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Abstract: Nowadays, medium chain triglycerides (MCT) with special health benefits have been
increasingly applied for fortifying food products. Therefore, the present work aimed to investigate
the effects of MCT on traditional tea polyphenols-fortified cooked rice (TP-FCR). It was visualized by
DSC, CLSM, XRD, FT-IR, and Raman spectroscopy. The higher content of starch-MCT complexes
with an increase in the relative crystallinity and the generation of short-range ordered structures
contributed to a more ordered and compact molecular arrangement, which can hinder the action of
digestive enzymes on starch. SEM demonstrated that MCT transformed the microstructure of TP-FCR
into a denser and firmer character, making it an essential component hindering the accessibility
of digestive enzymes to starch granules and slowing the release of tea polyphenols in TP-FCR to
attenuate starch digestion. Consequently, the addition of MCT reduced the polyphenol-regulated
starch digestibility from 74.28% in cooked white rice to 64.43% in TP-FCR, and further down to
50.82%. Besides, MCT also reduced the adhesiveness and improved the whiteness of TP-FCR. The
findings suggested that MCT incorporation could be a potential strategy in cooked rice production to
achieve high sensory quality and low glycemic cooked rice.

Keywords: medium chain triglycerides; starch-lipid complexes; tea polyphenols-fortified cooked
rice; digestion characteristics

1. Introduction

Tea products rich in polyphenols have functional properties such as hypoglycemia,
antioxidants, obesity prevention, etc. [1]. Adding tea products to produce tea polyphenols-
fortified foods that integrate multiple functions and nutrients is very popular among
consumers. Tea polyphenols-fortified cooked rice (TP-FCR), which is prepared by cooking
rice with tea products, is traditionally one of the most common staple foods in many
Southeast Asia countries ascribed to their unique flavor. Furthermore, many studies have
found that tea polyphenols can interact with starch to inhibit the digestion of starch [2–4].
Also, our research group demonstrated that instant green tea could enhance the palatability
and slow the in vitro digestion properties of cooked rice [5].

To slow starch digestion, besides the interaction between tea polyphenols (TP) and
starch, the interaction between lipids and starch is also important. Ai et al. proposed that
lipids can interact with starch to reduce the sensitivity of starch to enzymatic hydrolysis
and improve the anti-digestibility of starch [6]. Luangsakul and Ritudomphol added oil to
rice for cooking and revealed that the formation of amylose-lipid complexes in cooked rice
reduced in vitro starch digestibility and predicted glycemic index [7].

What is more, many studies have proven that the type of lipid and its chain length
and degree of unsaturation can affect complex formation, structure, and functional proper-
ties. Sun et al. proposed that maize starch interacting with different types of fatty acids
(FAs) exhibited different V-type polymorphs, and the FAs with a chain length of 10–14
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carbons showed stronger intermolecular interactions with MS and produced more ordered
structures than other FAs [8]. Zabar et al. demonstrated that the crystallinity and ther-
mostability of amylose-long chain fatty acid complexes decreased with increasing degree
of unsaturation of FAs [9]. Therefore, the selection of lipids with appropriate chain length
and high saturation contributes to the formation of more stable starch-lipid complexes.

Medium chain triglycerides (MCT) have high saturation and shorter carbon chain, are
colorless and odorless at room temperature, and have low viscosity and good stability [10,11],
which facilitate the formation of complexes with starch. Additionally, MCT possesses
functional properties such as obesity prevention and improvement of carbohydrate, lipid,
and cholesterol metabolism [12,13]. Nowadays, there are various foods enriched with MCT
available in the market. Consequently, MCT with good physicochemical and functional
properties was selected as a quality modifier, which was expected to further enhance the
nutritional value and eating quality of TP-FCR.

In addition to the interaction between two components, such as starch and polyphe-
nols, as well as starch and lipids, there are also three component interactions in the food
system. Wang et al. reported that starch can interact with β-lactoglobulin and fatty acid
(FA) to form ternary complexes, which had a larger short-range molecular order and
higher relative crystallinity than binary starch-FA complexes [14]. Lin et al. suggested
that proteins promoted the formation of starch-protein-linoleic acid (LA) complexes due to
its emulsification, which had more ordered structures and lower starch digestibility than
the LA- and proteins-complexed starches [15]. Starch, lipids, and protein are the three
macronutrients in many food systems and their interactions have been extensively studied.
However, the interactions between starch, lipids, and polyphenols and the applications
of these interactions in foods have been less studied. Whether MCT can interact with the
polyphenols and starch in TP-FCR to improve its quality is also unclear.

Therefore, this study aimed to investigate the effects of MCT on the digestive proper-
ties and quality of TP-FCR. The improvement of MCT on TP-FCR was evaluated by surface
porosity, texture analysis, and color. Meanwhile, differential scanning calorimetry (DSC),
X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spec-
troscopy, confocal laser scanning microscope (CLSM), and scanning electron microscopy
(SEM) were used to interpret the effects of MCT on TP-FCR in terms of the multi-scale
structure. The effects of MCT on the digestive properties of TP-FCR were also characterized
by dynamic modulus changes and fluorescence quenching spectrum during digestion.

2. Materials and Methods
2.1. Materials

Golden Dragon Fish Northeast Pearl Rice (japonica rice) with 15.8% amylose content
was purchased from Yihai Kerry Arawana Holdings Co., Ltd. (Jiamusi, China). MCT was
purchased from Shanghai HeYi Food Technology Co., Ltd. (Shanghai, China). The fatty
acid composition of MCT is caprylic acid glyceride and decanoic acid glycerol ester, and
the purity of MCT is 100%. Instant green tea powder (IGT) was purchased from Jiangsu
Dehe Biotech Co., Ltd. (Wuxi, China). IGT is a water-soluble component extracted from
green tea leaves, mainly consisting of tea polyphenols, flavonoids, alkaloids, theanine,
and tea polysaccharides, with a tea polyphenol content of 18.36%, and free of carriers and
other additives such as saccharides. Porcine pancreatic amylase (PPA) was purchased
from Aladdin Reagent Co., Ltd. (Shanghai, China). DNS reagents and aspergillus niger
amyloglucosidase (AAG 100 U/g) were purchased from Solarbio Technology Co., Ltd.
(Beijing, China). All other chemical solvents were analytical grade and purchased from
Sinopharm Chemical Reagent Factory (Shanghai, China).

2.2. Cooked Rice Samples Preparation

A total of 100 g of rice was rinsed three times and filtered; 150 mL of deionized water
dissolved with 2 g of IGT was poured into the rinsed rice in a rice cooker (SF12FB627,
SUPOR Co., Ltd., Hangzhou, China). Then, different amounts of MCT (0, 1, 2, 3, 4, and 5 g)
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were added respectively and mixed well. Next, the rice was soaked for 30 min, cooked, and
kept warm for 20 min. Subsequently, TP-FCR samples separated from the middle of the
cooker were put into plastic bags with a moisture vapor transmission rate of approximately
0.84 mg/(m2·h) to prevent moisture loss and cooled to room temperature.

At the same time, some of the TP-FCR samples were taken out and frozen at −80 ◦C
for 48 h and lyophilized with the freeze-dryer (LC-10N-50D, Shanghai anting scientific
instrument Co., Ltd., Shanghai, China) at a vacuum degree of 25 Pa and a temperature of
−45 ◦C for 48 h. Each lyophilized TP-FCR sample was divided into two portions, one of
which was left intact, and the other was ground into powder for further detection. The
TP-FCR without MCT was named as control.

2.3. Surface Porosity

A whole pot of TP-FCR was placed on the Perfection V330 Photo Scanner (EPSON
Scan, Epson (China) Co., Ltd., Beijing, China) without damaging the shape and then the
image of the TP-FCR sample was taken. The surface porosity of TP-FCR was calculated
using Image j 1.48u software [5].

2.4. Texture Profile Analysis (TPA)

Texture properties of TP-FCR samples were tested using a texture analyzer (TA-XT2i,
Stable Microsystems Co., Ltd., Surrey, UK) with cylindrical probe P/0.5, according to a
modified method [16]. TP-FCR samples separated from the middle of the rice cooker
were cooled at room temperature for 30 min and immediately placed on the test bench
of the texture analyzer for testing. Each sample with a 50% compression ratio was tested
10 times. The pre-test and post-test speed was 2 mm/s and the interval time between two
compressions was 5 s. Parameters, such as adhesiveness, hardness, and chewiness were
obtained using the TPA test. Adhesiveness represents the force required to peel off the food
when it is attached to people’s tongue, teeth, mouth, etc. [17], hardness represents the force
required for teeth to deform food, chewiness indicates the energy required to chew solid
food until it could be swallowed [18].

2.5. Color

The color of TP-FCR samples was measured using a Hunter-Lab colorimeter (Color
Quest XE, Hunter Associates Laboratory, Fairfax, VA, USA), and the results were expressed
as the values of lightness (L*), redness/greenness (a*), and yellowness/blueness (b*) [19].
The whiteness (W) of TP-FCR was calculated according to the following formula:

W = 100 − [(100 − L*)2 + a*2 + b*2]
1/2

2.6. Water Absorption Rate

The water absorption rate was determined according to the method of Wei et al. with
slight modifications [20], TP-FCR samples prepared in Section 2.2 were weighed and the
water absorption rate was calculated according to the following formula:

Water absorption rate =
(W − 100)

100

where W is the weight of 100 g of rice after cooking.

2.7. Swelling Ratio

According to the method reported by Paesani and Gómez with some modifications [16],
the drainage method was used to calculate the swelling ratio of TP-FCR. Briefly, 100 g
of rice before cooking was measured with a measuring cylinder containing 100 mL of
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water, and then the volume of TP-FCR samples (10 g) was measured in the same way. The
swelling ratio of TP-FCR samples was calculated as follows:

Swelling ratio =

(
V2
10 × W − V1

)
V1

where V1 is the volume of rice (100 g) before cooking, V2 is the volume of the TP-FCR
samples (10 g), and W is the weight of 100 g of rice after cooking.

2.8. Differential Scanning Calorimetry (DSC)

Thermodynamic properties of TP-FCR were determined using differential scanning
calorimetry (DSC 214 Polyma, NETZSCH, Ahlden, Germany). A total of 8 mg of the
lyophilized powder of the sample was accurately weighed into an aluminum crucible, then
sealed and balanced for 12 h before testing [21]. An empty aluminum crucible was used
as a control and the crucible temperature was increased from 20 ◦C to 170 ◦C at a rate
of 10 ◦C/min. The starting temperature (To), the peak temperature (Tp), the termination
temperature (Tc) and the enthalpy change (∆H) were recorded.

2.9. X-ray Diffraction (XRD)

Referring to the method described by Seo et al. [22], the XRD spectroscopy of lyophilized
powder of TP-FCR was obtained by using an X-ray diffractometer (XRD-7000; Shimadzu
Corp., Kyoto, Japan) with a scanning voltage of 40 kV and a scanning current of 30 mA.
The scan rate is 2◦/min with the scan range 2θ of 4–40◦ at a scan step of 0.02◦.

2.10. Fourier-Transform Infrared Spectroscopy (FT-IR)

According to the method of Lv et al. [23], the lyophilized powder of TP-FCR samples
was ground with KBr and then tested using an FT-IR spectrometer (Nicolet iS5, Thermo
Fisher Scientific Co., Ltd., Waltham, MA, USA) at the scanning range of 400–4000 cm−1.
The scanning resolution at 4 cm−1 and the cumulative number of scans at 32 were set.

2.11. Raman Spectroscopy

According to a modified method of Sivam et al. [24], the lyophilized powder of TP-FCR
was placed on a slide, flattened, and tested using a Raman spectrometer (DXR2, Thermo
Fisher Scientific Co., Ltd., Waltham, MA, USA) with a 785 nm semiconductor laser light
source. The exposure time and the slit were set at 10 s and 25 µm, respectively. Each sample
was scanned 10 times in the laser range of 200–3200 cm−1.

2.12. Confocal Laser Scanning Microscope (CLSM)

The lyophilized powder of TP-FCR was mixed with distilled water in the ratio of 1:7
and then 20 µL fluorescein isothiocyanate (FITC, 0.1%, w/v) was added to stain the starch.
And 20 µL Nile Red (0.1%, w/v) was added to stain the MCT [25]. The samples were mixed
evenly and kept away from light for 2 h, and then observed by the confocal laser scanning
microscopy (Leica TCS SP5, Leica Microsystems GmbH, Wetzlar, Germany).

2.13. Scanning Electron Microscopy (SEM)

Based on the method described by Lu et al. with appropriate modifications [26], the
microstructures of the intact lyophilized TP-FCR cross-section and surface were observed
by scanning electron microscopy (Zeiss evo 18; Carl Zeiss Co., Ltd., Oberkochen, Germany)
at 100× and 500×.

2.14. Viscoelastic Properties during Digestion

The dynamic modulus change during digestion was determined by a rheometer
(Discovery HR-1, TA Instrument Co., Ltd., New Castle, DE, USA) with reference to the
method described by Xiao and Zhong with slight modifications [27]. The concentric cylinder
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was selected for oscillation time scanning. The TP-FCR samples and sodium acetate buffer
were crushed into homogenate by a juicer (JYL-C020E, Joyoung Co., Ltd., Nanjing, China)
at a ratio of 1:1. The digestive enzyme solution was placed in a shaking water bath (SHA-C,
Changzhou Guoyu Instrument Manufacturing Co., Ltd., Changzhou, China) at 37 ◦C until
the temperature of the digestive enzyme solution reached 37 ◦C to activate the digestive
enzymes. Then the above homogenate was mixed with the pre-activated digestive enzyme
solution (PPA:AAG = 20:1, w/w) at a ratio of 9:1, and added to the concentric cylinder for
testing. The program scan time was 3 h, the frequency was 1 Hz, and the temperature was
set at 37 ◦C. The samples without enzyme were used as control and the whole procedure
was performed in the linear viscoelastic zone.

2.15. Fluorescence Quenching during Digestion

A 0.2 g of TP-FCR lyophilized powder was added to sodium acetate buffer (pH 5.2),
and the pH was adjusted to 6.5 with 1 mol/L and 0.1 mol/L NaOH, then the pre-activated
mixed enzyme solution (PPA:AAG = 20:1, w/w) was added and maintained in a shaking
water bath at 37 ◦C for 3 h. Fluorescence spectra of the supernatant of TP-FCR samples
digested for 0, 20, 40, 60, 90, 120, 150, and 180 min were performed with a fluorescence
spectrophotometer (970CRT, Shanghai Precision and Scientific Instrument Corp., Shanghai,
China) by referring to the method of Chen et al. [28]. Both excitation and emission slits
were set to 5 nm, and the fluorescence intensity of samples in the emission wavelength
range of 250–550 nm were recorded at the excitation wavelength of 280 nm.

2.16. In Vitro Starch Digestion

For the in vitro digestion of cooked white rice and TP-FCR samples, the test method
of Fu et al. with slight modification was referred to [29]. A 0.8 g of lyophilized powder of
TP-FCR was mixed with sodium acetate buffer (pH 5.2), 1 mol/L and 0.1 mol/L NaOH to
make the pH of the system at 6.5. 5 mL of pre-activated enzyme mixture (PPA:AAG = 20:1,
w/w) was added and maintained in a shaking water bath at 37 ◦C for 0, 20, 40, 60, 90, 120,
150, 180 min, respectively. Anhydrous ethanol was then added to inactivate the enzyme.
The mixture was then centrifuged and separated the supernatant. The glucose content at
different times was measured using the DNS method and the contents of rapidly digestible
starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) were calculated based
on the glucose content. The RDS, SDS, and RS contents were calculated according to the
following formulas:

RDS(%) =
(G20 − FG)× 0.9

TS
× 100

SDS(%) =
(G120 − G20)× 0.9

TS
× 100

RS(%) =
TS − (RDS + SDS)

TS
× 100

where G20 and G120 are the glucose content released within 20 min and 120 min, respectively,
FG is the content of free glucose before enzymatic hydrolysis, and TS is total starch content.

The digestion rate constant (k) was obtained by fitting the digestion rate curve of
starch. The starch digestion data have often been fitted to a first-order equation [30]:

Ct = C∞

(
1 − e−kt

)
where Ct is the percentage of digested starch at a given time, C∞ is the estimated percentage
of starch digested at the end of the reaction, “t” is the digestion time, and “k” is the digestion
rate constant.
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The hydrolysis index (HI) and predicted glycemic index (pGI) were calculated using
the following formulas [31]:

HI/% =
AUCsample

AUCfresh white bread
× 100

pGI = 8.198 + 0.862 × HI

where AUCsample is the area under the hydrolysis curve of sample and AUCfresh white bread
is the area under the hydrolysis curve of the reference sample (fresh white bread).

2.17. Statistical Analysis

All test data were obtained by at least three tests and expressed as the mean ± standard
deviation. The data was analyzed by the one-way ANOVA and Duncan’s multiple range
test at a significance level of 0.05 using SPSS 20.0 software, and all figures were drawn
using Origin 2021.

3. Results and Discussion
3.1. Surface Porosity, Texture Properties, and Color

The results of the surface porosity in Figure 1A demonstrated that the addition of
MCT was positively correlated with surface porosity, and the more MCT was added, the
greater the surface porosity was. This indicated that the cooked rice became fluffy and
porous, and had low adhesion between the TP-FCR grains after the addition of MCT. The
adhesiveness index in texture properties also reflected the adhesion of TP-FCR, as shown
in Figure 1B, the adhesiveness of TP-FCR decreased with the increase of MCT, which was
consistent with the results of surface porosity. MCT has good lubricity, which can play a
lubricating role by covering the surface of starch or forming starch-MCT complexes to wrap
on the surface of starch granules in the form of an insoluble film [32]. In addition, it can
inhibit the hydration and swelling of the starch granules and reduce soluble components
on the surface of TP-FCR, leading to a decrease in adhesiveness [33,34]. Therefore, the
addition of MCT can make TP-FCR have better dispersibility and distinct particles and
inhibit adhesion to each other and to the bottom of the pot.
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The TPA experiment, also known as the twice-chewed test, mainly involves compress-
ing the sample twice by simulating the chewing motion of the human mouth [17]. The
texture properties of TP-FCR are an important factor in evaluating its edible quality. At
present, many scholars have used TPA experiments to study the edible quality of food and
analyze the correlation between sensory evaluation and texture properties [19,35]. Sensory
evaluation of TP-FCR with different additions of MCT was also conducted in this study,
and the scoring criteria are shown in Supplementary Table S1. The results (Supplementary
Figure S1) showed that the sensory evaluation results were consistent with the instrumental
measurement results. The effect of MCT on the texture of TP-FCR was characterized in
Figure 1B–D, it was clear that the more MCT was added, the greater the hardness and
chewiness were. This was due to that during heating, MCT can interact with starch to form
starch-MCT complexes, and the formation of the complexes reduced the water permeability
of the starch granules to retard water absorption and decrease the swelling of the starch
granules [36,37]. Besides, the internal pores of TP-FCR became smaller and formed a tighter
structure, and these structural changes can be observed in the SEM image of TP-FCR,
increasing the hardness and chewiness of the TP-FCR.

Color is an important indicator for evaluating the quality of TP-FCR. The increase in
whiteness and brightness of the cooked rice is critical for higher consumer acceptance [19].
It was observed from Figure 1E that the L* values representing lightness and W values
representing whiteness were increased with the addition of MCT. The more MCT was
added, the greater the L* and W were, which indicated that the whiteness and brightness of
TP-FCR were dose-dependent on MCT. The results were consistent with sensory evaluation
results. This suggested that MCT can improve the color of TP-FCR.

3.2. Water Absorption Rate and Swelling Ratio

It has been reported that the starch can interact with other substances during gela-
tinization, to affect the water absorption, dispersion, expansion, and solubility of starch [5].
Gerits et al. revealed that the formation of starch-lipid complexes delayed the water ab-
sorption of grains, inhibited the swelling of starch, and increased the hardness of starch
grains [34]. As shown in Figure 2, the water absorption and swelling rate of TP-FCR
decreased with the increase of MCT. This is because the starch-lipid complexes and MCT
can form an insoluble film on the surface of starch granules, thereby delaying the time for
water entering to the starch granules and reducing the granule swelling [32–34]. It was
reported that the texture of cooked rice was closely related to its water absorption and
swelling rate, and the hardness was higher for cooked rice with lower water absorption
and swelling rate [38]. Similarly, in this work, TP-FCR with lower water absorption and
swelling rate also had higher hardness.
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3.3. Thermodynamic Properties

To investigate the interactions between MCT and TP-FCR, the thermodynamic prop-
erties of TP-FCR were determined using DSC. As shown in Figure 3A, the DSC spectra
of cooked rice (CR), IGT, and all TP-FCR samples showed two peaks in the range of
35.25–73.93 ◦C and 79.92–159.07 ◦C, respectively, while MCT showed no endothermic peak
in this temperature range. Peak I in Figure 3A reflected the melting of incomplete and
low-ordered crystal structures, and peak II was attributed to the melting of the complexes
formed by starch with MCT and TP [39,40]. The appearance of peak II in the TP-FCR
without MCT could be due to the melting of the starch-endogenous lipid complexes and
starch-TP complexes in the TP-FCR [41,42]. As can be seen in Figure 3A1,A2, the peak
area and peak temperature of peak I of TP-FCR decreased with the increase of MCT, while
the peak area and peak temperature of peak II increased with the increase of MCT. This
indicated that the dissociation enthalpy of incomplete and low-ordered crystal structures
decreased with increasing MCT, while the dissociation enthalpy of the complexes increased
with increasing MCT, which was consistent with the results in Table 1.
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Table 1. Thermodynamic properties of tea polyphenols-fortified cooked rice (TP-FCR) with/without
MCT.

Samples
Peak I Peak II

To (◦C) Tp (◦C) Tc (◦C) ∆H (J/g) Tc–To (◦C) To (◦C) Tp (◦C) Tc (◦C) ∆H (J/g) Tc–To (◦C)

CR 36.36 ±
0.27 a

43.50 ±
2.75 e

52.58 ±
3.89 f

0.34 ± 0.05
c

16.22 ±
3.80 e

91.41 ±
2.98 a

103.65 ±
4.40 d

120.11 ±
0.30 g

1.41 ± 0.08
f

28.70 ±
3.28 f

MCT ND ND ND ND ND ND ND ND ND ND

IGT 35.25 ±
1.58 a

57.48 ±
0.97 a

73.93 ±
2.03 a

11.94 ±
0.94 a

38.68 ±
3.38 a

79.92 ±
1.26 d

121.22 ±
1.53 a

159.07 ±
0.78 a

25.41 ±
2.22 a

79.15 ±
0.91 a

TP-FCR 36.12 ±
0.83 a

54.12 ±
0.96 b

65.27 ±
0.97 b

1.16 ± 0.09
b

29.15 ±
0.47 b

81.18 ±
2.36 d

107.35 ±
0.51 c

127.75 ±
4.08 f

2.08 ± 0.31
f

46.58 ±
1.75 e

1%MCT 35.72 ±
0.60 a

53.63 ±
0.74 bc

63.40 ±
1.03 bc

0.84 ± 0.01
bc

27.68 ±
1.28 b

83.17 ±
1.58 d

107.91 ±
0.68 c

133.27 ±
1.97 e

3.85 ± 0.73
e

50.10 ±
3.51 e

2%MCT 35.69 ±
0.39 a

53.55 ±
0.64 bc

61.62 ±
1.40 cd

0.73 ± 0.02
bc

25.94 ±
1.79 bc

85.86 ±
2.19 cd

108.57 ±
1.00 c

141.38 ±
3.77 d

6.09 ± 0.27
d

55.52 ±
2.26 d

3%MCT 35.62 ±
0.38 a

53.18 ±
1.11 bc

58.76 ±
0.98 de

0.62 ± 0.01
bc

23.14 ±
1.32 cd

86.17 ±
1.47 bc

108.87 ±
0.75 c

147.37 ±
4.73 cd

7.22 ± 0.14
cd

61.2 ± 4.88
c

4%MCT 36.16 ±
0.30 a

50.37 ±
4.18 cd

57.04 ±
1.49 e

0.56 ± 0.01
bc

20.88 ±
1.64 d

88.74 ±
2.63 ab

109.79 ±
0.81 c

153.14 ±
3.04 c

8.63 ± 0.35
c

64.41 ±
0.56 bc

5%MCT 36.56 ±
0.17 a

48.68 ±
0.40 d

56.64 ±
1.27 e

0.46 ± 0.01
c

20.08 ±
1.21 d

88.85 ±
0.26 ab

113.90 ±
1.08 b

157.10 ±
1.50 b

10.69 ±
0.58 b

68.25 ±
1.68 b

Different letters in the same column showed significant differences (p < 0.05). To, the starting temperature;
Tp, the peak temperature; Tc, the termination temperature; ∆H, the enthalpy value; Tc–To, the heat absorption
peaks range.

The melting temperatures (To, Tp, and Tc) reflected the thermal stability of the micro-
crystals, while the ∆H value was related to the number of crystals (double helix or single
helix structure) [41,43]. It can be concluded from Table 1 that the addition of MCT decreased
the dissociation enthalpy, Tp values, and the heat absorption peaks range (To–Tc) of peak I,
while increasing the dissociation enthalpy, Tp values, and the heat absorption peaks range
of peak II. Jakobek proposed hydrophobic interactions and hydrogen bond formation be-
tween polyphenols and carbohydrates or lipids [44]. The interaction between polyphenols
and starch can form two types of complexes, V-type inclusion and non-inclusion [4]. The
hydrophobic interactions enabled the polyphenols to be incorporated into the lipid fraction
with a sort of micellar protection [45]. The decrease in the enthalpy and Tp value of peak
I may be due to the interaction between starch, polyphenols, and MCT, which reduced
the incomplete and low-ordered crystal structure in starch, and thus the energy required
for microcrystalline melting was decreased. The increase in the dissociation enthalpy and
Tp value of peak II can be attributed to the formation of more starch-MCT and starch-
TP complexes, resulting in more stable crystals in TP-FCR that required more energy to
dissociate. The formation of complexes with ordered structures can resist the hydrolysis
of digestive enzymes, and the steric hindrance of MCT may reduce the accessibility of
digestive enzymes to starch in TP-FCR, which was consistent with the results of in vitro
digestion of starch.

3.4. XRD

The native rice starches displayed an A-type crystalline structure with diffraction
peaks at 15◦, 17◦, 18◦, and 23◦ 2θ, whereas V-type complexes generally showed diffraction
peaks at 13◦ and 20◦ 2θ [39,46]. Lipids can enter the hydrophobic cavity of the amylose
helices through hydrophobic interactions to form a V-type single helix inclusion [8,47].
Similar to starch-lipid inclusion complexes, starch-polyphenol inclusion complexes also
had a V-type crystallinity [4,47]. It can be seen from Figure 4 that the peaks representing
A-type crystallization almost disappeared due to the disintegration of the ordered structure
and the destruction of the crystalline structure in TP-FCR during the cooking process. It
was also observed that all diffractograms showed V-type polycrystalline with a diffraction
peak at 20◦ 2θ, which reflected the interaction of starch with MCT and TP to form V-type
single helix inclusion complexes. Relative crystallinity represented the crystal integrity of
the starch crystalline region and was highly correlated with digestibility [48]. As illustrated
in Table 2, the addition of MCT increased the relative crystallinity of starch in TP-FCR. Since
the increase of MCT was added, more MCT and TP interacted with starch to form V-type
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inclusion complexes, which led to a more ordered and compact molecular arrangement.
The high degree of structure order was beneficial to enhance the resistance of starch to
enzymatic hydrolysis [8,41].
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Table 2. Relative crystallinity, IR ratios, and Raman peak area of tea polyphenols-fortified cooked rice
(TP-FCR) with/without MCT.

Samples
Relative

Crystallinity (%)
IR Ratio Raman Peak Area

1045/1020 (cm−1) 1020/995 (cm−1) 1130 (cm−1) 1340 (cm−1)

TP-FCR 0.87 ± 0.07 d 0.642 ± 0.018 d 1.168 ± 0.020 a 164.60 ± 10.12 d 52.57 ± 5.80 d

1%MCT 2.48 ± 0.13 c 0.658 ± 0.013 cd 1.145 ± 0.007 ab 208.83 ± 14.69 c 67.94 ± 3.67 c

2%MCT 2.62 ± 0.12 c 0.668 ± 0.002 bc 1.151 ± 0.013 ab 230.95 ± 15.35 bc 69.10 ± 3.05 c

3%MCT 2.96 ± 0.14 b 0.674 ± 0.005 bc 1.139 ± 0.006 ab 258.84 ± 15.09 b 85.03 ± 5.66 b

4%MCT 4.01 ± 0.14 a 0.683 ± 0.007 b 1.121 ± 0.015 bc 329.95 ± 29.29 a 88.91 ± 0.58 b

5%MCT 4.26 ± 0.20 a 0.711 ± 0.002 a 1.099 ± 0.026 c 355.29 ± 23.44 a 107.56 ± 1.25 a

Different letters in the same column showed significant differences (p < 0.05).

3.5. FT-IR

FT-IR spectrograms (Figure 5) revealed that all samples showed broad peak in the
range of 3500–3200 cm−1, which was due to the stretching vibration of O-H in TP and
starch. The broad peak intensity of TP-FCR at 3500–3200 cm–1 decreased with the increase
of MCT, which was caused by the increase of MCT and the protective effect of MCT on
TP that resulted in more MCT and linear hydrophobic chains of TP being encapsulated
in the helical lumen of the starch through hydrophobic interactions and thus interfered
with the formation of hydrogen bonds between starch molecules. Similar conclusions that
the intensity of broad peaks of starch-TP complexes at 3500–3200 cm−1 decreased with the
increasing addition of TP were reported by Li et al. [49].
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The IR-ratios of (1045/1020) cm−1 and (1020/995) cm−1 can be used to reflect the
short-range orderliness and the helical structure of starch [50,51]. As can be seen in Figure 5,
the infrared spectrogram of TP-FCR with MCT showed two different peaks at 1740 cm−1

and 2850 cm−1 compared with the control TP-FCR. The absorption peak at 1740 cm−1 was
the C=O stretching vibration peak of MCT and the peak at 2850 cm−1 was the stretching
vibration peak of -CH2 of MCT [8,52]. As shown in Table 2, the ratio of (1045/1020) cm−1

increased as the amount of MCT increased, indicating that the structure of TP-FCR was
more short-range ordered after the addition of MCT, because the larger the ratio was, the
more short-range ordered. Starch interacted with MCT and TP via hydrophobic interactions
to form V-type complexes, so that the amorphous amylose and the amorphous long side
chain of amylopectin that did not form a double helix could form a single helix structure,
thus increasing the degree of short-range order of molecules. The addition of MCT reduced
the ratio of (1020/995) cm−1, suggesting that MCT interacted with amylose and affected
the structure of the amorphous region.

3.6. Raman Spectroscopy

The half peak width (FWHM) of the Raman spectrum at 480 cm–1 is sensitive to
changes in the short-range molecular order of starch, and the FWHM at this location is
often used to characterize the degree of starch polymerization [53,54]. A smaller FWHM
indicated a more ordered structure of starch short-range molecules, and conversely, a
larger FWHM indicated that fewer ordered structures were formed [41,55]. As shown in
Figure 6A,B, the FWHM of the Raman spectrum at 480 cm−1 decreased with increasing
MCT, indicating an increase in the short-range ordering of starch in TP-FCR, which was
consistent with the FTIR results. As shown in Figure 6C–H, the characteristic bands from
800 to 1500 cm−1 of the spectrum were fitted to the split peaks, and the peak areas at
1130 cm−1 and 1340 cm−1 were recorded. The characteristic band of 800 to 1500 cm−1 was
mainly generated by the vibration of glucose monomer, and there were many heterogeneous
peaks in this region, which were formed by the accumulation of functional groups and the
high overlap of chemical bonds [56]. Among them, the peaks at 1130 cm−1 and 1340 cm−1

were closely related to the single helix structure of the starch [57]. As shown in Table 2,
the area of the Raman characteristic peaks at 1130 cm−1 and 1340 cm−1 increased with the
increase of MCT addition, which indicated that the double helix would be deconvoluted
into single-helix structure when MCT and TP were compounded with starch, increasing
the single-helix structure.
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3.7. CLSM

Single fluorescent labeling of CLSM and multi-channel overlay images were used
to observe the binding of starch and MCT in TP-FCR. Among them, the starch in TP-
FCR showed a green color when stained with FITC, MCT appeared red in color when
stained with Nile Red, and the yellow fluorescence fraction represented the binding matrix
formed by starch and lipids [25,46,58]. As shown in Figure 7, all labeled green, red, and
yellow fluorescence areas increased with increasing MCT. The yellow fluorescence area
in Figure 7A3 was caused by the interaction of starch with endogenous lipids in TP-FCR
to form starch-lipid complexes, where some tiny red dots represented the unbound lipids
present in the TP-FCR. The increase in the yellow fluorescence area in Figure 7B3–F3
suggested that more starch-MCT complexes were formed with increasing MCT. The small
red dots appearing in Figure 7B3–F3 indicate that the MCT attached to the starch surface
and the large red dots may be free MCT. It has been reported that the increased resistance
of starch to enzymatic hydrolysis through the addition of lipids was directly related to the
formation and structure of starch-lipid complexes [37,59] and the increase in the amount of
starch-MCT complexes can decrease the digestibility of TP-FCR.
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surface of the control TP-FCR at 100× exhibited a flat structure, which had small, dense 
pores and thin pore walls. The cross-section of the control TP-FCR at 500× showed a uni-
form and dense three-dimensional network structure. However, as can be seen from Fig-
ure 8B1–F1, B2–F2, B3–F3, and B4–F4, the number and density of pores in the cross-section 
and the surface of TP-FCR decreased gradually with the increasing addition of MCT, and 
compared with the control TP-FCR, the cross-section of TP-FCR with MCT was uneven 
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Li et al. revealed that hydroxyl groups in TP can interact with water to retain a large 
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Figure 7. CLSM images of tea polyphenols-fortified cooked rice (TP-FCR) with/without MCT.
(A1–A3): TP-FCR without MCT; (B1–B3): TP-FCR with 1% MCT; (C1–C3): TP-FCR with 2% MCT;
(D1–D3): TP-FCR with 3% MCT; (E1–E3): TP-FCR with 4% MCT; (F1–F3): TP-FCR with 5% MCT.
(A1–F1): samples stained by FITC; (A2–F2): samples stained by Nile Red; (A3–F3): Merged.

3.8. Microstructure of Tea Polyphenol-Fortified Cooked Rice

As shown in Figure 8, the microstructure of TP-FCR with different addition of MCT
has significant differences. We can observe from Figure 8A1,A3 that the cross-section and
surface of the control TP-FCR at 100× exhibited a flat structure, which had small, dense
pores and thin pore walls. The cross-section of the control TP-FCR at 500× showed a
uniform and dense three-dimensional network structure. However, as can be seen from
Figure 8B1–F1,B2–F2,B3–F3,B4–F4, the number and density of pores in the cross-section
and the surface of TP-FCR decreased gradually with the increasing addition of MCT, and
compared with the control TP-FCR, the cross-section of TP-FCR with MCT was uneven and
the pore walls thickened. When the addition of MCT was 4% and 5%, the cross-sectional
layers of TP-FCR appeared a densely arranged structure.
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Li et al. revealed that hydroxyl groups in TP can interact with water to retain a
large number of water molecules [49], and at the same time, TP can interact with starch
through non-covalent interactions such as hydrophobic interactions and hydrogen bonding,
hindering the interactions between starch chains. In this work, TP-FCR formed a uniform
and dense network structure after lyophilized, which was an open structure and easily
attacked by digestive enzymes. Zhu et al. proposed that the melting of the crystal structure
and the rapid expansion of the granules during gelatinization gave the cooked rice grains
a huge expansion force, and the strong migration of water tended to disintegrate and
break the grain structure quickly, loosening the cooked rice structure [60]. It has been
proposed that amylose and non-starch polymers interact to restrict the entry of water into
the granules and inhibit the swelling of the starch, thereby limiting the destruction of the
starch granules [61]. TP-FCR with MCT had a denser structure compared with TP-FCR
without MCT, which was attributed to the fact that the starch-MCT complexes and free
MCT attaching to the surface of the grains changed the water permeation channels and
delayed the water migration, thus reducing the swelling of the grains and inhibiting the
disintegration of the grain structure.

The control TP-FCR had a uniform and dense network structure as well as thin pore
walls, which made it more accessible to digestive enzymes and thus more susceptible to
hydrolysis. The formation of starch-MCT complexes caused it to form a dense and compact
structure, providing a physical barrier for the diffusion of digestive enzymes into the starch
granules and slowing the release of tea polyphenols in TP-FCR, which was conducive to
improving the anti-digestibility of TP-FCR.

3.9. Viscoelastic Properties during Digestion

Dynamic modulus changes during digestion can reflect the rate of TP-FCR digestion.
As can be seen in Figure 9A–F, the storage modulus of all TP-FCR samples without enzyme
increased with time, which was attributed to the short-term aging of starch, while the loss
modulus did not change significantly. In contrast, the storage and loss modulus of all
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samples with the addition of digestive enzymes in the first 20 min of digestion decreased
at a faster rate and then decreased slowly until they stabilized. This was due to the rapid
hydrolysis of starch by digestive enzymes at the initial stage, which led to the destruction
of the formed network structure and the decrease in the size and concentration of the
effective molecules in the system [62–64]. At the same time, it can be seen from Figure 9A–F
that the storage and loss modulus of TP-FCR without MCT decreased more significantly
under the action of enzymes than that of the TP-FCR with MCT. Moreover, higher MCT
resulted in a slower decrease. The reduction in the rate of decrease of storage and loss
modulus indicated that MCT could delay the enzymatic hydrolysis of TP-FCR and inhibit
the digestion of TP-FCR. The inhibition of TP-FCR digestion may also be related to the
inhibitory effect of TP on digestive enzymes in addition to its structural effects; therefore,
the conjecture was verified using fluorescence quenching spectra during digestion.
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3.10. Fluorescence Quenching

TP-FCR contained TP, and the free TP in the system exhibited a quenching effect
on tryptophan and tyrosine, which were the main residues of the intrinsic fluorescence
of proteins [63,65]. The fluorescence quenching spectrum of TP-FCR during digestion is
shown in Figure 10A–F. All samples had a fluorescence emission peak and the fluorescence
emission peaks of all samples decreased with the increase of digestion time. This was
because the TP in TP-FCR was gradually released during digestion and more and more free
TP interacted with digestive enzymes in the system. It has been reported that hydrogen
bond-mediated amylose-polyphenol complexes were released during digestion and the
interaction of polyphenols with other macromolecules such as starch, proteins, and lipids
will affect the activity and release of the polyphenols [5,66,67]. Ortega et al. proposed that
the lipids in cocoa liquid had a protective effect on cocoa polyphenols which enhanced
the micellar and stability of the polyphenols [68]. As shown in Figure 10G, MCT played
a dose-dependent effect on the quenching effect of TP in TP-FCR on digestive enzymes
after 180 min of digestion. The more MCT was added, the stronger the quenching effect
was. This can be attributed to the protective effect of MCT on TP in TP-FCR. In addition,
the fluorescence peak value of TP-FCR decreased rapidly in the early stage of digestion
and changed little during 60–180 min of digestion, whereas the fluorescence peak value of
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TP-FCR with MCT decreased continuously during 180 min of digestion. This suggested
that MCT can regulate the release of TP in TP-FCR.
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3.11. In Vitro Digestibility Properties

According to the above results, the addition of MCT can inhibit the digestion of TP-
FCR, so the in vitro digestibility properties of TP-FCR were measured. The starch fraction
and kinetic parameters obtained by fitting the starch hydrolysis rates with a first-order
kinetics model were summarized in Table 3. R2 values ranged from 0.990 to 0.995, indicating
that all fitted the first-order rate equation well [63,69]. The K value, HI, and pGI were
negatively correlated with SDS and RS content and positively correlated with RDS content.
As shown in Table 3, the RDS content, HI, and pGI of TP-FCR decreased with the increase
of MCT, while the content of SDS and RS increased with increasing MCT. The results of
in vitro digestion showed that the RDS content of cooked white rice was 74.28%. From
Table 3, we observed that the RDS content of TP-FCR decreased to 64.43% compared to
cooked white rice, and its content further decreased to 50.82% with the addition of 5%
MCT. It demonstrated that MCT could inhibit the digestion of starch in TP-FCR, and the
inhibitory effect was dose-dependent. Related studies have shown that the formation
of starch-lipid complexes can reduce the sensitivity of starch to enzymes and affect the
digestive properties of starch [6,59,70]. Simultaneously, TP can delay the hydrolysis of
starch by binding with enzymes to denature digestive enzymes [5,23,47]. TP-FCR with
MCT was highly resistant to digestion, and this resistance depended on multifaceted factors,
including structural changes caused by the formation of starch-lipid complexes and the
inhibitory effect of released polyphenols on amylolytic enzymes. On the one hand, the
structural changes caused by the starch-MCT complexes and the attachment of MCT on the
surface hindered the contact between enzymes and starch, thus inhibiting the digestion
of starch. On the other hand, the protective effect of MCT on TP increased the inhibitory
effect of TP on digestive enzymes in TP-FCR, thereby reducing the digestibility of TP-FCR.
The above results indicated that the addition of MCT had a good improvement effect on
the digestion of starch in TP-FCR.

Table 3. Starch fractions and kinetic parameters of tea polyphenols-fortified cooked rice (TP-FCR)
with/without MCT.

Samples
Starch Fraction Kinetic Parameters

RDS (%) SDS (%) RS (%) K (×10−2/min) R2 HI (%) pGI

TP-FCR 64.43 ± 1.74 a 11.21 ± 1.00 e 24.26 ± 0.72 e 9.54 ± 0.50 a 0.995 71.79 70.08
1%MCT 60.74 ± 1.80 b 12.94 ± 0.09 d 26.32 ± 0.98 d 8.70 ± 0.17 b 0.994 69.58 68.18
2%MCT 57.37 ± 0.79 c 13.63 ± 0.22 cd 28.99 ± 0.08 c 8.25 ± 0.07 c 0.990 66.80 65.78
3%MCT 55.05 ± 2.52 cd 13.89 ± 0.11 bc 31.07 ± 0.04 b 8.01 ± 0.04 c 0.990 64.76 64.02
4%MCT 52.39 ± 1.41 de 15.29 ± 0.26 a 32.32 ± 1.79 b 7.48 ± 0.06 d 0.991 63.13 62.62
5%MCT 50.82 ± 0.88 e 14.68 ± 0.18 ab 34.52 ± 1.77 a 7.44 ± 0.08 d 0.994 61.13 60.89

Different letters in the same column showed significant differences (p < 0.05).

4. Conclusions

This work suggested that the addition of MCT affected the adhesiveness, texture, color,
and digestive properties of TP-FCR. Results revealed that MCT significantly improved the
anti-digestibility of the TP-FCR. SEM, CLSM, DSC, XRD, FT-IR, and Raman spectroscopy
demonstrated the important role of MCT addition in reducing the starch digestibility of TP-
FCR from the perspective of multi-scale structural changes. Meanwhile, it can be concluded
that the high anti-digestibility of TP-FCR with MCT can be attributed to structural changes
caused by the formation of starch-lipid complexes and the inhibitory effect of released
polyphenols on amylolytic enzymes. In addition, MCT reduced the tendency of TP-FCR
grains to stick to each other and the bottom of the pot and improved the color of TP-FCR.
This study provides a reference value for applying MCT as a quality improver to starchy
foods with high glycemic index. However, in vivo animal studies and clinical trials are
needed to further investigate the mechanisms involved in starch metabolism of TP-FCR
with MCT.
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