for the
Spray-Drying Process of Insulin by NIR Spectroscopy. AAPS PharmSciTech 2012, 13, 747–755. [CrossRef]

22. Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives–A review. Anal. Chim. Acta 2018,
1026, 8–36. [CrossRef]

23. Wang, Z.; Wu, Q.; Kamruzzaman, M. Portable NIR spectroscopy and PLS based variable selection for adulteration detection in
quinoa flour. Food Control. 2022, 138, 108970. [CrossRef]

24. Fatemi, A.; Singh, V.; Kamruzzaman, M. Identification of informative spectral ranges for predicting major chemical constituents
in corn using NIR spectroscopy. Food Chem. 2022, 383, 132442. [CrossRef] [PubMed]

25. Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra.
TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [CrossRef]

26. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation. Anal. Chem. 1964, 36, 1627–1639. [CrossRef]
27. Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse

Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [CrossRef]
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