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Abstract: The gut microbiota serves as a pivotal mediator between diet and human health. Emerging
evidence has shown that the gut microbiota may play an important role in cholesterol metabolism.
In this review, we delve into five possible mechanisms by which the gut microbiota may influence
cholesterol metabolism: (1) the gut microbiota changes the ratio of free bile acids to conjugated bile
acids, with the former being eliminated into feces and the latter being reabsorbed back into the liver;
(2) the gut microbiota can ferment dietary fiber to produce short-chain fatty acids (SCFAs) which are
absorbed and reach the liver where SCFAs inhibit cholesterol synthesis; (3) the gut microbiota can
regulate the expression of some genes related to cholesterol metabolism through their metabolites;
(4) the gut microbiota can convert cholesterol to coprostanol, with the latter having a very low
absorption rate; and (5) the gut microbiota could reduce blood cholesterol by inhibiting the production
of lipopolysaccharides (LPS), which increases cholesterol synthesis and raises blood cholesterol. In
addition, this review will explore the natural constituents in foods with potential roles in cholesterol
regulation, mainly through their interactions with the gut microbiota. These include polysaccharides,
polyphenolic entities, polyunsaturated fatty acids, phytosterols, and dicaffeoylquinic acid. These
findings will provide a scientific foundation for targeting hypercholesterolemia and cardiovascular
diseases through the modulation of the gut microbiota.

Keywords: gut microbiota; cholesterol-lowing mechanisms; natural functional ingredients

1. Introduction

The intestinal microbial structure embodies a complex bacterial consortium encom-
passing over 35,000 distinct bacterial species [1]. This consortium predominantly consists
of four phyla, namely, Firmicutes, Bacteroides, Actinobacteria, and Proteobacteria, with Fir-
micutes and Bacteroides dominating, accounting for a substantial 90% of the total species
count [2]. Intestinal microbes could profoundly impact host health, influencing not only
host’s metabolic processes, including the absorption of nutrients, but also the metabolism
of detrimental substances [3]. The composition and functionality of the gut microbiota
are subjected to modulation by many factors, encapsulating both internal elements and
external determinants such as genetics, age, diet, lifestyle, and medications [4]. Notably,
diet is one of most pivotal factors underpinning alterations in the intestinal microbial
structure [5,6]. Functional constituents in diets can regulate the growth and metabolic
activities of the gut microbiota, thereby influencing the microbial composition. It is im-
perative to highlight that discernible disparities exist in the genetic content of intestinal
microbes between adults and infants, reflecting the divergent intestinal functional needs
at different life stages [7]. Through the production of an array of metabolic products such
as short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), bile salt hydrolase
(BSH), and lipopolysaccharides (LPS), the gut microbiota partakes in and regulates the
host’s metabolism. Notably, SCFAs and BCFAs play a crucial role in this process and
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furnish vital nutritional sources for intestinal cells [8]. SCFAs can stimulate the prolifer-
ation and differentiation of intestinal epithelial cells, contributing to the maintenance of
the mineral balance and the absorption of iron, calcium, and magnesium [9]. Prevalent
SCFAs include acetate (Ac), propionate (Pr), and butyrate (Bu), whereas, in the colon,
others such as valerate (Va), caproate (Ca), and isobutyrate are relatively low, constituting
approximately 5–10% of the total SCFAs [10]. LPS is identified as an endotoxin derived
from Gram-negative bacteria. Elevated LPS levels are associated with some metabolic
diseases, inflammation, the infiltration of adipose macrophages, endothelial cell apoptosis,
fatty-liver-related diseases, and insulin resistance [11–13]. Additionally, intestinal microbes
can produce BSH, an enzyme capable of hydrolyzing N-acylamide bonds, facilitating the
release of taurine or glycine (Gly) through the hydrolysis of bile salts [14].

Cholesterol is a sterol synthesized endogenously by animals, serving as an indis-
pensable component of cell membranes. Beyond its structural role, it acts as a signaling
molecule in various biological processes, including cellular transport and neurotransmis-
sion. It also functions as a precursor for synthesizing vitamin D, steroid hormones (such as
progesterone and estrogen), and bile acids [15]. Due to its low water solubility, cholesterol
predominantly circulates within the body through lipoproteins [16]. Depending on the
density, size, and composition of these lipoproteins, they are classified into chylomicrons
(CMs), very-low-density lipoproteins (VLDL), intermediate-density lipoproteins (IDL),
low-density lipoproteins (LDL), and high-density lipoproteins (HDL) [17]. The homeostasis
of cholesterol plays a vital role in physiological functions. It has been long known that an
elevated serum cholesterol level, or hypercholesterolemia, is a principal cause of atheroscle-
rosis and coronary heart disease [18]. Conversely, an overly reduced cholesterol level may
also pose a health risk, including an increased susceptibility to hemorrhagic stroke and a
correlation with higher mortality rates due to late-stage heart failure [19,20].

Many recent studies have unveiled a significant correlation between gut microbiota
dysbiosis and cholesterol metabolism. In this regard, a profound exploration into the
influence exerted by the intestinal microbiota on cholesterol metabolism is of paramount
importance. In general, the gut microbiota can engage in cholesterol metabolism through
the following possible pathways: modulating the ratio of free to conjugated bile acids [21];
enhancing the abundance of the SCFA-producing microbiota to increase the concentration of
SCFAs in the intestinal lumen [22]; and regulating the expression of cholesterol-metabolism-
related genes, epitomized by the activity of Lactobacillus strains [23]. In addition, the gut
microbiota facilitates the conversion of cholesterol into fecal neutral sterols for excretion,
while it concurrently reduces the production of LPS [24,25]. Therefore, optimizing the
abundance of beneficial bacteria in the colon represents one of the primary strategies for
cholesterol reduction. Currently, probiotics and prebiotics as health supplements are widely
advocated [26]. Compared with the direct intake of supplements, bioactive compounds
in natural foods boast higher bioavailability, potentially conferring additional health ben-
efits [27]. For instance, polysaccharides, ubiquitously present in various plants, can be
hydrolyzed and fermented to produce SCFAs by the intestinal microbiota [28]. Polyphe-
nolic compounds, phytosterols (PS), and polyunsaturated fatty acids (PUFAs) are noted
for their diversity and abundance, with the capacity to stimulate the growth of a beneficial
microbiota [29,30]. Recent studies have highlighted the potential of dicaffeoylquinic acid
(DCQA), a functional component found in Ilex kudingcha, in promoting the growth of
SCFA-producing bacteria [31]. Beyond cholesterol modulation, these natural bioactive
components also exhibit some immunomodulatory and anti-inflammatory activities [32],
playing a positive role in preventing and treating various diseases. Integrating these natural
functional components into strategies for modulating the intestinal microbiota to regulate
cholesterol metabolism opens a new avenue for therapeutic intervention.

2. Pathways of Cholesterol Metabolism

Epidemiological studies have evidenced a compelling association between elevated
cholesterol levels and cardiovascular diseases (CVDs), the latter being a predominant
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cause of mortality and disability in developed countries, projected by health organizations
to persist until 2030 [33,34]. Cholesterol in humans primarily derives from two sources:
endogenous cholesterol synthesized in the liver and intestine, and exogenous cholesterol
acquired through the consumption of animal-derived foods [35]. Cholesterol homeostasis
is vital for the physiological balance among hepatic cholesterol synthesis, absorption,
transport, and biliary excretion (Figure 1).
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2.1. Cholesterol Synthesis

The liver is pivotal in cholesterol homeostasis, spearheading its synthesis and con-
version into bile acids [36]. Cholesterol biosynthesis involves a cascade of enzymatic
reactions [37]. Initially, acetyl-CoA is transformed into mevalonate (MVA) though several
reactions. This transformation has two acetyl-CoA molecules merging into acetoacetyl-CoA,
which then combines with another acetyl-CoA, facilitated by HMG-CoA synthase (HMG-
CoA-S), to form HMG-CoA. This compound is subsequently reduced to MVA by HMG-CoA
reductase (HMG-CoA-R), the rate-limiting enzyme crucial for averting excessive cholesterol
synthesis and accumulation [38–40]. MVA then morphs into isopentenyl pyrophosphate
(IPP), with mevalonate kinase (MK), phosphomevalonate kinase (PMK), and mevalonate
diphosphate decarboxylase (MDD) governing this transition [41,42]. Through condensation,
IPP evolves into squalene (SQ), a 30-carbon precursor to all steroids. SQ is then oxidized
to 2,3-oxidosqualene (OS) by squalene monooxygenase (SM) and cyclized to lanosterol
by oxidosqualene cyclase-lanosterol synthase (OSC) [43–45]. Lanosterol ultimately trans-
forms into cholesterol after a series of complex reactions [46]. The lanosterol-to-cholesterol
conversion stage is a complex process with numerous enzymes at play and still requires
further elucidation regarding its structure and mechanisms.
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2.2. Cholesterol Absorption

Cholesterol absorption in the small intestines is an intricately regulated physiologi-
cal process governed at the cellular level by a series of proteins. Cholesterol within the
intestinal tract primarily originates from dietary intake, biliary secretion, and the intestinal
mucosal epithelium. Western diets are estimated to contribute approximately 300–500 mg
of cholesterol daily, while the bile provides 800–1200 mg, and the intestinal mucosal ep-
ithelium adds around 300 mg [47]. Cholesterol absorption begins in the stomach, forming
micelles after being emulsified by bile acids in the small intestine. It is important to note
that only non-esterified cholesterol can form these micelles [48]. These micelles subse-
quently interact with the Niemann-Pick C1-like 1 protein (NPC1L1), a pivotal transporter
in cholesterol absorption processes, facilitating the micelles’ transport into the intestinal
epithelial cells [49]. NPC1L1 predominantly localizes at the apical membrane of enterocytes
in the small intestine [50]. Entering the intestinal epithelial cells, cholesterol is esterified
by acyl-coenzyme A: cholesterol acyltransferases 2 (ACAT2) in the endoplasmic reticu-
lum, forming cholesterol ester (CE). Subsequently, microsomal triglyceride transfer protein
(MTP) transfers CE into chylomicrons (CMs), which enter the lymphatic system and the
bloodstream, and are transported to the liver [51,52]. Two forms of ACAT enzymes, namely,
ACAT1 and ACAT2, have been identified in mammals. While ACAT1 is ubiquitously
expressed in various tissues, ACAT2 is predominantly found in intestinal epithelial cells
and hepatocytes [53]. MTP is a lipid transfer protein responsible for transporting CE from
the endoplasmic reticulum to nascent apoB lipoproteins, further facilitating the assembly
of CM [54]. ApoB lipoproteins primarily mediate the transportation and metabolism of
cholesterol and triglycerides [55]. Non-esterified cholesterol, on the other hand, is trans-
ported back into the intestinal lumen by ATP-binding cassette transporters G5 and G8
(ABCG5/8) [51]. These transporters, functioning as heterodimers, are prominently ex-
pressed in the microvilli of intestinal cells and the canalicular membrane of hepatocytes,
playing a collective role in cholesterol excretion [56].

2.3. Cholesterol Excretion

Human body excretes approximately one gram of cholesterol daily, half of which is
transformed into bile acids (BAs) and eliminated through feces [57]. At the same time, the
remainder exists unesterified within fecal matter. In the liver, cholesterol 7α-hydroxylase
(CYP7A1) and sterol 27-hydroxylase (CYP27A1) catalyze the 7-α-hydroxylation and 27-
hydroxylation of cholesterol, respectively, further synthesizing primary bile acids, cholic
acid (CA), and chenodeoxycholic acid (CDCA). These primary bile acids accumulate in the
bile, conjugated with glycine (Gly) or taurine [58–60]. Some primary bile acids undergo
deconjugation and 7α-dehydroxylation in the intestinal tract, generating secondary bile
acids, namely, deoxycholic acid (DCA) and lithocholic acid (LCA) [61,62]. Both primary
and secondary bile acids are partially absorbed in the ileum and returned to the liver
through the portal venous system [57]. Due to its insolubility, LCA is generally poorly
reabsorbed [63]. Bile acids that are not absorbed are excreted as fecal acidic sterols [64].
Approximately 3–5 g of bile acids circulate within the intestine multiple times (between
6–10 cycles), a process under sophisticated feedback regulation [65]. Within this regulatory
framework, CYP7A1, acting as the rate-limiting enzyme for bile acid biosynthesis, has its
activity negatively modulated by the nuclear bile acid receptor, Farnesoid X receptor (FXR).
When the bile acid pool within the enterohepatic circulation increases, FXR is activated,
thereby inhibiting the transcriptional activity of the CYP7A1 gene [66]. CDCA is crucial in
activating FXR, its most potent ligand [67].

A second pathway involves the excretion of cholesterol by intestinal cells, manifesting
as fecal-neutral sterols (FNSs) [68]. Cholesterol that was unabsorbed by the small intestine
is transported to the intestinal lumen by ABCG5/8, eventually excreted as fecal-neutral
sterols [51]. This process is positively regulated by Liver X receptor α (LXRα), a principal
regulator participating in the mRNA expression of ABCG5/8 [69]. Additionally, ABCG5/8
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facilitates the secretion of cholesterol and phytosterol into the bile [70]. The overexpression
of ABCG5/8 reduces the absorption of dietary cholesterol [71].

3. Mechanisms through Which Gut Microbiota Influences Cholesterol Metabolism

In recent years, abundant research has centered around understanding how gut mi-
crobiota communities influence human health. One emerging piece of evidence is that
the gut microbiota can affect cholesterol metabolism. These microbes engage in choles-
terol metabolism through various mechanisms to reduce plasma cholesterol levels. It
has been elucidated that Lactobacillus alone embodies multiple distinct mechanisms for
cholesterol removal [72]. In general, the gut microbiota achieves cholesterol reduction
through the following mechanisms: transforming complex non-digestible polysaccahrides
into monosaccharides and fermenting them to produce beneficial SCFAs [73]; generat-
ing BSH, which facilitates the deconjugation of conjugated bile acids and releases free
bile acids [74]; participating in the regulation of gene expressions associated with choles-
terol metabolism [75]; promoting the conversion of cholesterol into fecal sterols [76]; and
influencing the production of LPS, which affects cholesterol levels [25].

3.1. Participation of Gut Microbiota in Modifying Conjugated Bile Acids

Some gut microbes can produce BSH and hydrolyze the conjugated bile acids into
free bile acids, thus increasing the ratio of free bile acids to conjugated bile acids, leading
to a greater excretion of bile acids, and resulting in a smaller pool of both cholesterol and
bile acids [14]. This is because the free bile acids are mostly excreted into feces, whereas
the latter ones are reabsorbed back into the liver [64]. A portion of hepatic cholesterol
undergoes conversion into BA. In conjunction with glycine (Gly) and taurine, these BA
molecules form conjugated bile acids (C-BAs), which enter the small intestine. Lactic acid
bacteria (LAB) secrete BSH within the intestinal environment. Under the catalytic influence
of BSH, C-BA deconjugates, giving rise to free BA, Gly, and Taurine. The generated free
BA is subsequently excreted from the body, while the remaining C-BA recirculates to the
liver via the portal vein (Figure 2). In addition, the liver plays a pivotal role in maintaining
cholesterol homeostasis and orchestrating cholesterol synthesis and its conversion into bile
acids for elimination [77]. The conjugation process results in a reduced acid dissociation
constant (pKa) and the complete ionization of these acids, which exist in the form of an-
ions [78–80]. Bile acids undergo various biochemical modifications in the human large
intestine, including deconjugation, 7α/β-dehydroxylation, and epimerization [21]. Decon-
jugation is achieved through the enzymatic hydrolysis of the C24 N-acylamide bond that
links bile acids with their conjugated amino acids. These deconjugated primary bile acids
function as signaling molecules, reflecting the body’s total bile acid levels and increasing
the concentrations of cholic acid (CA) and chenodeoxycholic acid (CDCA). Furthermore,
glycine and taurine released during deconjugation serve as nutrient sources for the in-
testinal microbiota [81]. Approximately 26.03% of the total bacterial population in the large
intestine exhibits BSH activity [82]. BSH with deconjugation capabilities primarily resides
in Gram-positive bacteria, including Bifidobacterium, Lactobacillus, Clostridium, Enterococcus,
and Listeria [83–88]. Nonetheless, BSH activity is not exclusive to Gram-positive bacteria;
Gram-negative bacteria like Stenotrophomonas, Bacteroides, and Brucella also exhibit BSH activ-
ity [89–91]. All BSH deconjugation reactions depend on the hydrolysis of the N-acylamide
bond, releasing taurine or glycine, with the reaction exhibiting maximum activity in neutral
or mildly acidic environments (pH 5–7), with an optimal pH of approximately 6 [83,92].

Scientists have identified a gene cluster in Clostridium scindens (C. scindens), the bai
operon, crucially implicated in bile acid dehydroxylation. This operon encodes for a
multitude of enzymes essential for the dehydroxylation process [93]. The baiG gene within
this cluster encodes bile acid transport proteins, facilitating the uptake of CA by bacterial
strains and transporting CDCA and DCA [94]. Under the influence of baiB, bile acids are
oxidized to form cholyl-coenzyme A (CoA), which is then further oxidized by baiA2 to
produce 3-oxo-cholyl-CoA. Subsequently, baiCD catalyzes the oxidation of 3-oxo-cholyl-
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CoA to form 3-oxo-∆4-cholyl-CoA. Then, baiF transfers CoA from 3-oxo-∆4-cholyl-CoA
to CA, resulting in the formation of 3-oxo-∆4-CA and cholyl-CoA [95]. This 3-oxo-∆4-
CA, under the action of baiE, undergoes dehydroxylation to yield 3-oxo-∆4,6-DCA, the
rate-limiting step in the process [93]. Following this, continuous activity by baiN on 3-oxo-
∆4,6-DCA produces 3-oxo-DCA, which is then converted to DCA through the combined
effort of baiO and baiA2, occurring at the C7 position, known as 7α-dehydroxylation [96,97].
7β-dehydroxylation occurs similarly, with the primary distinction being the utilization
of baiH instead of baiCD for the oxidation at the C4 position, with the activity of the
7β-dehydratase enzyme possibly serving as the rate-limiting step for 7β-dehydroxylation.
Currently, bacteria such as C. scindens, C. hylemonae, C. perfringens, and P. hiranonis have
been observed to produce enzymes capable of facilitating the 3α-dehydrogenation of
hydroxysteroids, a crucial step within the 7α-dehydroxylation pathway [98–100].
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In the metabolic pathways of bile acids, positional isomerization, a significant biochem-
ical process, gives rise to many functional derivatives. This mechanism primarily hinges on
the action of location-specific hydroxysteroid dehydrogenases (HSDHs), such as 7α-HSDH,
which oxidize hydroxyl groups [101]. This process is then followed by the reduction facil-
itated by another location-specific hydroxysteroid dehydrogenase, 7β-HSDH. Enzymes
analogous to these include 3α/β-HSDH and 12α/β-HSDH [102,103]. Through positional
isomerization, CA can be transformed into various derivatives, including ursodeoxycholic
acid (UCA), 12-epi-cholic acid (12-ECA), or iso-cholic acid (iCA). Similarly, CDCA can
undergo isomerization to yield ursodeoxycholic acid (UDCA) or iso-chenodeoxycholic
acid (iCDCA) [81]. These isomerization reactions enhance the diversity and metabolism
of bile acids and further promote cholesterol metabolism. Existing studies corroborate
that specific intestinal micro-organisms, such as Clostridium baratii, can isomerize CDCA to
UDCA [104]. In addition, several other gut microbes—including Ruminococcus, Clostridium,
Stenotrophomonas maltophilia, and Collinsella aerofaciens—have been verified to generate
UDCA through the activity of 7α/β-HSDH.

3.2. Microbial Production of SCFAs and Their Effects on Cholesterol Metabolism

SCFAs in intestines are pivotal in sustaining human health. Specifically, various bac-
teria, including Alloprevotella, Bacteroides, Clostridium, Eubacterium, Faecalibacterium, and
Roseburia, are known to produce these beneficial SCFAs, with Bu being a prominent mem-
ber [105]. Bu has demonstrated its therapeutic potential in various diseases, including
gastrointestinal disorders, the regulation of carbohydrate metabolism, and an improve-
ment in obesity [106]. Further research indicates a connection between Bu and cholesterol
metabolism. Previous studies have revealed that Bu can reduce the serum low-density
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lipoprotein cholesterol (LDL-C) level, a crucial risk factor for cardiovascular diseases [107].
Currently, statins are the preferred treatment for lowering LDL-C, primarily by inhibit-
ing HMG-CoA-R, consequently upregulating the expression of LDL receptors (LDLRs),
which enhances LDL uptake from the circulation, ultimately reducing LDL-C levels in
the plasma [108,109]. Furthermore, the sterol-regulatory element binding protein-2, a key
regulator of cholesterol metabolism and homeostasis, increases LDLR expression upon
activation [110]. SCFAs, such as Bu as exemplified in Figure 3, generated by the gut
microbiota participate in cholesterol metabolism through two distinct pathways. Firstly,
Bu acts to inhibit the expression of HMG-CoA-R, thus further suppressing cholesterol
synthesis, ultimately leading to reduced cholesterol levels. Secondly, Bu influences the
activity of SREBP-2, thereby promoting the expression of LDL-R. The upregulation of
LDL-R expression accelerates the uptake of LDL from the bloodstream, ultimately resulting
in lowered levels of LDL-C (Figure 3) [22]. It is noteworthy that the mechanism of Bu
differs significantly from that of statins.
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Beyond Bu, other SCFAs have also exhibited cholesterol-lowering properties. For
instance, it has been shown that injecting Pr into the ceca of rats fed with a casein-based
diet results in a noticeable reduction in plasma cholesterol levels [111]. Furthermore, Ac
could inhibit hepatic lipid synthesis and reduce TC and TG levels in mice given a high-fat
diet [112]. The supplementation of SCFAs with two to four carbons into the diet reduces
blood cholesterol in hamsters [113]. As other SCFAs like valerate (Va), caproate (Ca), and
isobutyrate are quantitatively very low in the colon, no sufficient research data support
their cholesterol-lowering activities, and this warrants further investigation.

3.3. Gene Expression Involvement of Lactobacillus in Cholesterol Metabolism

Research has been shown that lactic acid bacteria (LAB) can remarkably mitigate
cholesterol levels via several mechanisms, including assimilation, absorption, and co-
precipitation [114,115]. One study has unveiled that Lactobacillus fermentum SM-7 can
absorb and co-precipitate up to 38.5% of cholesterol and assimilate an additional 60% [116].
LAB also plays a crucial role in cholesterol reduction by regulating the gene expression of
enzymes involved in cholesterol synthesis, absorption, and excretion. The phosphoryla-
tion activity of AMPK governs various regulators and transcription factors implicated in
lipid metabolism [117]. In this regard, Lactiplantibacillus plantarum DR7 can downregulate
the mRNA of HMG-CoA-R by mediating AMPK phosphorylation, subsequently lower-
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ing cholesterol levels [118]. Moreover, approximately 50% of daily dietary cholesterol is
absorbed through the intestines, with the remainder being excreted through feces [23].
Dietary cholesterol requires specific binding with NPC1L1 in intestinal epithelial cells for
absorption, whereas it requires ABCG5/G8 to shuttle cholesterol back to the lumen of the
intestine for elimination [119,120]. Noteworthy is the discovery that LAB, through the
activation of PPAR and LXR, influences the expression of ABCG5/G8 and NPC1L1, playing
a significant role in cholesterol excretion and absorption processes [121].

SREBPs, expressed principally in the liver, encompass three subtypes: SREBP-1a,
SREBP-1c, and SREBP-2 [122]. SREBP-1a can effectively activate all SREBP-responsive
genes, inclusive of those involved in the synthesis of cholesterol, fatty acids, and triglyc-
erides. On the other hand, SREBP-1c prioritizes the transcription activation of genes
necessary for fatty acid synthesis without activating cholesterol-related genes. In contrast,
SREBP-2 primarily activates LDL-R genes and those requisite for cholesterol synthesis [123].
Both Lactobacillus plantarum NCU116 and L. brevis SBC8803 have been demonstrated to
impede cholesterol accumulation by influencing SREBP expressions, ultimately reducing
the cholesterol concentration [124,125]. Lastly, CYP7A1, an enzyme facilitating bile acid
synthesis, is integral in maintaining mammal cholesterol homeostasis [126]. Notably, LXRα
and FXR act as positive and negative regulators in cholesterol metabolism, modulating
the expression of CYP7A1 mRNA [127]. It has been shown that Lactobacillus plantarum
H6 could increase bile acid synthesis and CYP7A1 expression by suppressing FXR target
gene expression [128]. Furthermore, the transcription of CYP7A1 is negatively regulated by
FGF15 signaling. The research conducted by Kim et al. found that Lactobacillus rhamnosus
GG could suppress FGF15 expression, promoting an increase in CYP7A1 expression in the
liver, and reducing total cholesterol levels [129].

3.4. Probiotic Conversion of Cholesterol to Coprostanol

Coprostanol possesses a distinctive cis A/B ring configuration in its chemical struc-
ture, prompting the shift of 3-OH from the axial to the equatorial position. This unique
structural adjustment potentially hinders the incorporation of coprostanol into mucosal
cells, consequently limiting its absorption in the intestines [130]. Hence, it is perceived
that this transformative process is an effective approach to reduce plasma TC levels be-
cause the gut microbiota could transform cholesterol to coprostanol [24,131]. It transpires
that the microbial conversion of cholesterol to coprostanol in the intestine is mediated by
three primary pathways. The process of converting cholesterol into coprostanol can be
categorized into one direct pathway and two indirect pathways. In the direct pathway,
cholesterol undergoes reduction, specifically targeting the 5–6 double bond, resulting in the
formation of coprostanol. The first indirect pathway involves a series of reactions catalyzed
by various enzymes, including cholesterol oxidase, encompassing oxidation, isomerization,
and reduction processes that ultimately lead to the production of coprostanol. The second
indirect pathway is through the allocholesterol pathway, distinct from the standard choles-
terol pathway, leading to the reduction of cholesterol into coprostanol. (Figure 4). Two
of these are indirect: Initially, cholesterol is oxidized to intermediary 5-alpha-cholestan-
3-one under the influence of cholesterol oxidase; subsequently, 5-alpha-cholestan-3-one
undergoes isomerization to form 4-cholesten-3-one, which is then reduced to coprostanone;
and, finally, coprostanone is further reduced to coprostanol [132,133]. Another route in-
volves the isomerization of cholesterol to allocholesterol, followed by the reduction of
allocholesterol to coprostanol [134–136]. Additionally, a direct pathway exists, where
cholesterol is transformed into coprostanol through the direct reduction of the 5–6 double
bond; however, this pathway has been less extensively researched [137,138]. In this regard,
Eubacterium coprostanoligenes ATCC 51222 could convert 90% of cholesterol into coprostanol
in the medium [133] and E. ATCC 21408 could directly convert cholesterol into coprostanol
through intermediary steps involving 4-cholesten-3-one and coprostanone [134]. Further-
more, a mixed culture of Lactobacillus acidophilus 43121, Lactobacillus casei, and Bifidobacterium
could reduce TC levels and augment coprostanol excretion [130,139]. Studies have shown
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that probiotics like Bifidobacterium, Lactobacillus, and Clostridium can convert cholesterol
to coprostanol under in vitro conditions [140,141]. Although the probiotic-mediated con-
version of cholesterol to coprostanol is substantiated as an effective cholesterol-lowering
mechanism, the challenge still exists, including the identification of specific microbial
strains and enzymes involved in the process. Given the high oxygen sensitivity of these
micro-organisms, the number of strains successfully isolated for the purpose of cholesterol
reduction is considerably limited. Therefore, future work necessitates a continuation in the
research on microbial strain isolation and the comprehensive genomic analysis of these
strains to elucidate their precise roles in cholesterol reduction.
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3.5. Lipopolysaccharides’ Involvement in Cholesterol Metabolism

A healthy gut microbiota is associated with a low production of LPS. In general, LPS
is a component embedded within the outer membrane of Gram-negative bacteria [142].
Existing literature illustrates LPS’s dynamic engagement with lipids in the bloodstream
through various mechanisms. Earlier studies had shown that LPS could increase LDL
cholesterol, whereas it decreased HDL cholesterol, presumably by promoting HMG-CoA
reductase [143]. In addition, the concentration of triacylglycerols in the blood can also be
modulated through distinct pathways activated by LPS. One study has delineated that
lower doses of LPS could stimulate the hepatic synthesis of very-low-density lipoprotein
(VLDL), whereas higher doses inhibited lipoprotein metabolic degradation [144]. It is most
likely that the gut microbiota modulates plasma cholesterol and triacylglycerol partially by
affecting the production of LPS.

LPS is also proinflammatory. Numerous studies have demonstrated that LPS pos-
sesses a significant binding affinity with TC. Upon binding, these LPS-TC complexes are
transported via the lymphatic system, potentially inducing inflammatory responses [145].
Further research indicates that LPS can activate toll-like receptors 4 and 9 (TLR4 and TLR9),
subsequently triggering the NLR family pyrin domain-containing 3 (NLRP3) inflamma-
some, a process believed to be involved in the fibrotic progression of non-alcoholic fatty
liver disease (NAFLD) [146]. Studies by Yoshida et al. discovered that strains Bacteroides vul-
gatus and Bacteroides dorei could reduce the concentration of LPS produced by the intestinal
microbiota [25]. This function might positively contribute to the alleviation of atheroscle-
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rosis [25]. However, research exploring cholesterol reduction through the modulation of
intestinal LPS levels remains scant.

4. Natural Functional Constituents Influencing Gut Microbiota in the Regulation of
Cholesterol Metabolism

Natural functional components, encompassing indigestible polysaccharides, phenolic
compounds, unsaturated fatty acids, and phytosterols, have manifested as being capable of
fostering the proliferation of probiotics in the intestine. They fortify the human immune
system by activating or modulating immune cells and responses. Furthermore, these
functional constituents can be deployed as adjunctive measures to prevent cardiovascular
diseases and certain inflammatory conditions. Regarding their effect on plasma cholesterol
mediated by the gut microbiota, these constituents primarily exert their influence by
enhancing the proliferation of SCFA-producing strains, modulating strains involved in
cholesterol metabolism, promoting BSH-producing strains, and facilitating the conversion
of cholesterol to coprostanol.

4.1. Indigestible Polysaccharides

Indigestible polysaccharides, abundant natural prebiotics, positively sway the gut
microbiota and their metabolism. They not only adjust the microbiota composition but also
promote the growth of beneficial bacteria. Upon consumption, indigestible polysaccharides
could reach the large colon where they are fermented by the gut microbiota, producing
SCFAs, primarily by Bacteroides and Firmicutes members. Bacteroides Thetaiotaomicron pro-
duce propionate (Pr) and acetate (Ac), which are subsequently transformed into butyrate
by Eubacterium rectale [147]. Furthermore, an increase in butyrate production is observed
with F. prausnitzii [148]. It is imperative to highlight that butyrate can be produced by the
intestinal microflora through fiber fermentation or the Wood–Ljungdahl pathway [149].
Studies corroborate the efficacy of SCFAs in the reduction of plasma cholesterol. Seaweed
polysaccharides have been demonstrated to be capable of alleviating gut microbiota dys-
biosis and reducing cholesterol [150]. For instance, polysaccharides derived from red algae
could increase the production of SCFAs, favorably modulate the gut microbiota, and reduce
cholesterol [151]. Additionally, polysaccharides from Porphyra could alleviate the diet-
induced intestinal dysbiosis by enhancing the population of Eubacterium xylanophilum, a
known butyrate producer [152]. Alginate oligosaccharides derived from brown algae could
elevate the BSH activity and enhance the CYP7A1 activity, facilitating bile acid synthesis
and cholesterol reduction [153]. BSH is predominantly produced in the intestine by a
consortium of bacteria, including Bacteroides, Bifidobacterium, Clostridium, Enterobacter, Ente-
rococcus, and Lactobacillus [154]. Beyond seaweeds, recent findings emphasize the ability of
polysaccharides from edible fungi to regulate the gut microbiota composition. Research
has shown that polysaccharides from Auricularia auricula could stimulate the growth
of SCFA-producing bacteria like Oscillibacter and Lactobacillus, ultimately enhancing the
production of intestinal SCFAs and thereby reducing cholesterol [155]. Similar functions
have been also observed with polysaccharides derived from mushrooms and Pleurotus
eryngii [156,157].

4.2. Polyphenolic Compounds

Polyphenolic compounds are significantly active entities characterized by antioxi-
dant and anti-inflammatory properties found extensively within various plants. These
compounds, classified into phenolic acids, flavonoids, tannins, and lignans based on their
unique compositional and structural characteristics, play vital roles in human health [29].
Tea leaves are rich sources of various polyphenolic compounds, including catechins, epi-
catechins, and quercetin (QR) [158]. Tzounis et al. discovered that catechins enhance the
proliferation of the Blautia coccoides-Eubacterium rectale group and Bifidobacterium in the gut,
with the former being recognized for increasing the concentration of SCFAs within the
intestinal environment [159,160]. Furthermore, their research unveils the significant role of
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flavanols in cocoa: these compounds not only elevate the levels of Bifidobacterium and Lacto-
bacillus in the gut but also inhibit the growth of certain pathogenic micro-organisms [161].
Moreover, red wine is a substantial source of polyphenolic compounds, including but not
limited to resveratrol, proanthocyanidins, and flavanols [162]. An analysis conducted by
MI Queipo-Ortuño and colleagues on the impact of red wine extracts on the intestinal
microbiota revealed that individuals who consumed red wine over a continuous four-week
period exhibited significant increments in the levels of Enterococcus, Prevotella, Bifidobac-
terium, Bacteroides uniformis, Eggerthella lenta, and Blautia coccoides-Eubacterium rectale within
their gut. Simultaneously, there was a discernible decrease in the levels of TC, TG, and
HDL, a trend closely correlated with the presence of SCFA-producing bacterial species [163].
However, it is crucial to acknowledge that not all plant-derived polyphenols yield positive
effects on the regulation of the intestinal microbiota. Researchers found that QR mildly
inhibits the growth of Bifidobacterium and Enterococcus while myricetin suppresses the
growth of all LAB without adversely affecting harmful bacteria like Salmonella [164,165]. In
conclusion, the interactions between polyphenolic compounds and the gut microbiota are
multifaceted, encapsulating both positive and negative effects. These complex interactions
necessitate further exploration and research for a deeper understanding of their true impact
on human health.

4.3. Unsaturated Fatty Acids

Improving dietary fat quality by increasing the intake of polyunsaturated fatty acids
(PUFAs) while reducing saturated fatty acids (SFAs) significantly decreases serum cholesterol
levels [30]. Recent research data illuminate the function of dietary fats as potential modulators
of the human gut microbiota composition, with their total amounts and quality acting as
pivotal factors in shaping microbial communities in the gut [166,167]. Studies reveal that
a higher PUFA intake not only amplifies the total bacterial count within the gut flora but
also fosters the proliferation of beneficial bacterial species [168]. Principal sources of PUFAs
encompass aquatic species, micro-organisms, algae, and oil crops [169–172]. Notably, alpha-
linolenic acid (ALA), gamma-linolenic acid (GLA), linoleic acid (LA), eicosapentaenoic
acid (EPA), and docosahexaenoic acid (DHA) are deemed beneficial for health [172]. It is
imperative to acknowledge that PUFAs are categorized into two primary families,ω 6 (n-6)
andω 3 (n-3), with EPA and DHA belonging to omega-3 unsaturated fatty acids [173,174].
Within the human gut, Lachnospiraceae and Bifidobacterium are identified as beneficial bacte-
ria. The abundance of Lachnospiraceae and Bifidobacterium negatively correlates with LDL
levels [175,176]. These bacterial classes contribute to cholesterol reduction by transform-
ing it into coprostanol [177]. Research conducted by Watson et al. observed a notable
increase in the abundance of both Lachnospiraceae and Bifidobacterium in healthy individuals
upon omega-3 PUFA intake [178]. Similarly, a study by Tindall et al. demonstrated that
consuming ALA-rich walnuts increases Lachnospiraceae [179]. Moreover, studies by Wan
et al. found that both EPA and DHA increase Lachnospiraceae abundance and positively
correlate with the proliferation of various lactic acid-producing bacteria [180]. Research
by Li et al. disclosed that Spirulina, rich in LA and GLA, could enhances the abundance
of several beneficial bacterial groups in the gut, including Prevotella, Porphyromonadaceae,
Barnesiella, and Parasutterella [181,182]. Particularly, Prevotella, negatively correlated with
serum biochemical indicators, promotes bile acid synthesis, further regulating cholesterol
metabolism [183].

4.4. Phytosterol

Phytosterol (PS) are renowned for their potent cholesterol-lowering effects [184,185].
The primary components of PS include β-sitosterol, stigmasterol, campesterol, and bras-
sicasterol, among others [186]. Studies suggest a daily intake of 2 g of PS can effectively
reduce cholesterol levels, particularly TC and LDL-C, by 6–15% [187]. It is noteworthy that
lotus seeds, being rich in various bioactive compounds including alkaloids, flavonoid com-
pounds, and PS, are considered excellent food and medicinal sources. Research conducted
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by Liu et al. revealed that PS in lotus seed cores significantly enhances the abundance of
beneficial bacterial phyla in the gut, including Firmicutes, Bacteroides, Actinobacteria, and
Proteobacteria [188]. Firmicutes suppress Clostridium perfringens growth, thus maintaining
intestinal homeostasis [189]. Bacteroides are involved in the metabolism of bile acids and
the bioconversion of steroidal compounds. At the same time, certain bacteria within the
Actinobacteria phylum are known to lower blood sugar and lipid levels. Additionally, soy is
a commendable source of PS due to its high content, availability, and safety [190]. Research
indicates that upon soy PS intake, there is an increase in the abundance of beneficial gut
microbes like Lactobacillus, Oscillibacter, and Ackermanella [191]. Importantly, an increase in
Ackermanella correlates positively with significant improvements in lipid metabolism and
the restoration of colonic mucosal barrier functions [192].

4.5. Dicaffeoylquinic Acid

Kuding Tea (KDC), popular in China and Southeast Asian nations like Singapore and
Malaysia, is recognized as a functional tea beverage known for its multiple pharmacological
activities including dispelling wind-heat, quenching thirst, eliminating phlegm, and boost-
ing alertness [193]. KDC is rich in caffeoylquinic acid derivatives with antioxidant activities,
such as 3-CQA, 5-CQA, 3,4-diCQA, 3,5-diCQA, and 4,5-diCQA [194]. Research conducted
by Xie et al. discovered that dicaffeoylquinic acid (DCQA) in Kuding tea modulates
cholesterol metabolism in mice and promotes the growth of beneficial gut microbes like
Bifidobacterium and Akkermansia muciniphila [31]. These microbial populations’ alterations
subsequently influence microbial community functions, including bile acid biosynthesis.
Notably, the genus Odoribacter, belonging to the Porphyromonadaceae family, is identified as
a primary producer of Ac, Pr, and Bu, which are SCFAs proven to lower cholesterol levels
effectively [195,196]. DCQA adjusts the relative abundance of gut microbes like Odoribacter,
Prevotella, Bacteroides, Parasutterella, and Lachnospiraceae, effectively ameliorating gut dys-
biosis [194]. Furthermore, DCQA alters the functional characteristics of the gut microbial
community, providing a potential mechanism foundation for maintaining gut health and
regulating cholesterol levels.

5. Conclusions

Gut microbiota dysbiosis is a risk factor in the pathophysiological processes related
to cholesterol-associated diseases, constituting a subtle and potential mechanism of dis-
ease onset. This mechanism, directly or indirectly, influences human health. Notably, in
cardiovascular diseases, abnormal cholesterol levels facilitate the formation and develop-
ment of atherosclerotic plaques by inducing the generation of oxidized LDL. Increasing
evidence suggests that a healthy gut microbiota engages in cholesterol reduction through
various pathways, making it imperative to explore the precise mechanisms by which it
achieves this. The conduction and findings of clinical trials will offer deeper insights into
treating the cardiovascular diseases induced by high blood cholesterol. Furthermore, the
interaction between natural functional ingredients and the cholesterol-lowering actions of
the gut microbiota also represents a significant focus of research. This focus is poised to
profoundly impact the development of novel therapeutic strategies for drug treatment. In
summary, a deeper understanding of the mechanisms through which the gut microbiota
reduces cholesterol is scientifically essential and opens a new avenue for the prevention of
cardiovascular diseases. Prospective studies should further deepen the understanding of
the connection between the gut microbiota and cholesterol reduction while exploring and
identifying more effective prevention and treatment strategies.
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