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Abstract: Sea buckthorn (Hippophae rhamnoides L.) (SB) is increasingly consumed worldwide as a food
and food supplement. The remarkable richness in biologically active phytochemicals (polyphenols,
carotenoids, sterols, vitamins) is responsible for its purported nutritional and health-promoting
effects. Despite the considerable interest and high market demand for SB-based supplements, a
limited number of studies report on the authentication of such commercially available products.
Herein, untargeted metabolomics based on ultra-high-performance liquid chromatography coupled
with quadrupole-time of flight mass spectrometry (UHPLC-QTOF-ESI+MS) were able to compare the
phytochemical fingerprint of leaves, berries, and various categories of SB-berry herbal supplements
(teas, capsules, tablets, liquids). By untargeted metabolomics, a multivariate discrimination analysis
and a univariate approach (t-test and ANOVA) showed some putative authentication biomarkers
for berries, e.g., xylitol, violaxanthin, tryptophan, quinic acid, quercetin-3-rutinoside. Significant
dominant molecules were found for leaves: luteolin-5-glucoside, arginine, isorhamnetin 3-rutinoside,
serotonin, and tocopherol. The univariate analysis showed discriminations between the different
classes of food supplements using similar algorithms. Finally, eight molecules were selected and con-
sidered significant putative authentication biomarkers. Further studies will be focused on quantitative
evaluation.

Keywords: sea buckthorn; Hippophae rhamnoides L.; commercial food supplements; authenticity
biomarkers; metabolomics; UHPLC-QTOF-ESI+MS

1. Introduction

Sea buckthorn (SB, Hippophae rhamnoides L. or Elaeagnus rhamnoides (L.) A. Nelson,
Figure 1) is a deciduous, dioecious thorny shrub belonging to the Elaeagnaceae family [1–4].
Native to regions of Europe and Asia, due to its high adaptability to extreme cold, drought,
saline, and alkaline soils, sea buckthorn grows naturally or is cultivated nowadays on
millions of hectares worldwide [3–8]. It is a versatile plant with a rich history and multiple
ecological, economic, and therapeutical applications (Supplementary Figure S1) [7,9–11].
The strong and complex root system with nitrogen-fixing nodules makes SB an optimal
plant for soil and water conservation in eroded areas [12,13], and biodiversity protec-
tion [14]. In the food industry, SB is a valuable ingredient of food items such as jams, cheese,
yogurt, fermented food, juices and other beverages, probiotic foods, or used as a food
additive [10,15–19]. It can also supplement animal diets to improve the productivity and
quality of final products [20–23].
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Figure 1. Sea buckthorn (Hippophae rhamnoides L. or Elaeagnus rhamnoides (L.) A. Nelson). Branch 
with red-orange ripe berries, thorns, and leaves (Photos taken at the Agricultural Research and De-
velopment Station (SCDA) Secuieni, Neamt County, Romania by A.C. Raclariu-Manolică). 

The health-promoting properties of SB are attracting by far the most considerable 
attention from the research community, producers, and industry [11,24,25], becoming a 
common ingredient in a wide range of food supplements available on the markets [17]. 
Besides the large variability of composition due to its biological (genetic) strain, and geo-
graphical origin, many concerns are related to the authenticity of food supplements de-
clared to contain SB components (berries or leaves). Contamination and adulteration of 
food supplements lead to variations in identity, purity, and expected benefits or therapeu-
tic properties of the claimed botanical ingredient [26]. Therefore, finding new analytical 
approaches to ensure the quality and authenticity of food supplements is essential to min-
imize the potential risks related to their safe intake and to reach the expected nutritional 
and health-promoting effects [27,28]. 

All parts of sea buckthorn (berries, leaves, stems, shoots, bark, and roots) are used 
for their purported exceptional nutritional and health benefits [2,15,24,25,29,30]. The ther-
apeutic activity of SB has been associated with its rich composition of nutritional and bi-
ologically active compounds (about 200) [9,25,31,32], particularly, high quantities of lipo-
philic antioxidants (e.g., carotenoids, tocopherols, phytosterols) and hydrophilic antioxi-
dants (e.g., flavonoids, tannins, phenolic acids, ascorbic acid), among other constituents 
[11,32–35]. The small, orange-yellow colored berries, with a sour and astringent taste, are 
also rich and valuable ingredients in cosmeceuticals [36–39]. All anatomical parts of the 
berry (skin, flesh, endocarp, seed) have an impressive vitamin content, particularly vita-
mins C, A, and E [40–42], minerals [43,44], remarkable amounts of polyphenolic 
derivatives (mainly phenolic acids and flavonoids) [45–47], triterpenoids [48], carotenoids 
[35,49,50], fatty acids [34,44,51], and phytosterols (particularly β–sitosterol) [32,34,52,53]. 
Consumption of SB berries and derived preparations has been related to health-beneficial 
effects on the cardiovascular system (e.g., lipid metabolism, platelet aggregation, and 
inflammation) [54–57], glucose and lipid metabolism [58–61], and associated also with 
activities such as the immunomodulatory [62,63], antioxidant [64,65], antiviral [66,67], 
protective and curative effects in different pathologies [11,68–71]. The leaves and the new 
tender shoots have a similar chemical profile as berries but with significantly higher 

Figure 1. Sea buckthorn (Hippophae rhamnoides L. or Elaeagnus rhamnoides (L.) A. Nelson). Branch
with red-orange ripe berries, thorns, and leaves (Photos taken at the Agricultural Research and
Development Station (SCDA) Secuieni, Neamt County, Romania by A.C. Raclariu-Manolică).

The health-promoting properties of SB are attracting by far the most considerable
attention from the research community, producers, and industry [11,24,25], becoming a
common ingredient in a wide range of food supplements available on the markets [17].
Besides the large variability of composition due to its biological (genetic) strain, and
geographical origin, many concerns are related to the authenticity of food supplements
declared to contain SB components (berries or leaves). Contamination and adulteration of
food supplements lead to variations in identity, purity, and expected benefits or therapeutic
properties of the claimed botanical ingredient [26]. Therefore, finding new analytical
approaches to ensure the quality and authenticity of food supplements is essential to
minimize the potential risks related to their safe intake and to reach the expected nutritional
and health-promoting effects [27,28].

All parts of sea buckthorn (berries, leaves, stems, shoots, bark, and roots) are used for
their purported exceptional nutritional and health benefits [2,15,24,25,29,30]. The therapeu-
tic activity of SB has been associated with its rich composition of nutritional and biologically
active compounds (about 200) [9,25,31,32], particularly, high quantities of lipophilic an-
tioxidants (e.g., carotenoids, tocopherols, phytosterols) and hydrophilic antioxidants (e.g.,
flavonoids, tannins, phenolic acids, ascorbic acid), among other constituents [11,32–35].
The small, orange-yellow colored berries, with a sour and astringent taste, are also rich
and valuable ingredients in cosmeceuticals [36–39]. All anatomical parts of the berry
(skin, flesh, endocarp, seed) have an impressive vitamin content, particularly vitamins
C, A, and E [40–42], minerals [43,44], remarkable amounts of polyphenolic derivatives
(mainly phenolic acids and flavonoids) [45–47], triterpenoids [48], carotenoids [35,49,50],
fatty acids [34,44,51], and phytosterols (particularly β–sitosterol) [32,34,52,53]. Consump-
tion of SB berries and derived preparations has been related to health-beneficial effects
on the cardiovascular system (e.g., lipid metabolism, platelet aggregation, and inflamma-
tion) [54–57], glucose and lipid metabolism [58–61], and associated also with activities
such as the immunomodulatory [62,63], antioxidant [64,65], antiviral [66,67], protective
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and curative effects in different pathologies [11,68–71]. The leaves and the new tender
shoots have a similar chemical profile as berries but with significantly higher amounts of
phenolic compounds [17,41,72–75], being a rich source of crude protein (on average 15%),
crude fat, and macro- and microelements [33,42,76–78], being recommended in the produc-
tion of new pharmaceutical or food ingredients and supplements [73,79,80]. The leaves
have been reported to have anti-inflammatory [81,82], antioxidant [73,83], immunomod-
ulatory [63], antimicrobial [84,85], anti-platelet and anticoagulant potential [86], as well
as other health proprieties [87,88]. Other vegetative parts (e.g., stems, bark, roots), even
if still underutilized, showed therapeutical potential [89–91], e.g., the root and stem have
antioxidant and antimicrobial activity [92,93], while the bark has antimetastatic activity [94].
The by-products resulting from berry waste [95] and biomass (leaves and branches) [96]
can be further valorized in the food industry, nutraceuticals, and cosmetics [97–99].

The phytochemical composition of SB is prone to variability under natural condi-
tions that may be reflected in a high batch-to-batch variation of the chemical composition,
critically altering the expected therapeutic effects. The chemical content varies among
different parts of the SB plant [68,100], and in relation to the genotype, sampling loca-
tion [101–106], gender (female and male) [89,107], developmental stages, post-harvesting
procedures [89,108–110], and the extraction technology [108,109,111], all of these signifi-
cantly influence the chemical content of the final preparation [108,109,111]. Furthermore,
food supplements including SB (berries, leaves, lyophilized extracts) may often contain
dozens of ingredients at different levels, making their quality control difficult since the
standard analytical methods lack resolution within complex preparations [26,112].

Advanced analytical approaches, such as high throughput techniques (e.g., high-
performance liquid chromatography-mass spectrometry (HPLC-MS), nuclear magnetic res-
onance (NMR) spectroscopy, or DNA-based methods) coupled with chemometric-guided
approaches have recently attracted considerable attention in the fields of medicinal plants
and derived herbal products [113–119]. The emerging field of plant metabolomics offers
new strategies to determine the highly chemical variable profiles of plant materials [120].
Targeted and untargeted metabolomics strategies using different chromatographic tech-
niques followed by a chemometric approach have been largely applied to document the
metabolomic diversity of SB [75,121]. However, only a limited number of studies have
reported on innovative analytical methodologies applied to authenticate SB commercially
available products. Hurkova et al. [122] used direct analysis in real-time coupled with
high-resolution mass spectrometry (DART-HRMS), ultra-high-performance liquid chro-
matography coupled with high-resolution mass spectrometry (UHPLC-HRMS), and high-
performance liquid chromatography coupled with diode array detector (HPLC-DAD) to
authenticate one SB food supplement (oil-based capsule) purchased at a hypermarket in the
Czech Republic. Covaciu et al. [123] applied Raman spectroscopy, and gas-chromatography
equipped with a flame ionization detector (GC-FID), combined with the supervised chemo-
metric technique for oil differentiation, and found this suitable approach to detect possible
adulteration of SB oil with sunflower oil. A multilayer perceptron-artificial neural network
(MLP-ANN) was also tested in the same study [123]. Berghian-Grosan and Magdas [124]
proposed a new, cost-effective approach for the control and authentication of edible oils,
based on the rapid processing of Raman spectra using machine learning algorithms. In our
previous studies, we applied ultra-high-performance liquid chromatography coupled with
quadrupole-time of flight mass spectroscopy, and other techniques like Fourier Transform
Infrared spectroscopy or UV-VIS spectroscopy for detecting and profiling phytochemicals
in different food products, such as vegetable oils of different origins [125]. Despite the
latest analytical advances, the authentication of botanical food supplements remains a
major challenge due to the large diversity of contained ingredients that hinder the accuracy
of analytical methods in identifying the targeted species and detecting the non-targeted
species that may occur [126,127].
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The objective of this study was to identify specific SB phytochemicals’ fingerprints in
leaves and berries, as well as in various categories of commercialized food supplements
(teas, tablets, capsules, syrups, or oils) to certify their presence, based on untargeted
metabolomics procedure using ultra-high-performance liquid chromatography coupled
with quadrupole-time of flight mass spectrometry (UHPLC-QTOF-ESI+MS). These data
generated rapid and useful information on the presence and level of SB ingredients in
different commercial supplements.

2. Materials and Methods
2.1. Samples Analysed

Twenty-three sea buckthorn-based commercial herbal supplements were randomly
purchased from physical and online stores, including twelve herbal teas, three tablets,
two capsules, four syrup/oils, and two dried berries (Table 1). Six genuine SB leaves (L1–
L6) were kindly provided by our collaborators from “Anastasie Fatu” Botanical Garden,
Iasi, Romania, and Agricultural Research and Development Station Secuieni (Secuieni,
Neamt County, Romania). Voucher specimens were deposited at the National Institute of
Research and Development for Biological Sciences, “Stejarul” Biological Research Centre
(Piatra-Neamt, Romania), and are available on request.

Table 1. Categories of herbal formulations used for scientific analysis, and their collection and
analysis codes. Abbreviations used: T—Tea; Tb—Tablet; C—capsule; S—liquid supplement; B—
Berry; L—Leaves.

Type of Formulation ID Collection Code/ID Analysis Code

Herbal tea (T)

PC1/T1

PC2/T2

PC3/T3

PC11/T4

PC12/T5

PC13/T6

PC15/T7

PC16/T8

PC17/T9

PC19/T10

PC21/T11

PC23/T12

Tablet (Tb)
PC9/Tb1
PC10/Tb2

PC20/Tb3

Capsule (C)
PC4/C1

PC8/C2

Syrup/Oil (S)

PC6/S1 (oil)

PC7/S2 (hydroalcoholic extract)

PC18/S3 (emulsion)

PC22/S4 (syrup)

Dried Berry (B)
PC5/B1

PC14/B2
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Table 1. Cont.

Type of Formulation ID Collection Code/ID Analysis Code

Leaves (L)

ACM1/L1

ACM2/L2

ACM4/L3

ACM5/L4

ACM6/L5

ACM7/L6

2.2. Solvents, Reagents, and Analytical Standards

HPLC grade pure solvents (ethanol, acetonitrile, methanol, and tetrahydrofuran THF)
were purchased from Merck (Darmstadt, Germany). Formic acid (99.99%) was purchased
from Sigma-Aldrich (St. Louis, MO, USA). Deionized water was produced by a Milli-Q
system (Millipore, Bedford, MA, USA).

2.3. Sample Preparation and Extraction of Phytochemicals

Each sample was finely grounded, and the powders (sieved particles smaller than
20 mesh (1.7 mm)) were subjected first to extraction in ethanol. The same quantity of 1 g
from each powdered sample was suspended in 20 mL ethanol 50%, mixed for 15 min by
vortex, and kept in an ultrasonic bath for 60 min at 50 ◦C. The suspension was kept for
24 h in the dark at room temperature, the extract was centrifuged at 12,500 rpm (4 ◦C) and
the supernatant was collected and filtered through a 0.2 mm nylon filter. The procedure
was repeated 2 times. To extract the lipophilic molecules after ethanol extraction, the pellet
was mixed two times with 10 mL THF, sonicated in the ultrasonic bath for 3 × 20 min at
50 ◦C, left for 24 h in the refrigerator (2 ◦C), and then centrifuged at 12,500 rpm (4 ◦C). The
THF extract (supernatant) was filtered through a polytetrafluoroethylene (PTFE) 0.25 mm
filter. Both extracts (duplicated from each sample) were submitted to UHPLC-QTOF-
ESI+MS analysis.

2.4. Untargeted Metabolomics Analysis Using UHPLC-QTOF-ESI+MS

The untargeted, metabolomic fingerprints of ethanolic extracts were performed us-
ing ultra-high-performance liquid chromatography coupled with electrospray ionization-
quadrupole-time of flight-mass spectroscopy (UHPLC-QTOF-ESI+MS) on an UltiMate
3000 UHPLC system equipped with a quaternary pump Dionex delivery system (Thermo
Fisher Scientific Inc., Waltham, MA, USA), and mass spectroscopy (MS) detection by a
QqTOF MaXis Impact (Bruker Daltonics GmbH, Bremen, Germany). The metabolites were
separated using a 5 µm Kinetex column (Phenomenex Inc, Torrance, USA) (2.1 × 150 mm)
at 25 ◦C. The flow rate was set at 0.8 mL·min−1 and the volume of each injected extract was
10 µL. The mobile phase consisted of 0.1% formic acid in water (A) and 0.1% formic acid
in acetonitrile (B). The gradient was 20–40% B (0–5 min), 40–60% B (5–8 min), 60–70% B
(8–10 min), 70–20% B (10–16 min), and 20% B isocratic until 24 min. Several quality control
(QC) samples obtained from each extract group were used to optimize the separations.
The chromatograms were processed using Chromeleon software (Dionex, Thermo Fisher
Scientific Inc., Waltham, MA, USA). The MS parameters were ionization mode positive
ESI+, calibrated with sodium formate, capillary voltage 3500 V, nebulizing gas pressure
of 2.8 bar, drying gas flow 12 L/min, drying temperature 300 ◦C. The resolution of triple-
quadrupole-TOF was 30,000 at m/z = 922. The control of the instrument and the data
processing were done using the specific softwares TofControl 3.2, HyStar 3.2, and Data
Analysis 4.2 (Bruker Daltonics GmbH, Bremen, Germany).
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Data Processing and Statistical Analysis

The Bruker software Compass Data Analysis 4.2 (Bruker Daltonics, GmbH, Bre-
men, Germany) was used to process the MS spectra of each component separated by
chromatography. The base peak chromatograms (BPC) were obtained from the total
ion chromatogram and by the algorithm Find Molecular Features (FMF), a bucket ma-
trix was generated, including the mass-to-charge ratio (m/z) value for [M + 1]+ precur-
sor molecules, the retention time, the peak intensity, and the signal/noise (S/N) ratio.
The initial number of separated molecules (m/z values) was around 550. The align-
ment of common molecules (with the same m/z value) was done by the online software
(www.bioinformatica.isa.cnr.it/NEAPOLIS (accessed on 19 September 2023)). A second
matrix of the common molecules found in more than 60% of samples was obtained, hav-
ing S/N values over 2 and peak intensities over 10,000 units. The resulting data matrix
included a few 98 m/z values versus peak intensity and was submitted for statistical anal-
ysis in the Metaboanalyst v5.0 online software for multivariate and univariate (one-way
ANOVA) analysis.

The statistical algorithms used to reflect the discrimination between the different
sample groups were the partial least square discriminant analysis (PLSDA), the variable
importance in the projection (VIP) scores, and the correlation heatmaps. The biomarker
analysis included the receiver operating characteristic (ROC) curves and area values under
ROC curves (AUC) values which evaluated the sensibility and selectivity of the potential
biomarkers. According to the statistical analysis, the candidate molecules for authenticity
to be considered putative biomarkers were selected and identified, using the specialized
database FoodDB (https://foodb.ca/, accessed on 25 September 2023). The multivariate
metabolomic analysis was used to compare the leaves (L1-L6) with dried berries (B1–B2)
to find the most relevant molecules that may discriminate the phytochemicals specific to
leaves versus berries. The data from the univariate one-way ANOVA analysis was applied
to find out the discriminations between the different classes of molecules found in the
food supplement samples that claimed the presence of SB berries in the composition. In
both cases (the t-test and significance of differences (p-values and post-hoc Fisher LSD)
were calculated.

3. Results
3.1. UHPLC-QTOF-ESI+MS Untargeted Analysis

The untargeted analysis was performed using multivariate and univariate analysis,
and showed possible discriminations between the supplements (groups B, S, C, Tb, and T)
which claimed to contain SB berries as such, or extracts as ingredients in their composition,
at different levels. No clear indication of the concentration or the percentage of SB herbal
components was provided by the product labels. Such analysis aimed to identify some
specific phytochemicals that may indicate at least qualitatively the presence of berries
in FS.

For the metabolomic analysis, based on the MS data (matrix including m/z values
versus peak intensity) 98 molecules were identified according to the described procedure
in Section 2.4. The experimental m/z values were compared with the average m/z values
from FooDB (https://foodb.ca/, accessed on 25 September 2023). The list of identified
phytochemicals is presented in supplementary Table S1. Only molecules having the accu-
racy of (theoretical—experimental) m/z values below 20 ppm were considered. For each
molecule, the FooDB code was mentioned.

3.1.1. Multivariate Analysis
PLSDA, Fold Change and p-Values

Figure 2 presents the PLSDA score plot which reflects the discrimination between
the SB leaves (L) versus berry (B) composition according to PLSDA analysis (co-variance
of 67.3%). Despite the small number of samples, the cross-validation algorithm showed
the highest accuracy, with high R2 values and a significant Q2 value (>0.93) for the third

www.bioinformatica.isa.cnr.it/NEAPOLIS
https://foodb.ca/
https://foodb.ca/
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component, confirming the good predictability of this model (Supplementary Figure S2).
The VIP score graph (ranging from 1.2–1.5 values), derived from PLSDA analysis, was also
done including the ranking of the molecules that may explain the discrimination between
groups L and B. The VIP scores identified the molecules responsible for the discrimination,
either at superior levels in the B group (marked in red) or inferior in the L group (marked
in green).
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DG36:0 9.654 3.271 0.0480 Glucuronic acid 0.17 −2.553 0.0068 

Figure 2. PLSDA score plot showing the discrimination between the groups leaves (code L) and
berries (code B).

The Fold change (FC) and the log2(FC) values, according to the Volcano plot algo-
rithm (shown as Supplementary Figure S3) and the PLSDA/VIP analysis, were useful in
identifying the molecules with increased or decreased levels when comparing the group L
with group B.

Table 2 describes the FC values, log2(FC) combined with the p-values according to the
t-test.

Table 2. Fold change (FC), log2(FC) values, and p-values according to PLSDA analysis and t-test. The
significance of variation between groups B and L (B > L or B < L) is presented. In Bold are represented
the most significant ones.

B > L FC log2(FC) p-Value L > B FC log2(FC) p-Value

Quercetin-3-
rutinoside 69.666 6.122 0.0100 Phytoene 0.017 −5.889 0.0012

Stigmasterol 44.887 5.488 0.0103 Acetylspermidine 0.023 −5.442 0.0042
Hydroxy

tryptophan 26.948 4.752 0.0167 DiGlyceride 30:2 0.033 −4.906 0.0182

Biotin amide 26.909 4.75 0.0031 Tocopherol 0.035 −4.834 0.0070
Naringin 21.41 4.42 0.0420 Caffeic acid 0.044 −4.512 0.0450

Lauroyl carnitine 19.186 4.262 0.0046 Serotonin 0.074 −3.75 0.0001
Quinic acid 17.721 4.147 0.0025 Gallic acid 0.079 −3.658 0.0460

Fatty acid C20:0 15.023 3.909 0.0450 Sorbitan oleate 0.107 −3.23 0.0001
Fatty acid C12:0 13.965 3.804 0.0470 Luteolin-5-glucoside 0.129 −2.959 0.0000
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Table 2. Cont.

B > L FC log2(FC) p-Value L > B FC log2(FC) p-Value

Folic acid 13.405 3.745 0.0001 Hydroxyglutamine 0.141 −2.826 0.0470

Arabinose 13.013 3.702 0.0053 Kaempferol 3-rhamnoside,
7-glucoside 0.149 −2.744 0.0076

Heptanoyl carnitine 10.675 3.416 0.0017 Fatty acid C18:4 0.15 −2.739 0.0018
Quercetin-7-

glucoside 9.976 3.318 0.0470 Fatty acid C20:2 0.156 −2.678 0.0039

DG36:0 9.654 3.271 0.0480 Glucuronic acid 0.17 −2.553 0.0068
Tryptophan 9.470 3.243 0.0003 Fatty acid C18:3 0.277 −1.852 0.0470

Glucitol 9.202 3.202 0.0040 Arginine 0.283 −1.819 0.0002

Xylitol 8.836 3.144 0.0000 Isorhamnetin 3-
rutinoside 0.292 −1.776 0.0002

Violaxanthin 8.11 3.02 0.0000 Luteolin 0.312 −1.679 0.0490
Vanillic acid 6.187 2.629 0.0164 Myristoylcarnitine 0.331 −1.596 0.0041

Glucose 5.89 2.558 0.0154 Ferulic acid 0.335 −1.578 0.0070

These parameters and the sign of the log2(FC) show the top of 20 molecules from
quercetin-3 rutinoside to glucose as being more dominant in berries (positive log2FC
values) and phytoene to ferulic acid being more dominant in leaves (negative log2FC
values). Considering the lowest p-values (<0.0001), in each case, for berries, the putative
biomarkers to be considered were xylitol, violaxanthin, folic acid, tryptophan, quinic acid,
quercetin 3 rutinoside. For leaves, significant dominant molecules were luteolin 5-glucoside,
arginine, isorhamnetin 3-rutinoside, serotonin, and tocopherol. This data was compared
also with complementary information given by the heatmap.

Heatmap Plot and Biomarker Analysis

The heatmap plot (Figure 3) illustrates the different clustering of the groups L and B
as well the relationships between molecules (increase or decrease in the groups L and B).

This represents complementary information and illustrates by colors the levels of the
molecules in the B group (PC5, 6, 14) compared to group L (ACM 1, 2, 4, 5, 6, 7). We can
distinguish higher levels of quinic and feruloyl quinic acid and xylitol, violaxanthin, folic
acid, tryptophan, and cis retinal to be also of interest for discrimination between leaves and
berries, with significant increases in berries. Considering that all investigated supplements
claimed to contain SB berries or extracts of SB berries, the next studies were focused on
these molecules.

According to the biomarker analysis, the highest AUC values (>0.9) for the molecules
to be considered putative biomarkers for berries were found also to be xylitol, violaxanthin,
folic acid, tryptophan, quercetin-3-rutinoside, and quinic acid.

3.1.2. Univariate One-Way ANOVA Analysis to Evaluate the Discrimination between the
Different Classes of Food Supplements
sPLSDA and Heatmap

The different supplements (teas, tablets, capsules, syrups/oils) were considered for
the one-way ANOVA analysis. The dried berries (group B) were unified in this case with
the liquid samples resulting in a group BS, the same for the groups C and Tb, named
CTb. Therefore, we compared the teas (group T) with groups BS and CTb. Figure 4A
shows the sPLSDA score plot and Figure 4B the loadings plot showing the top 15 molecules
responsible for the discrimination between the 3 groups (BS, CTb, and T). The relative
levels are presented on the right side (red-high; blue-low).
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According to Figure 4A, a good discrimination between teas (blue region), CTb group
(green region), and BS group (pink region) was identified. The loadings plot shows vari-
ations among the molecules identified as putative biomarkers for berries: higher levels
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in the BS group for miristoylcarnitine, gallocatechin, cis-retinal, riboflavin, violaxanthin,
quinic acid, quercetin-3-rutinoside. This data confirms that some of these molecules can be
considered biomarkers for the berry’s extracts (syrups or SB oil) by multivariate analysis.
Comparatively, the levels of these molecules in groups T or CTb were inferior. Figure 5
illustrates the heatmap data, as complementary information to show the presence of SB
berries in groups T and CTb.
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Figure 5. The heatmap for the groups BS (berries, syrup/liquids), CTb (capsules, tablets), and T (teas),
considering the mean values for the first 25 molecules selected as most relevant for the discrimination
among these groups.

Significant discrimination was also illustrated here, between the groups BS, CTb,
and T. In the BS group, we identified higher levels of violaxanthin, tryptophan, carotene,
catechin, feruloylquinic acid, and neoglucobrassicin while in the CTb group, we identi-
fied higher levels of glucose (additive), zeaxanthin, and hydroxytryptophan (possibly as
additives). The group of teas (T) showed especially higher levels of serotonin, gallic acid,
kaempferol 3-rhamnoside, and some unidentified molecules, from the plant mixtures used
in the formulations.

Since this analysis was not satisfactory enough to find the lower levels of SB berries
present in teas and CTb groups, we also evaluated some specific molecules.

3.2. Evaluation of the Selected Putative Biomarkers

Based on the data cumulated from the multivariate and univariate analysis, several
molecules were selected as putative biomarkers for SB berry phytochemicals in such a
diverse cohort of botanical products, as an indication of authenticity. Figure 6 represents the
levels of eight molecules (xylitol, quinic acid, tryptophan, folic acid, quercetin-7-glucoside,
violaxanthin, quercetin-3-rutinoside, quercetin-3,7-diglucoside), previously selected by



Foods 2023, 12, 4493 11 of 19

multivariate and univariate analysis. The levels were evaluated based on their peak
intensities in the UHPLC-MS analysis.
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Figure 6. Semiquantitative analysis of phytochemicals specific to SB berries, found in the different
supplements (T—teas; Tb—tablets; C—capsules; S—syrups/oils; B—Dried Berries): the levels of
different molecules (xylitol, quinic acid, tryptophan, folic acid, quercetin-7-glucoside, violaxanthin,
quercetin-3-rutinoside, quercetin-3,7-diglucoside) according to their peak intensities in the UHPLC-
QTOF-ESI+MS untargeted analysis.

The comparative evaluation shows that the variability of composition is maintained
but is closer to a more adequate consideration of authenticity. Capsules C1 and C2 showed
significantly lower levels, which may be explained by higher percentages of excipients,
compared to tablets (Tb1–Tb3) which showed a more stable composition. The tea compo-
sition was variable, except for the level of tryptophan which proved to be a major com-
ponent compared to other molecules. Further quantitative evaluation of such molecules
will bring more valuable information for a selection of representative SB biomarkers in
herbal supplements.

4. Discussion

Applying innovative techniques to advance food supplements authentication is
strongly advocated today [27,113,114,116,125,128].

Considering the high market demand for SB-based products, its phytochemistry and
pharmacognosy have stimulated considerable interest, but a limited number of studies on the
quality and authenticity of commercially available food supplements are reported [122–124].
However, significant progress has been offered in the last years by the methodological
approaches that combine advanced analytics with multivariate statistics, particularly for
SB berries [34,35,37,46,52,53,75].

Metabolomics is an accurate, robust, and time-efficient analytical approach for the
authentication of different molecules in complex botanical products. The emerging field of
plant metabolomics offers new ways to determine the profiles of plant bioactive compounds
as such, which are highly variable under the influence of various factors (genetic, environ-
mental, processing technology), and, on top of this, allow their measurement in complex
commercial botanical products, such as food supplements. The untargeted metabolomics
can offer improved fingerprints and resolution of the authentication process of botanical-
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based foods and food supplements. Comprehensive reviews on integrated analytical
approaches and chemometric-guided approaches for profiling and authenticating botanical
materials applied to the identification of botanical bioactive compounds and adulteration
management were previously published [113,129,130].

Authentication is challenging when plant material is powdered or extracted in dif-
ferent solvents, as well as for mixtures consisting of multiple plant species. Moreover,
tracing bioactive phytochemicals claimed on the labels of botanical food supplements is
complicated by the natural variability of the starting raw material which often results in a
significant variation in the composition of the final product. Nevertheless, the deliberate re-
placement of bioactive ingredients, their dilution, or the addition of lower-cost ingredients,
is a significant ongoing problem in this sector. Nowadays, the accurate recognition of phyto-
chemicals within a complex mixture and the identification of specific bioactive compounds
from plant components (leaves, berries) requires the use of orthogonal, fused, and specific
analyses, including multivariate, univariate analysis coupled with chemometrics [113,130].

Our study aimed to demonstrate the added value of the metabolomic approach for
finding key phytochemicals originating from sea buckthorn (leaves or berries) and different
food supplements including teas, capsules, tablets, syrups, and oils.

Using UHPLC-QTOF-ESI+MS untargeted (multivariate and univariate) analysis in con-
junction with multivariate analysis, using PLSDA score and loadings plots, heatmap, the Fold
change, and t-test, we found that the putative authentication biomarkers (p values < 0.0001)
of SB berries are xylitol, violaxanthin, folic acid, tryptophan, quinic acid, quercetin-3-
rutinoside. For leaves, luteolin-5-glucoside, arginine, isorhamnetin 3-rutinoside, serotonin,
and tocopherol were found to be significant dominant molecules. The univariate analysis
aimed to discriminate between the different classes of food supplements (BS, CTb, and
T) using similar algorithms. The sPLSDA plots showed good discrimination between
teas (T), CTb, and BS groups and reflected putative biomarkers for berries (higher levels
in the BS group for miristoylcarnitine, gallocatechin, cis-retinal, riboflavin, violaxanthin,
quinic acid, quercetin-3-rutinoside). The heatmap illustrated the presence of SB berries
in groups T and CTb but at lower levels. In the BS group, we identified higher levels of
violaxanthin, tryptophan, carotene, catechin, feruloylquinic acid, while in the CTb group,
higher levels of glucose (additive), zeaxanthin, and hydroxytryptophan (possible addi-
tives). The group of teas (T) showed especially higher levels of serotonin, gallic acid, and
kaempferol 3-rhamnoside and some unidentified molecules, from the plant mixtures used
in the formulations.

Since this analysis was not satisfactory enough regarding the lower levels of these
molecules in T and CTb groups, we also considered a semiquantitative evaluation of the
eight selected molecules (xylitol, quinic acid, tryptophan, folic acid, quercetin-7-glucoside,
violaxanthin, quercetin-3-rutinoside, quercetin-3,7-diglucoside) as SB berry biomarkers,
according to their peak intensities in the UHPLC-QTOF-ESI+MS untargeted analysis. The
comparative evaluation shows that the variability of composition is maintained but is closer
to a more adequate consideration of authenticity. Capsules C1 and C2 showed significantly
lower levels, explained by higher percentages of excipients, while tablets (Tb1-Tb3) showed
a more stable composition. The teas’ composition was variable, except for the level of
tryptophan, found as a major component compared to other molecules. These molecules
can represent a starting point for a further quantitative evaluation of some key molecules
selected here as putative biomarkers of the presence and level of SB berry components in
botanical food supplements.

A single plant species produces far more metabolites than those produced by most
other organisms [131,132], and, so far, no stand-alone analytical approach has been able to
untangle this diversity [127,131]. Additionally, complex plant-based food supplements con-
tain numerous plant ingredients, or mixtures of plant and vitamins or mineral ingredients,
among others, hindering, even more, the resolution of analytical methods in identifying the
targeted species and detecting the non-targeted species that may occur [126,127]. Moreover,
there is a large body of evidence that unexpected contaminants and/or adulterants are
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often present in such herbal matrices [26]. Therefore, orthogonal testing approaches that
include multiple complementary analytical methods are recommended to comprehensively
elucidate the ingredients and chemical content of herbal products [26,120,133,134].

5. Conclusions

The authentication of botanical food supplements based only on specific bioactive
plant phytochemicals remains a major challenge despite the latest advances in analytical
technologies. Even the more advanced analytical methods are not powerful enough to
identify qualitatively, and especially quantitatively, the biomarkers of authenticity for a
specific ingredient, for instance, sea buckthorn. In this study, untargeted metabolomics
based on UHPLC-QTOF-ESI+MS was performed for the identification of the phytochemical
profiling of SB food supplements. This study presented three steps of analytical flow, from
preliminary spectrometric analysis to multivariate and univariate metabolomic fingerprint-
ing, finalized by a semiquantitative evaluation based on the MS peak intensities of selected
phytochemical biomarkers, useful to authenticate food supplements declared to contain
sea buckthorn components (leaves or berries). Finally, there is an urgent need to apply
orthogonal advanced analytical approaches to fully untangle the huge ingredient and
chemical diversity of commercial botanical products.
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and applications of sea buckthorn (Hippophae rhamnoides L. or Elaeagnus rhamnoides (L.) A. Nelson;
Figure S2: cross-validation graph showing the accuracy, R2, and Q2 values for the first three compo-
nents, when comparing the composition of sea buckthorn leaves (L) and berries (B); Figure S3: volcano
plot algorithm used to determine log10(p-value) versus log2(FC) values and the dynamics (increase or
decrease) of molecules’ levels between SB leaves and berries; Table S1: identification of 98 molecules
found in sea buckthorn leaves or berries, based on the MS data [M+H]+ (m/z values). The experimen-
tal m/z values were compared with the average m/z values from the international database FooDB
(https://foodb.ca/, accessed on 25 September 2023). The FooDB codes were mentioned, considering
the accuracy of (theoretical—experimental) m/z values below 20 ppm.
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