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Abstract: This paper initially involves three main processing parameters: screw speed, feeding speed,
and initial material moisture content, exploring the RTD of materials inside the extruder barrel under
varying parameters and clarifying the impact of parameter variations on RTD. Finally, machine
vision technology was utilized to link extruded product images to texture features, and a texture
prediction model based on image features was established using a Back Propagation (BP) neural
network. Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) were applied to optimize
the BP neural network. The results indicate that the feeding speed has a stronger impact than the
screw speed on the extrusion process, and an increase in the initial material moisture content tends
to shorten the RTD. Specifically, an increase in screw speed results in a denser product structure,
while higher feeding speeds lead to reduced pore size in the microstructure. As the initial material
moisture content increased from 55% to 70%, the average residence time MRT decreased from 265.21 s
to 166.62 s. Additionally, elevated moisture content causes a more porous microstructure. After
optimizing the texture prediction model of extruded products through the application of Particle
Swarm Optimization and Genetic Algorithm models, it was discovered that the Genetic Algorithm
was more effective in reducing errors (p < 0.05) than the Particle Swarm Optimization algorithm.
It was found that the Particle Swarm Optimization model exhibited better prediction performance.
The results of the prediction indicated a significant association between the image features of the
product and hardness, resilience, and chewiness, as corroborated by correlation coefficients of 0.93913,
0.94040, and 0.94724, respectively.

Keywords: extrusion texturization; neural network; prediction model; Residence Time Distribution;
texture quality

1. Introduction

With the rapid growth of population in modern society, the supply of meat relying
solely on animal husbandry will be unable to meet the needs of human daily life. At the
same time, environmental pollution, antibiotic and hormone residues, viral infections, and
other problems brought about by the animal husbandry industry are also threatening food
safety, so it is imperative to find effective meat substitutes; plant proteins have become an
effective way to find ways to reduce the consumption of meat products without lowering
the amount of protein intake. According to statistics, plant proteins account for more than
80% of the world’s total protein production, and legumes, grains, and oil crops are rich
in high-quality proteins. Compared with animal proteins, plant proteins are more easily
absorbed by the human body, and their production requires far fewer resources and causes
less pollution and environmental damage than animal proteins. Due to its wide availability
and rich nutrients, plant protein is increasingly considered as one of the viable alternatives
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to animal protein in meeting the growing demand for protein in humans. Pea protein, as
a full-value plant protein that is resourceful, nutritious, and cholesterol-free, and able to
replace animal protein to meet the growing demand for protein, is the best choice for human
beings. Extruded tissue processing is an important means of making plant protein with
the taste and texture of animal meat. Processing plant protein using extrusion techniques
can be a crucial method to impart meat-like texture and mouthfeel to plant-based protein
products. The texture features of extruded products are an important indicator of the
extrusion process. Traditional methods for creating texture features are time-consuming,
labor-intensive, and often result in sample structure damage, with relatively poor accuracy.
However, the establishment of a product texture prediction model based on image features
using neural networks provides a feasible approach for the rapid, non-destructive, and
precise detection of sample texture characteristics.

The extrusion process of a twin-screw extruder is a complex process that combines
physical, chemical, and biological reactions. The “black box” processing characteristic
of the extruder barrel makes the dynamic processing of materials ambiguous, making
it challenging to understand the flow status of materials within the barrel. Residence
Time Distribution (RTD) is one of the critical parameters during the extrusion process,
representing the duration of time from the moment materials enter the barrel until the
extruded products exit the cooling die head [1]. Due to the high temperature and pressure
in the barrel, the molten materials exhibit certain differences in mixing and flow status,
resulting in variations in residence times even for materials that simultaneously enter the
extruder. Therefore, exploring the material RTD within the barrel can provide a better
understanding of their mixing and flow status, which has significance for the quality control
of the extruded products.

In the process of plant protein extrusion texturization, the quality characteristics of the
extruded products are the most crucial evaluation indicators, primarily realized through
sensory evaluation and physical property testing [2,3]. Sensory evaluation is relatively
subjective, with product color, texture, flavor, and taste being the main indicators [4].
Physical property testing mainly relies on texture analyzers and universal material testing
machines by calculating product hardness, chewiness, and texturization [5]. To obtain the
texture characteristics of the tested samples, Texture Profile Analysis (TPA) is conducted
using a texture analyzer, which uses two compression tests to simulate human mastication.
TPA causes irreparable damage to the sample structure, with the testing process being
time-consuming and labor-intensive. Color is another important sensory characteristic of
the extruded samples [6] which is closely related to their textural features [7,8].

A Back Propagation (BP) neural network is an information processing system capable
of handling complex issues, with prediction being one of its most crucial functions. It
features a strong self-learning ability, robust adaptability, and extendability, and has been
widely applied across various industries [9–12]. BP neural networks break the conventions
of linear prediction, exhibiting robustness especially in the prediction of multi-input non-
linear systems and models [13]. By capturing images of the extruded samples, extracting
relevant image features, and combining with BP neural networks for model construction, it
is possible to achieve non-destructive, rapid, and efficient inspection of textural features. BP
neural networks can translate complex real engineering problems into simple mathematical
model issues [14], with trained networks providing prediction results for given inputs
under well-trained predictive models, establishing the correlation between inputs and
outputs [15]. However, BP neural networks also tend to fall into local optima, leading to
poorer predictive model effects. Currently, the optimization of neural networks is primarily
achieved to attain the optimal prediction model. Particle Swarm Optimization (PSO) and
Genetic Algorithm (GA) are common model optimization methods [16] which are both
capable of ameliorating situations in which BP neural networks can easily fall into local
optima, thus achieving optimal prediction effects [17,18].

This paper aims to determine the RTD under different extrusion processing parameters
through pea protein extrusion experiments using the pulse method, a more convenient and
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efficient imaging method that replaces the traditional colorimetry method. By altering the
screw speed, feeding speed, and initial material moisture content, the impact of changes
to extrusion processing parameters on the mixing and flow status of pea protein within
the extruder barrel was explored, and the influence of screw speed, feeding speed, and
initial material moisture content on material RTD was analyzed. Based on this, a BP neural
network combined with PSO and GA optimization algorithms was employed to explore the
optimization effects in the texture characteristic prediction model based on the extruded
product images.

2. Materials and Methods
2.1. Materials

Pea protein was supplied by Yantai Shuangta Food Co., Ltd. (Yantai, China) with 85%
protein concentration and 7% moisture content. Erythrosine B Sodium Salt with 85% purity
was acquired from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China).

2.2. Pea Protein Extrusion Texturization Experiment

This experiment was conducted with the co-rotating twin-screw extruder (TwinLab-F
20/40, Brabender, Oberhausen, Germany) experimental platform. This platform primarily
consists of a power input unit, an extrusion shearing unit, a temperature and pressure
monitoring unit, a cooling circulating water unit, and a water and material feeding unit. Its
main technical specifications include five independent heating zones, outer screw diameter
of 20 mm, inner screw diameter of 12.5 mm, length-to-diameter ratio of 40:1, maximum
power of 10 kW, screw speed range of 0–1200 rpm, maximum torque of 2× 40 Nm, working
temperature range of 0–400 ◦C, and maximum production efficiency of 20 kg/h.

A regression relationship was established between the set values and actual values of
the water and material feeding units by setting the water feeding speeds at 20 rpm, 40 rpm,
60 rpm, 80 rpm, and 100 rpm, and the material feeding speeds at 10 rpm, 20 rpm, 30 rpm,
40 rpm, and 50 rpm, measuring the actual water and material feeding rates, repeating this
3 times, and establishing a regression equation.

Figure 1 demonstrates that there is a high correlation between the set values and
actual values of the water and material feeding units, with high accuracy. The correlation
coefficients R2 reached 0.9997 and 0.9875, respectively. Based on this, the ratio relationship
between the speeds of the material feeding unit and water feeding unit were obtained with
the following formula.

Vwf(g/min) =
Cex (%)− Cin(%)

1−Cex(%)
×Vm f (g/min) (1)

where “Vwf” represents “Water Feeding Speed”, “Vmf” represents “Material Feeding
Speed”, “Cex” represents “Expected Material Moisture Content”, and “Cin” represents
“Initial Material Moisture Content”.

After starting the extruder and preheating it, the water feeding was initiated once the
temperature reached the preset value and was stable. Upon water flow from the outlet,
the feeder was activated along with a coordinated adjustment of the water feeding speed.
When material extrusion was observed at the outlet, the screw speed, material feeding
speed, and initial material moisture content were gradually adjusted to ensure stability
throughout the foundational process before proceeding with sampling or other operations.
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2.3. Pulse Method Residence Time Determination

Improvements were made on the traditional pulse method, with food-grade dye
Erythrosine B Sodium Salt, featuring bright color, high stability, and strong coloring, being
selected as the indicator. The specific operation procedure for the RTD measurement
experiment was as follows: Once the extruder ran smoothly and stably and output samples,
the feeder was lifted, 0.05 g of Erythrosine B Sodium Salt was instantaneously added,
and timing began (t = 0), while extruded samples were simultaneously collected from the
extruder every 10 s, recording the time, until no red color was observed in the extruded
samples, at which point collection ceased.

A total of 2.2 kg of pea protein raw material was equally divided into 11 equal parts,
each weighing 200 g. Erythrosine B Sodium Salt tracer was added to create standard
samples within the concentration range of 0–0.4 mg/g, following a concentration gradient
of 0.04 mg/g, and thoroughly mixed using a small powder mixer (33 rotations/minute,
15 min) for preparation. The extrusion conditions were as follows: initial material moisture
content of 65%, material feeding speed of 35 rpm, water feeding speed of 125.8 rpm, and
screw speed of 100 rpm. The set temperatures for the five independent heating zones were
50 ◦C, 70 ◦C, 90 ◦C, 110 ◦C, and 110 ◦C.

With the extrusion parameters set, sampling commenced according to the afore-
mentioned experimental method. Between every two groups of different concentration
materials, 200 g of pea protein raw material was added as a blank control to eliminate the
interactive impact of the indicator on the previous group of materials.

2.4. Sample Color Feature Extraction by Conventional Methods

The extruded samples of pea protein extrusion texturization obtained by mixing
different concentrations of indicator were collected, naturally cooled to room temperature,
pre-frozen in a −4 ◦C refrigerator for 12 h, and then vacuum freeze-dried in a vacuum
freezing drying (LGJ-18C, Si-Huan, Beijing) oven for 36 h. After freeze-drying, the samples
were crushed using a high-speed pulverizer and sieved through an 80-mesh sieve to obtain
the extruded sample powder. The color difference of the sample powder was measured
using a colorimeter (Labscan XE, HunterLab, Reston, VA, USA), with each sample group
measured three times and the average value taken.

2.5. Experiments on the Effect of Residence Time of Pea Protein

The temperatures of the five independent heating zones inside the extruder barrel
were set to 50 ◦C, 70 ◦C, 90 ◦C, 110 ◦C, and 110 ◦C. The experiment was conducted with
screw speed, material feeding speed, and initial material moisture content as the single-
factor variables. For the purpose of the experiment, three different levels of screw speed
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were used: 70 rpm, 100 rpm, and 130 rpm. Similarly, three levels of material feeding speed
(25 rpm, 30 rpm, and 35 rpm) and four levels of initial material moisture content (55%, 60%,
65%, and 70%) were employed.

2.6. Residence Time Distribution (RTD)

The Residence Time Distribution function, E(t), represents the curve delineating the
variation in tracer concentration within the extruded sample over the extrusion time. This is
essentially the ratio of the tracer concentration at various instances to the total concentration
of the tracer within the extruded samples.

E(t) =
C(t)∫ ∞

0 C(t)dt
=

Ci

∑n
0 Ci∆ti

(2)

where “C(t)” represents the concentration of the tracer in the extruded sample at the
time “t”, “C” “i” represents the concentration of the tracer in the segment “i”, and “t” “i”
represents the extrusion time in the segment “i”.

The Cumulative Residence Time Distribution function, F(t), is derived from the E(t)
curve calculations. The F(t) curve characterizes the flow state of the material within the
extruder barrel, illustrating the temporal variation in the accumulated amount of indicator
concentration at the extruder outlet. It represents the area between the E(t) curve and the
time axis before a certain t moment. For ease of analysis and comparison, the F(t) curve is
typically represented using normalization processing.

F(t) =
∫ t

0
E(t)dt =

∫ t
0 C(t)dt∫ ∞

0 C(t)dt
=

∑t
0 Ci∆ti

∑n
0 Ci∆ti

(3)

where “C” “i” represents the concentration of the tracer in the extruded sample at the time
“t” “i”, “t” “i” represents the extrusion time in the segment “i”, and “n” is the total number
of sampling times.

The average residence time MRT and variance σ2 were obtained by plotting the
obtained E(t) and F(t) values against time, by which the distribution pattern of the material’s
residence time in the barrel can intuitively and qualitatively obtained, and the material’s
residence time in the barrel can be quantitatively described with greater accuracy.

MRT =

∫ ∞
0 tE(t)dt∫ ∞
0 E(t)dt

=
∫ ∞

0
tE(t)dt =

∫ ∞
0 C(t)tdt∫ ∞
0 C(t)dt

=
∑n

0 Citi∆ti

∑n
0 Ci∆ti

(4)

σ2 =
∫ ∞

0
t2E(t)dt−MRT2 =

∫ ∞
0 C(t)t2dt∫ ∞
0 C(t)tdt

−MRT2 =
∑n

0 Citi
2∆ti

∑n
0 Ci∆ti

−MRT2 (5)

where “C” “i” represents the concentration of the tracer in the extruded sample at the time
“t” “i”, “t” “i” represents the extrusion time in the segment “i”, and “n” is the total number
of sampling times.

Due to the multiple physical field factors affecting the extrusion process, the obtained
“E(t)” curves and “F(t)” curves were difficult to quantitatively compare under different
extrusion conditions and actual situations. Therefore, a dimensionless time ”θ” was in-
troduced to replace the original actual time t, and was used to compare the distribution
patterns and flow state conditions under different circumstances.

θ =
t

MRT
(6)

E (θ) = MRT×E(t) (7)

F (θ) = F(t) (8)

σ2
θ =

σ2

MRT2 (9)
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There are two classic flow types in fluid flow: plug flow and mixed flow. In the fluid
flow process, the fluid can only flow forward without axial mixing; this laminar flow mode
is called plug flow. Mixed flow indicates that the fluid has undergone sufficient mixing
during the flow process, as not only has forward flow occurred, but the fluid has also
undergone a certain amount of axial mixing. Mixed flow is a more ideal flow state in
fluid research.

The mixing state of the material in the extruder barrel is represented by the Peclet
number (Pe), which is used to describe the degree of material dispersion. The Peclet number
(Pe) is defined as the axial dispersion distance. The Pe value can be derived by extrapolation
from Equations (4) and (5) [19]. The larger the Pe value, the greater the degree of material
dispersion, indicating that the material flow is plug flow. Conversely, the smaller the value,
the more a flow tends to be a mixed flow, with a better mixing effect of the material, which
can effectively improve the quality of extruded products.

σ2
θ =

2
Pe
− 2

Pe2 (1− e−Pe) (10)

2.7. Microstructure Measurement of Pea Protein Extrusion Products

The pea protein extrusion texturization experiment was conducted separately with
screw speed, material feeding speed, and initial material moisture content as the single-
factor variables. When screw speed was used as the single-factor variable, the experiment
was conducted at screw speeds of 70 rpm, 100 rpm, and 130 rpm, based on a fixed material
feeding speed of 30 rpm. When material feeding speed was used as the single-factor
variable, the experiment was conducted at material feeding speeds of 25 rpm, 30 rpm, and
35 rpm, based on a fixed screw speed of 100 rpm. When initial material moisture content
was used as the single-factor variable, the experiment was conducted at initial material
moisture contents of 55%, 60%, 65%, and 70%, based on a fixed screw speed of 100 rpm and
a material feeding speed of 30 rpm. The materials obtained from extrusion were observed
for the microstructure of the extruded freeze-dried pea protein texturization products using
a Scanning Electron Microscope (S-3400N, Hitachi, Ltd. Tokyo, Japan). The dried samples
were brittle-fractured, and fragments from the fractured section were selected. The samples
were adhered to the SEM sample tray with conductive glue, gold-sprayed for 1 min in a
vacuum environment, and electron micrographs of the samples magnified 500 times were
obtained under an accelerating voltage of 15.00 kV.

2.8. Experiments on Texture Feature Prediction Based on Neural Network

For this experiment, the screw speed was set at 100 rpm, the material feeding speed at
35 rpm, the initial material moisture content was adjusted to 60%, and the cooling die head
temperature was set at 40 ◦C ± 1 ◦C. Extrusion temperature was taken as the single-factor
variable, adjusting the temperatures of the five independent heating zones in the extrusion
barrel. The temperature for the solid conveying section was 50 ◦C, the mixing section was
70 ◦C, the cooking section was 70 ◦C, and the temperatures for the melt conveying section
were set at a gradient of 70–80–90–100–110–120–130–140–150–160 ◦C across 10 groups.
Once stable samples were extruded from the extruder, three sections of extruded samples
of equal length were continuously taken. From the same position in the three sections,
three sections of equal-length samples were cut out, and each section was further divided
into four pieces (1 cm × 1 cm) of final samples using a cutter, as shown in Figure 2. The
temperature for the melt-conveying section was adjusted from 70 ◦C to 160 ◦C in sequence
for sampling, with the sampling conditions kept consistent, from which 10 groups of final
samples were obtained.

2.9. Collection of Sample Images and Texture Measurement

The collected extruded test samples were sequentially subjected to texture TPA (Tex-
ture Profile Analysis) mode measurement according to the labeling order. The TA.XT
plus texture analyzer (Stable Micro System Ltd., Godalming, Surrey, UK) TPA mode set-
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tings were as follows: probe (P/36R), pre-test speed of 2.0 mm/s, test speed of 1.0 mm/s,
post-test speed of 2.0 mm/s, and probe compression degree of 50%.
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After capturing images of the same batch of samples, the color characteristics of
the samples were obtained using traditional methods. The color characteristics values
derived from the imaging method were compared with those from the conventional method,
establishing a correlational relationship showcasing a high degree of correlation between the
two, with a correlation coefficient R2 = 0.9684. Therefore, replacing the traditional method of
obtaining sample color characteristics with the imaging method proves to be highly feasible.
The imaging method conveniently and quickly enhances the color comparison efficiency,
and its non-destructive feature, which does not damage the samples, will further reduce
experimental costs. Image capture was carried out within a 60 cm × 60 cm × 60 cm light-
proof photography studio. The internal top and both sides utilized two shadowless LED
lights as light sources, with the incident light angle forming a 45◦ angle with the samples.
A smartphone was affixed to the top to capture sample images. The acquired color images
were transmitted to Matlab software on a computer via a USB port for processing and
storage.

Under the aforementioned sample image capture conditions and environment, images
of 12 parallel samples per group were captured and labeled correspondingly, yielding
120 groups of sample images. The captured sample images were preprocessed using
Matlab software, with the post-processing image dimensions being 2.5 cm × 2.5 cm at
a resolution of 640 × 480. The obtained sample images underwent format conversion
within Matlab, transitioning from the RGB format to the Lab format. Subsequently, image
features (L*, a*, b*, and contrast) were individually extracted from each sample image.
Following the labeling order, the test samples were sequentially subjected to texture TPA
mode measurement, from which the real texture characteristic data of 120 groups of
samples were obtained and are shown in Figure 3. In order to preserve the accuracy of
the predictions, 2 sets of experimental data with evident errors were excluded, and the
remaining 118 sample data were selected as the samples for the experimental network
prediction model.

2.10. Construction of the BP Neural Network

The fundamental algorithms of the BP neural network are the forward propagation of
signals and the backward propagation of errors. Inputs undergo non-linear transformations
through hidden layer nodes to produce outputs. The computed error between these outputs
and the true outputs is measured; if the error is substantial, it initiates the backward
propagation of the error, adjusting weights (W) and biases (b) sequentially in reverse.
Updated weights and biases yield a new error, steering the error towards gradient descent.
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This process continues until the error meets minimal criteria or the maximum number of
iterations, resulting in a network that, post training, can predict outputs for similar inputs
with minimal errors [20,21].
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The network environment utilized was MatlabR2022b Software [16]. Based on the
images and texture characteristics of the pea protein extrusion texturization product, the
parameters for the BP neural network were set as follows: Number of input layer nodes:
4. (Using the L*, a*, and b* image feature values and contrast of the pea protein extrusion
texturization product as relevant nodes for the input layer of the BP neural network.)
Number of output layer nodes: 1. (For each network training session, one texture feature—
hardness, stickiness, chewiness, adhesiveness, resilience, cohesion, or elasticity—was
selected for predictive modeling.) Number of hidden layer nodes: selected based on
empirical formulas. Learning Rate: 0.01; Minimum Error: 1 × 10−5; Maximum Iterations:
1000; Training Set: 90; Test Set: 28.

2.11. Particle Swarm Optimization (PSO) and Genetic Algorithm (GA)

The PSO optimization algorithm initializes a group of random particles (each particle
having a distinct velocity and position). Each particle adjusts its velocity and position
based on shared location data amongst particles, seeking optimal solutions through iterative
processes.

Genetic algorithms integrate natural biological evolution theories into problems of
searching for optimal solutions in a space. Through selection, crossover, and mutation, they
retain good quality characteristics while eliminating unfavorable ones, eventually reaching
global optimization through individual genetics.

2.12. Evaluation Indicator for the Prediction Model

The MAE (Mean Absolute Error), RMSE (Root Mean Square Error), and MAPE (Mean
Absolute Percentage Error) were chosen as accuracy metrics for the prediction model. MAE
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and MAPE include absolute values in calculations, mitigating the cancellation effect of
positive and negative errors. RMSE measures the average error magnitude.

Mean Absolute Error (MAE)

MAE =
1
N

N

∑
i=1
|ei| =

1
N

N

∑
i=1
|xi − x̂i| (11)

Root Mean Square Error (RMSE)

RMSE =
1
N

√√√√ N

∑
i=1

e2
i =

1
N

√√√√ N

∑
i=1

(xi − x̂i)
2 (12)

Mean Absolute Percentage Error (MAPE)

MAPE =
1
N

N

∑
i=1

∣∣∣∣ ei
xi

∣∣∣∣ = 1
N

N

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣ (13)

2.13. Data Analysis

The MatlabR2022b software (Version 9.13) from MathWork was used for preprocessing
and extracting image feature values from captured sample images. Microsoft’s Excel 2019
software (Version 16.0) was employed for data analysis, while the Origin data plotting
and analysis software (Version 95C, 2018 64 Bit, Origin Lab, Northampton, MA, USA) was
utilized for processing measurement data and graphical plotting. IBM’s SPSS Statistics
22 software was used for one-way ANOVA and presented as the average of three deter-
minations with corresponding standard errors. Statistical analysis was conducted using
Duncan’s test, and p-values < 0.05 were considered statistically significant.

3. Results
3.1. Impact of Different Processing Parameters on Residence Time
3.1.1. Impact of Screw Speed on Residence Time

As shown in Figure 4a, under the experimental condition of a material feeding speed of
35 rpm, the E(t) curve of different screw speeds is displayed. As the screw speed gradually
increases from 70 rpm to 130 rpm, it can be intuitively observed that with the increase in
screw speed, the E(t) curve exhibits an overall shift to the left, the width becomes noticeably
narrower, and the peak value increases, reducing the distribution range of the material in
the barrel. The Mean Residence Time (MRT), variance (σ2), and Peclet number Pe under
different speed conditions are shown in Table 1 above. The MRT decreases from 186.19 s
at a screw speed of 70 rpm to 169.72 s at 100 rpm (a reduction of about 8.8%), and further
drops to 152.57 s (a reduction of about 10.1%) when the screw speed reaches 130 rpm, while
the variance also reduces from 5823.00 to 3918.88. The increase in screw speed leads to a
decrease in both MRT and variance.

The increase in speed concentrates the material distribution in the barrel without being
fully dispersed, resulting in lower mixing and a reduction in MRT, which is consistent with
the trend presented in the simulation results of Sun et al. [22]. One of the main functions of
the screw is to convey the material within the barrel. Nwabueze et al. [23] have analyzed
the reasons for the residence time being affected by the screw speed, a higher screw speed
provides the material with greater forward force, thereby increasing the material’s velocity
in the barrel and reducing the residence time. Dalbhagat et al. [24] explained in a study
on rice that the screw speed affects the shear rate as well as the heat exchange in the
barrel, leading to a reduction in material viscosity, and thus shortening the residence time.
Insufficient heating and incomplete melting affect the texturization degree of the extruded
products, further affecting the quality of the extruded products.
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Table 1. Residence time parameters for different screw speeds.

Screw Speeds (rpm) MRT (s) σ2 (s2) Pe

70 186.19 ± 2.83 a 5823.00 ± 176.48 a 10.80 ± 0.46 a

100 169.72 ± 1.67 b 4569.29 ± 151.82 b 11.48 ± 0.21 a

130 152.57 ± 5.85 c 3918.88 ± 126.94 c 10.74 ± 0.38 a

Note: Different letters a–c in the same column indicate significant differences between groups (p < 0.5).

Figure 4b shows the F(θ) curve under different screw speed conditions. The flow curve
of the material in the barrel is between plug flow and mixed flow; the higher the screw
speed, the closer it is to a mixed flow, and the more uniform the material distribution in the
barrel. The change in the F(θ) curve is not obvious under different screw speed conditions.
From the Pe values in Table 1, it can be observed that under three different screw speed
conditions, the Pe number is greater than 10, indicating that during the extrusion process,
there is a certain degree of axial mixing of the material in the barrel. However, the lack of
significant change in the three groups of Pe values indicates that the screw speed has little
effect on the flow model of the material in the barrel, which is also consistent with the trend
presented by the F(θ) curve. The screw speed cannot change the flow state of the material
in the barrel but can determine the flow speed, i.e., the residence time of the material in the
barrel. Similar research conclusions also appeared in Sisay’s study [25].

3.1.2. Impact of Different Material Feeding Speeds on Residence Time

Figure 5a shows the E(t) curve of different material feeding speeds under the exper-
imental condition of a screw speed of 130 rpm. As the material feeding speed increases
from 25 rpm to 35 rpm, the trend of the E(t) curve changes in a manner quite similar to that
of the screw speed, showing a general leftward shift, narrower width, and an increase in
the peak value. The increase in material feeding speed also shortens the residence time
of the material in the barrel, reducing the distribution range. The Mean Residence Time
(MRT), variance (σ2), and Peclet number (Pe) are shown in Table 2. The MRT decreases
from 204.09 s at 25 rpm to 173.52 s at 30 rpm (a reduction of about 14.97%), and further
drops to 152.57 s (a reduction of about 12.07%) when the material feeding speed reaches
35 rpm, with the variance also reducing from 4871.29 to 3918.88. Similar to the increase in
screw speed, the increase in material feeding speed leads to a decrease in both MRT and
variance.
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Figure 5. Material Residence Time Distribution E(t) and Cumulative Residence Time Distribution
F(θ) at different material feeding speeds. (a) represents the Material Residence Time Distribution E(t)
at different material feeding speeds; (b) represents the Cumulative Residence Time Distribution F(θ)
at different material feeding speeds.

Table 2. Residence time parameters for different material feeding speeds.

Material Feeding
Speed (rpm) MRT (s) σ2 (s2) Pe

25 204.09 ± 3.48 a 4871.29 ± 67.59 a 10.80 ± 0.31 c

30 173.52 ± 1.59 b 4158.80 ± 34.61 b 13.41 ± 0.46 b

35 152.57 ± 0.94 c 3918.88 ± 16.58 c 15.98 ± 0.17 a

Note: Different letters a–c in the same column indicate significant differences between groups (p < 0.5).

The material feeding speed determines the fill degree of the material within the barrel;
when the screw speed remains constant, a higher material feeding speed results in a greater
fill degree within the barrel, filling the barrel space faster and increasing the amount of
material within the barrel over the same time period. The material filling the entire barrel
augments the forward flow impetus of the material, synchronizing positively with the
screw speed to achieve a higher flow velocity, ultimately shortening the residence time of
the material within the barrel.

Figure 5b shows the F(θ) curve under different material feeding speed conditions. As
the material feeding speed increases, the F(θ) curve approaches plug flow, reducing the
material distribution within the barrel and decreasing the mixing degree of the material.
Hence, increasing the material feeding speed is actually detrimental to material mixing.
As can be discerned from the Pe values in Table 2, the material feeding speed significantly
impacts the Pe value, which increases with the material feeding speed, which aligns well
with the trend presented by the F(θ) curve. The substantial difference between the different
material feeding speeds, compared to the difference in the screw speed, illustrates that
although increasing both screw speed and material feeding speed can reduce the material’s
residence time within the barrel, the mechanisms and principles influencing the residence
time are different. The increase in material feeding speed can significantly shorten the
material’s residence time but reduces the degree of mixing of the material. In practical
processing production, it is essential to adjust for an appropriate material feeding speed
to ensure adequate mixing and residence time of the material within the barrel to achieve
optimal product quality.

Upon comparison, it is observed that the material feeding speed has a more pro-
nounced effect on MRT and σ2 compared to the screw speed. Therefore, the material
feeding speed is a highly noteworthy operational parameter during extrusion processing,
as the fill degree of material within the barrel not only determines the residence time but
also affects the mixing degree and flow state of the material.
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3.1.3. Impact of Different Initial Material Moisture Contents on Residence Time

Figure 6 shows the E(t) curves under different initial material moisture content at a
selected screw speed of 100 rpm and material feeding speed of 30 rpm, based on the earlier
experimental results. As the initial material moisture content gradually increases from 55%
to 70%, compared to the effects of screw speed and material feeding speed, the impact
is more significant. With the increase in initial material moisture content, the E(t) curve
collectively shifts leftward, narrows in width, and the peak value increases, indicating that
as the initial material moisture content rises, the residence time of the material in the barrel
shortens, and the distribution range decreases. The Mean Residence Time (MRT), variance
(σ2), and Peclet number (Pe) are shown in Table 3. With the rise in moisture content, both
MRT and σ2 notably decreased, the residence time of the material in the barrel shortened
from 265.2 s to 166.6 s, and the variance also decreased from 1913.60 to 1338.97, leading to a
more concentrated material distribution, which was unfavorable for material mixing.
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Figure 6. Material Residence Time Distribution E(t) and Cumulative Residence Time Distribution F(θ)
at different initial material moisture contents. (a) represents the Material Residence Time Distribution
E(t) at different initial material moisture contents; (b) represents the Cumulative Residence Time
Distribution F(θ) at different initial material moisture contents.

Table 3. Residence Time Parameters for different initial material moisture contents.

Initial Material
Moisture Content (%) MRT (s) σ2 (s2) Pe

55 265.21 ± 4.76 a 1913.60 ± 37.26 a 40.15 ± 0.68 d

60 209.69 ± 3.18 b 1598.00 ± 28.64 b 44.14 ± 1.24 c

60 181.75 ± 3.05 c 1440.86 ± 41.93 c 54.35 ± 0.88 b

70 166.62 ± 2.49 d 1338.97 ± 18.52 d 69.90 ± 3.06 a

Note: Different letters a–d in the same column indicate significant differences between groups (p < 0.5).

The decrease in the average amount of time a substance stays in a particular environ-
ment at increased levels of moisture is linked to the lubricating influence of higher levels
of moisture, which aligns with Hoyos-Concha et al.’s [26] discoveries on fish extrudate.
Whereas moisture lowers the viscosity of the molten material, high temperature promotes
moisture evaporation, forming a saturated steam micro-environment within the extrusion
barrel. Under this environment, the friction between the material and the screw further de-
creases. The barrel, possessing high-energy water molecules and steam, facilitates smoother
material flow, simultaneously opening the protein molecular chains and re-aggregating to
form a structured composite. When the initial material moisture content decreases, most
of the water participates in the denaturation reaction of the protein, leaving less water to
reduce friction and enhance lubrication. Hence, the material flow is restricted, leading to
an extended residence time. Similar research results have explained that an increase in
initial material moisture content reduces the thrust needed for the melt to pass through
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the barrel, simultaneously reducing the friction between the material and the screw, the
material and the barrel, and the screw and the barrel.

Figure 6b presents the F(θ) curves under different initial material moisture content
conditions. With the increase in moisture content, the F(θ) curve approaches plug flow,
reducing material distribution within the barrel and diminishing the degree of material
mixing within the barrel, thus increasing the initial material moisture content is detrimental
to material mixing. From the Pe values in Table 3, it was evident that moisture content
significantly impacted the Pe value, and as the moisture content rose, the Pe value increased,
which aligned well with the trend exhibited by the F(θ) curve, although with considerable
differences between different moisture content conditions in the F(θ) curve. An increase
in moisture content could significantly shorten the material’s residence time and decrease
the material’s degree of mixing, similar findings were also observed in Sisay’s research on
the extrusion of low gluten wheat [25]. In actual production, it was necessary to adjust to
both the optimal material feeding speed and optimal moisture content according to the
relationship between the product’s quality requirements and the machine’s efficiency.

3.2. Microstructure of Extruded Pea Protein Products at Different Residence Times

The shear force determines the magnitude of shear action, serving as a critical factor
in promoting physicochemical reactions. The energy input into the system provides the
energy source for the entire reaction. By examining the microstructural changes in the
extruded products, this study explores the integrated action model of system parameters
under different processing parameter conditions.

Figure 7 depicts significant differences in the microstructure of the extruded products
under varying screw speed conditions. At a screw speed of 70 rpm, the extruded products
appear loose and unconsolidated with a coarse overall microstructure featuring numerous
and larger pores. With the increase in screw speed, the extruded products become denser,
and compared to low-speed conditions, their microstructure displays fewer pores, finer
protein particles, and a more compact distribution. Figure 8 demonstrates that an increase
in material feeding speed also impacts the final microstructure of the extruded products.
Higher material feeding speeds result in a larger amount of material in the barrel, enhancing
the compressive and shear actions between the materials, and between the materials and the
screw, thereby yielding products with smaller microstructural voids and denser structures.
Moisture content determines the flow and mixing state of the materials in the barrel.
Figure 9 demonstrates that higher moisture content enhances material fluidity, shortening
the residence time within the barrel. Consequently, the microstructure shows less evident
agglomeration of protein particles, and as moisture content increases, the structure becomes
increasingly sparse, leading to a reduction in hardness.

3.3. Prediction and Analysis of Product Texture Characteristics Based on PSO/GA-BP Neural
Network and Image Analysis

The total sample size for the network prediction model was 118. To comprehensively
characterize the texture features of the extruded products, two sets of experimental data
with apparent errors were removed when measuring the texture indexes of the extruded
products to avoid affecting the accuracy of the prediction. To test the accuracy of the neural
network prediction model, the 118-sample data set was divided into a training set and a
test set, with 90 in the training set and 12 in the test set. The neural network output the
trained prediction model from the 90-sample training set. The 12-sample test set data were
input into the prediction model to obtain the predicted values, which were then compared
with the real values of the test set samples.
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3.3.1. Prediction Deviation in Optimized Model

Figure 10 shows the comparison of the prediction deviations before and after opti-
mization in the texture prediction model, with sub-Figure 10a–c representing hardness,
resilience, and chewiness. All instances of I and III in Figure 10a–c show the prediction
deviations between the predicted values and actual values before and after Particle Swarm
Optimization (PSO) optimization, while II and IV show the deviations after Genetic Algo-
rithm (GA) optimization. From the deviation graphs, it can be deduced that the deviation
between the predicted values and actual values significantly reduces after optimization
with both algorithms, thus better aligning the post-optimization predicted value curves
with the actual value curves.
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and contrast) of the extruded products, with a correlation coefficient greater than 0.94. 

Figure 10. Comparison of the prediction deviations of texture characteristic prediction models. (a) rep-
resents the prediction deviations of Hardnes; (b) represents the prediction deviations of Resilience; (c)
represents the prediction deviations of Chewiness. (In (a–c), “I” represents the comparison between
the BP prediction error and the PSO-BP prediction error for “Hardness”, “Re-silience” and “Chewi-
ness”; “II” represents the comparison between the BP prediction error and the GA-BP prediction
error for “Hardness”, “Resilience” and “Chewiness”; “III” represents the comparison between the BP
predicted value and the PSO-BP predicted value with the actual value for “hardness”, “resilience”
and “chewiness”; “IV” represents the comparison between the BP predicted value and the GA-BP
predicted value with the actual value for “Hardness”, “Resilience” and “Chewiness”. The lower part
of (a–c) respectively represents the comparison of the correlation coefficients between PSO and GA
predictions for “Hardness”, “Resilience”, and “Chewiness”).
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To accurately measure the degree of model fit, we conducted an analysis of the corre-
lation coefficients for various algorithms. Based on Figure 10, the hardness, resilience, and
chewiness of the extrudates are highly correlated with the image features (L*, a*, b* and
contrast) of the extruded products, with a correlation coefficient greater than 0.94. During
the extrusion process, as the extrusion temperature increases under a high-energy input
environment, the protein molecular chains open to a more thorough degree within the bar-
rel. The cross-linking and reorganization of the molecules increase, and the higher-energy
water molecules become more active at higher temperatures, enhancing the plasticizing
effects. The mobility of the protein’s primary structure fragments is enhanced, which
facilitates molecular chain stretching and alignment [27,28]. The shear and mixing actions
of the screw cause the protein molecular alignment to become more compact, increasing
the density of the protein melt, thereby enhancing the hardness and chewiness of the
extrudates, with a consequent change in the products’ resilience [29,30]. In the energy input
environment of this experiment, the color of the extruded products generally presents as
brownish-yellow. As the extrusion temperature continually rises, the color of the extruded
products deepens. This phenomenon specifically manifests in the product’s image features
as an overall richness in yellow hue, less green hue, and a gradual reduction in brightness
(a* < 0, b* > 0, L* gradually decreases). Simultaneously, the hardness of the extruded
products gradually increases due to the promotion of protein melting in the barrel with
rising temperature, reducing viscosity, and thus extending the residence time [31] in the
barrel and prolonging the Maillard reaction time [32], which deepens the browning degree
of the extruded products. This illustrates a mechanistic correlation between the image
features and the hardness of the extruded products. The resilience of the extruded products
is directly affected by the gel content and hardness, and to some extent, the L* of extruded
products reflects the amount of gel content, with a higher gel content leading to more
reflected light and greater overall brightness, suggesting an indirect correlation between
the resilience of extruded products and their image features. The chewiness of the extruded
products is also directly affected by factors such as hardness and resilience. Therefore,
a rational prediction of the texture characteristics of the extruded products can be made
through the color changes of the extruded products.

3.3.2. Prediction Model Error

The prediction deviation values and comparison between the predicted values and
actual values from the PSO/GA-BP neural network for texture characteristics reveal that the
prediction deviations of the optimized BP neural network have been reduced, rendering the
predicted values closer to the actual values, which is also reflected in the prediction error.
As shown from the Table S1, the prediction error of the optimized model in terms of MAE,
MSE, RMSE, and MAPE has been reduced, which is consistent with the trend in prediction
deviation values. The errors in the prediction model optimized by the GA optimization
algorithm are all lower than those optimized by the PSO optimization algorithm. This
indicates that in the BP neural network based on image features, the initial weights and
thresholds obtained through optimization via the GA optimization algorithm enable the
BP neural network to better find the global optimal solution [33].

3.3.3. Prediction Model Correlation Coefficients

The experiment demonstrates that both PSO and GA optimization algorithms can
reduce prediction errors, enhance prediction accuracy, and avoid the risk of the BP neural
network algorithm getting trapped in local optima. Table 4 below shows the comparison of
the correlation coefficients of the two optimization methods and the prediction model before
optimization. The critical correlation coefficient for this experimental sample environment
at a significance level of p = 0.05 is 0.374. The calculated values exceed the critical correlation
coefficient value. Comparative analysis reveals that the GA optimization algorithm is
superior overall to the PSO optimization algorithm. The correlation coefficients of the
prediction model optimized by the GA optimization algorithm are higher than those
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optimized by the PSO optimization algorithm in all texture characteristics except hardness.
The table data indicate a significant correlation between the actual values of various textural
properties (including hardness, chewiness, and resilience) of the extruded products and
the PSO neural network prediction model’s predicted values. This allows for rapid and
precise predictions of texture characteristics through the color information of extruded
product images using neural networks, providing the possibility of rapid, online, and
precise detection.

Table 4. PSO/GA-BP neural network prediction model correlation coefficient.

Texture
Characteristics BP Prediction Model PSO-BP Prediction

Model
GA-BP Prediction

Model

Hardness 0.92049 0.94464 0.93913
Resilience 0.91864 0.93186 0.94040
Chewiness 0.91742 0.94677 0.94724

4. Conclusions

This paper employed pea protein extrusion texturization experiments as the medium;
by setting different processing parameter conditions such as screw speed, material feeding
speed, and initial material moisture content, the Residence Time Distribution (RTD) of the
material within the extruder barrel under different parameters was ascertained using the
tracer method. Additionally, image colorimetry was employed to analyze the variation
trends of the E(t) and F(t) curves under different parameter conditions. The microstructure
characterization of extruded products under different parameter conditions was carried
out using Scanning Electron Microscopy (SEM), analyzing the impact of various variables
on texture indicators. Finally, a texture quality prediction model based on a BP neural
network and the image analysis of extruded products was established, and PSO and GA
optimization algorithms were employed to optimize the neural network, to prevent the
network from falling into local optima, and to establish the correlation between the image
features and texture quality. The main research conclusions are as follows:

The results indicate that the RTD of materials decreases with the increase in screw
speed, feeding speed, and initial moisture content. In terms of residence time, the effect
of the material feeding speed is the most significant, followed by screw speed; similarly,
in terms of the degree of material mixing, the impact of the material feeding speed is also
more significant than that of screw speed. The level of moisture content directly affects the
quality of extruded products.

Different processing parameters have different impacts on the microstructure of the
extruded products. Under different screw speeds, the microstructures of the extruded
products exhibit significant differences.

The experimental results show that the prediction effect of the GA optimization
algorithm model is better than the PSO model, with the prediction accuracy and correlation
coefficient also significantly better than the PSO optimization algorithm. Through the
prediction model correlation coefficients, it was found that the hardness, chewiness, and
resilience textural characteristics of the extruded products all had a strong correlation with
the image features of the extruded products.

In this study, a texture quality prediction model was developed using BP neural
networks and extruded product images. Image features and contrast were used as input
layers for texture quality prediction. The correspondence between image features and
specific texture indices can be further explored in future studies, and a rational explanation
in terms of processing parameters and energy input can be provided.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12244408/s1, Table S1: PSO/GA-BP Neural Network Pre-
diction of Texture Characteristic Error.
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