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Abstract: A reasonable and balanced diet is essential for maintaining good health. With advancements
in deep learning, an automated nutrition estimation method based on food images offers a promising
solution for monitoring daily nutritional intake and promoting dietary health. While monocular
image-based nutrition estimation is convenient, efficient and economical, the challenge of limited
accuracy remains a significant concern. To tackle this issue, we proposed DPF-Nutrition, an end-
to-end nutrition estimation method using monocular images. In DPF-Nutrition, we introduced a
depth prediction module to generate depth maps, thereby improving the accuracy of food portion
estimation. Additionally, we designed an RGB-D fusion module that combined monocular images
with the predicted depth information, resulting in better performance for nutrition estimation. To
the best of our knowledge, this was the pioneering effort that integrated depth prediction and
RGB-D fusion techniques in food nutrition estimation. Comprehensive experiments performed on
Nutrition5k evaluated the effectiveness and efficiency of DPF-Nutrition.

Keywords: nutrition estimation; deep learning; depth prediction; RGB-D fusion

1. Introduction

Dietary health has become the predominant focus in modern life. Excessive or imbal-
anced intake may lead to different kinds of diet-related diseases, especially obesity, which
will dramatically increase the risk of hypertension, cardiovascular disease and diabetes [1].
Misestimating of nutrition content is a significant factor in excessive and imbalanced intake.
The International Food Information Council (IFIC) Foundation reported that most peo-
ple tend to overestimate their vegetable intake while underestimating their fat intake [2].
Therefore, there is an urgent demand for effective nutrition estimation methods to help
individuals monitor their daily dietary intake and guide them to a healthier diet. Previ-
ous dietary assessment methods heavily relied on human involvement. Specifically, the
commonly used 24 h Dietary Recalls [3] require participants to report their food types
and portion sizes over a 24 h period, thereby understanding their eating behavior. Many
popular applications, i.e., MyFitnessPal, MyDietCoach, Yazio, FatSecret, MyFoodDiary and
Foodnotes, are all developed based on this method. Despite the advantage of being easy to
implement, it is burdensome and unreliable due to its high dependence on the subjective
judgements of the participants.

Fortunately, recent development in Artificial Intelligence (AI), especially in deep learn-
ing techniques, have made the automated and reliable dietary assessment a reality [4,5].
Vision-based nutrition estimation methods allow users to monitor their food intake by cap-
turing images using their mobile devices, which heavily reduces user burden. According
to the type of input data, existing methods can be broadly divided into three categories [6]:
monocular image-based methods, multi-view image-based methods and RGB-D methods.
Earlier works [7,8] have predominantly relied on multi-view images to reconstruct the
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3D structure of food objects and estimate their volume. Subsequently, they calculated the
sum of nutrition by combining the volume with the nutritional information of the food.
Nevertheless, multi-view image methods are troublesome and inefficient since they require
users to capture images from specific angles. In contrast, monocular image-based methods
only relied on a single food image and demonstrated good performance. Specifically, Shao
et al. [9] proposed a method for estimating calories based on an energy density map, which
maps RGB images to the energy density of food on a pixel-to-pixel basis. They compared
the proposed method with the manual 24 h Dietary Recalls and the results showed an
obvious advantage. Similarly, Thames et al. [10] demonstrated that the performance of the
vison-based method outperformed the professional human nutritionists where they used
a multi-task convolutional neural network to estimate multiple nutrients. Shao et al. [11]
employed a combination of non-destructive detection technology and deep learning to
analyze the nutritional content of food. They improved the detection of small target foods
to improve the nutrient estimation accuracy. However, estimating food nutrition from a
monocular image is an ill-posed problem [12]. This is because the process of mapping
food objects to monocular images often leads to a loss of crucial 3D information, which
is vital for food portion estimation. In order to resolve the problem, depth information is
utilized to complement the 3D information lost in monocular images. Lu et al. [13] utilized
RGB-D pairs captured from real eating scenarios as input, and integrated techniques of
food segmentation, recognition and 3D surface reconstruction to estimate nutrient intake
for hospitalized patients. Thames et al. [10] incorporated the monocular images with
depth maps as four-channel data, which were subsequently sampled into a three-channel
tensor as the input of the model. However, these methods only treated food images and
depth maps as image pairs, neglecting the inherent differences between RGB and depth
images, which limits the performance of nutrition estimation. Recently, cross-modal fusion
has been explored to enhance the performance of nutrition estimation. Vinod et al. [14]
employed normalization techniques to address disparities in the feature space between
the energy density map [9] and the depth map. Shao et al. [15] employed the balanced
feature pyramid [16] and the convolutional block attention module [17] to enhance the
fused features, but the fusion of RGB and depth features still employed a straightforward
concatenation approach. These methods have facilitated the research on RGB-D nutrition
estimation, primarily through their focus on modal disparity. However, the enhancements
failed to explore the interactive effect of cross-modal features, thereby restricting the extrac-
tion of complementary information that could further enhance the accuracy of nutrition
estimation. In addition, the acquisition of a depth map heavily relies on professional depth
sensors, which increases the cost and restricts the application scenarios of RGB-D nutrition
estimation methods.

In this paper, we proposed a novel food nutrition estimation method based on Depth
Prediction and Fusion, referred to as DPF-Nutrition. We employed a depth prediction
model that generated predicted depth maps instead of actual depth maps captured by
depth sensors. These predicted depth maps recovered the missing 3D information in
monocular images, thereby enhancing the accuracy of food portion estimation without
additional cost. Unlike existing RGB-D fusion approaches in nutrition estimation [14,15]
that enhanced features on a single modality, we proposed a Cross-modal Attention Block
(CAB) that focused on the interaction effect of the cross-modal features. The CAB utilized
cross-modal attention features to enhance single-modal features, leading to increased
complementarity between modalities and the generation of more discriminative fused
features. This improvement allows the model to accurately focus on the correct nutrient
regions. In addition, we proposed a multi-scale fusion network that enhanced the semantic
features through combining the fused features at different resolutions, thereby enabling
the model to capture the co-occurring food features in the feature maps. The proposed
CAB and multi-scale fusion network consist of the RGB-D fusion module in DFP-Nutrition.
This module effectively exploits the features of both RGB and depth images to enhance
the performance of food nutrition estimation. During the inference stage, DPF-Nutrition
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relies solely on monocular food images as input, making it essentially a monocular image-
based method. We evaluated the effectiveness of DPF-Nutrition on the public Nutrition5k
dataset and obtained encouraging results. Specifically, the percentage mean absolute errors
(PMAEs) for calories, mass, protein, fat and carbohydrate estimation reached 14.7%, 10.6%,
20.2%, 22.6% and 20.7%, respectively. Compared with the previous monocular image-based
method proposed by Thames et al. [10], the mean PMAE of our DPF-Nutrition reached
17.8%, improved by 11.3%. Furthermore, when compared with the state-of-the-art RGB-
D method proposed by Shao et al. [15], our DPF-Nutrition demonstrated competitive
performance with a 0.7% improvement.

The contribution of this paper can be summarized as three aspects:

1. We proposed a novel monocular image-based nutrition estimation method based on
Depth Prediction and Fusion, referred as DPF-Nutrition. It was the first attempt to
incorporate depth prediction and RGB-D fusion techniques in vision-based nutrition
estimation.

2. We designed an RGB-D fusion module that incorporated the proposed cross-modal
attention block (CAB) and multi-scale fusion network to fully exploit the informative
image features for nutrition estimation.

3. Our proposed DPF-Nutrition demonstrated effectiveness in accurately estimating
multiple nutrients, which has been evaluated on the public dataset Nutrition5k.

2. Materials and Methods
2.1. Dataset

We summarized diversity, size, annotations and inclusion of depth information in
nutrition datasets. The result is shown in Table 1. Overall, the Nutrition5k dataset [10]
contained the highest number of unique dishes and images. Furthermore, it contained
extensive nutritional annotations, whereas other datasets only included single calorie
or portion annotations. In this paper, we evaluated our DPF-Nutrition method on the
Nutrition5k dataset. This dataset comprises 20k short videos and 3.5k RGB-D images
captured by an Intel RealSense camera, involving approximately 5k distinct food dishes.
Each dish within the dataset includes detailed information such as ingredient names,
quantities and associated macronutrient data calculated using the reliable USDA Food
and Nutrient Database [18]. Figure 1 demonstrates examples of images in the Nutrition5k
dataset. In the depth map, objects that are closer to the camera are represented in blue, while
objects that are farther away are shown in red. The color bar serves as a visual indicator,
reflecting the varying distances from each point to the camera, with the unit of measurement
in centimeters. As an image-based nutrition estimation method, our DPF-Nutrition was
evaluated on the 3.5k food images from the Nutrition5k dataset. The Nutrition5k dataset
provides a predefined split, dividing the data into training and testing subsets with a ratio
of 5:1. There exists a small number of erroneous images, as shown Figure 2, which have
the potential to mislead the training of the model, resulting in suboptimal performance.
However, in order to maintain consistency in the comparison of methods in this research,
we have chosen to preserve the integrity of the dataset and refrain from performing any
additional data cleaning.

Table 1. Summary of nutrition datasets. Diversity represents the number of unique dishes and size
represents the number of the images.

Dataset Diversity Size Annotation Depth

MenuMatch [19] 41 646 Calories N
ECUSTFD [20] 160 2978 Volume and Mass N
Fang et al. [21] 3 45 Calories N
Ando et al. [22] 3 270 Calories Y
Nutrition5k [10] 5066 3490 Calories, Mass and Macronutrients Y



Foods 2023, 12, 4293 4 of 18

Figure 1. The example images from Nutrition5k dataset. (a) RGB images. (b) Depth maps. (c) Nutri-
tional annotations.

Figure 2. Incorrect image samples. (a) Food is not fully incorporated in the image. (b) Dishes are
overlapping. (c) Non-food image.

2.2. Methods

The overall architecture of our DPF-Nutrition is illustrated in Figure 3. The model
comprises two main modules:

1. Module1: Depth prediction module aims to reconstruct the 3D depth information
based on 2D monocular images. The depth prediction module employs a vision
transformer as the encoder which can reduce the loss of granularity and feature
resolution for more accurate 3D information recovery.

2. Module2: RGB-D fusion module is specifically designed to fully leverage the fea-
tures of RGB and predicted depth images for nutrition estimation. This module
integrates the proposed multi-scale fusion network and cross-modal attention block
(CAB). The multi-scale fusion network effectively enriches the intricate semantic
features of fine-grained food images, while the CAB further enhances the complemen-
tarity of RGB and depth features.

To achieve accurate nutrition estimation, both food recognition and portion estimation
are essential. The depth prediction module plays a crucial role in generating depth maps,
which serve as the basis for precise portion estimation. The multi-scale fusion network com-
bines multi-level feature maps to generate a high-resolution, strongly semantic feature map,
which enhance the extensively recognition of the co-occurring food items in the images.
DPF-Nutrition is designed to estimate the nutritional value of food in an end-to-end man-
ner; thus, CAB integrates the complementary information from RGB images and predicted
depth maps, enabling the cross-modal information to collaborate in nutrition estimation.

In general, our DPF-Nutrition consists of depth prediction module and RGB-D fusion
module, as shown in Figure 3. Specifically, we utilized the ResNet101 network [23] as the
backbone of our DPF-Net. In depth prediction module, we employed the Dense Prediction
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Transformer (DPT) [24] to generate a predicted depth map. The generated depth map was
then combined with the RGB image as the input of RGB-D fusion module. In RGB-D fusion
module, we extracted RGB features and depth features using separate ResNet networks.
The extracted features at the same ResNet layer were then fed into the Cross-modal At-
tention Block (CAB). The CAB suppressed redundant features within each modality and
combined the complementary features. Then, the fused RGB-D features of different resolu-
tions were fed into the third ResNet network and fused from shallow layers to deep layers.
This multi-scale fusion process ensured that the final feature map contained comprehensive
and detailed information. The feature map was finally processed through global average
pooling and a separate multi-task head to estimate the nutritional composition.

Figure 3. The overall framework of our DPF-Nutrition, which consists of depth prediction module
and RGB-D fusion module. We adopt depth prediction transformer (DPT) to generate the predicted
depth map. We design a cross-modal attention block (CAB) to extract and integrate the comple-
mentary features of RGB and depth images.

⊕
indicates element-wise addition, G© denotes global

average pool.

2.2.1. The Depth Prediction Module

Depth prediction plays a crucial role in computer vision since it enhances the under-
standing and perception of real 3D scenes. The depth prediction model typically follows a
pattern comprising an encoder and a decoder [25–27]. The encoder extracts the features
from the input images, while the decoder combines the features from the encoder and con-
verts them into the ultimate depth prediction. The choice of the backbone network for the
encoder is essential since the feature information that is lost in encoder cannot be recovered
in following decoder. Compared with the depth information of other outdoor scenes or
large objects, the depth information of food is more intricate due to its varied geometry
and abundant texture. The loss of resolution and granularity during feature extraction
in the encoder is prone to causing distortion in the final depth prediction. However, the
convolutional neural network [23,28] inevitably loses granularity in deeper stages, since
the increase in receptive field and abstraction of features are reliant on the downsampling
operation. In comparison, Vision Transformer (ViT) [29] abandons the downsampling
operation and maintain the global receptive field of all stages. This makes it more suitable
to be used as an encoder for fine-grained food images.

The depth prediction module comprised a transformer encoder and a convolutional
decoder. The transformer encoder was responsible for extracting the bag-of-words repre-
sentation, while the decoder reconstructed the bag-of-words representation into image-like
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features of different scales. Finally, image-like features were combined into the depth
estimation. The structure of DPT is showed in Figure 4a.

Figure 4. (a) The structure of depth prediction module. The input image is transformed into feature
vectors by ResNet-50 feature extractor and consequently embedded into two-dimensional tokens.
The tokens are then fed into transformer encoder. The tokens from different transformer stages are
reassembled into image-like feature maps at various resolutions. Finally, the image-like feature maps
are fused progressively to generate the depth prediction. (b) The structure of transformer encoder.⊕

indicates element-wise addition.

Specifically, the input images were abstracted as two-dimensional feature vectors by
ResNet-50 network to satisfy the input format of transformer. The feature vectors were
then combined with a trainable position embedding to retain positional information. The
resulting sequence of embedding vectors, referred to as tokens, were fed into transformer
encoder to extract image feature information. Transformer block comprised multi-head self-
attention layer, multi-layer perceptron (MLP), two layers of LayerNorm (LN) and residual
connections. The structure of transformer encoder is shown in Figure 4b. Multi-head
attention enabled transformer encoders to learn representations of both global and local
image features. This capability empowered Vision Transformers (ViTs) to capture features at
multiple scales, eliminating the requirement for traditional convolutional networks’ gradual
downsampling operations. This advancement significantly contributed to maintaining
feature resolution and granularity, which are crucial for accurate depth prediction. Given
that the resolution of the input image is H × W, after transformer encoders, we obtained a
set of tokens t = {t0· · · tNp }, tn ∈ RD, where Np = H×W

p2 , D refers to the dimension of tokens
and p is the sampling rate of ResNet50.

Then, the Np tokens were spatially concatenated into an image-like feature map
through placing each token based on the information of the position embedding:

Concatnate : RNp×D → R
H
p ×

W
p ×D (1)

We resampled the image-like representations into specific size H
s ×

W
s with D

′
dimensions:

Resample : R
H
p ×

W
p ×D → R

H
s ×

W
s ×D

′
(2)

Finally, we employed a RefineNet-based decoder [30] to progressively combine the
feature maps at different resolutions and generate the depth prediction. More detailed
implementation of DPT can be obtained in the paper [24].



Foods 2023, 12, 4293 7 of 18

2.2.2. RGB-D Fusion Module

RGB-D fusion is widely applied in various visual tasks including image classifica-
tion [31], food intake detection [32] and food nutrition assessment [15]. The essence of
RGB-D fusion is to combine the complementary information from RGB and depth images
to produce more informative and enhanced features. RGB images and depth images pertain
to distinct modalities, featuring fundamentally distinct information. Thus, straightforward
concatenating or summing cannot fully exploit the cross-modal features. To address this
issue, some methods explored improving the efficiency of RGB-D fusion through feature
enhancement.

We summarized existing enhancement methods for RGB-D fusion in nutrition esti-
mation into two paradigms: enhancement–fusion [14] and fusion–enhancement [15], as
is shown in Figure 5. The specific enhancement techniques can be various. For example,
Vinod et al. [14] employed normalization techniques to address disparities in the feature
space while Shao et al. [15] employed the balanced feature pyramid and the convolutional
block attention module to enhance the fused features. Although these two paradigms could
enhance the efficiency of cross-modal fusion, they have certain limitations. The fusion–
enhancement method focused on independently enhancing each single-modal feature,
without considering the modal complementarity. As a result, this approach might lead
to the loss of useful information. In contrast, the enhancement–fusion method enhanced
the features after fusion, which might result in residual redundant information from each
modal. Differently from the existing methods, we proposed a “fusion–enhancement–fusion”
paradigm. Firstly, we performed a straightforward fusion of RGB and depth features to
acquire cross-modal interaction information which is then used to enhance both of the
single-modal features. Finally, the enhanced single-modal features were combined to gener-
ate the fused RGB-D features. This method can effectively remove redundant information
from single-modal features while retaining complementary information from cross-modal
features. Following this fusion paradigm, we propose a novel cross-modal attention block
(CAB) for RGB-D fusion, which is demonstrated in Figure 6. By utilizing the CAB, we
enhanced informative features and filter out redundant ones to obtain the most informative
fused features. This enables our model to accurately prioritize regions with high nutritional
value, rather than solely focusing on specific food items or larger portions.

Figure 5. The structures of the RGB-D fusion paradigms. (a) Fusion–enhancement. (b) Enhancement–
fusion. (c) Our proposed.

⊕
denotes element-wise addition,

⊗
indicates pixel-wise multiplication,

C© represents cross-channel concatenation.
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Specifically, after the depth prediction module, the RGB images together with esti-
mated depth images were input into the feature extraction networks to generate hierarchical
features, denoted as RGB features {Ri}4

i=0 and depth features {Di}4
i=0. The RGB and depth

feature maps, with the same resolution, were fed into CAB to generate the complementary
fused representation. The structure of CAB is shown in Figure 6. The CAB explicitly built
the feature correspondences among different modalities based on the channel and spatial
attention vectors of additive features, which emphasized crucial features and suppressed
redundant ones. The re-calibrated features were concatenated to obtain complementary
cross-modality features. Specifically, given two input features Ri and Di, we first added the
two features pixel by pixel along the channel dimension. Then, we processed the additive
features in two branches to obtain channel attention vectors and spatial attention vectors.
In channel attention branch, we employed global average pool to obtain global channel
descriptor. Then, the global channel descriptor was fed into a 1 × 1 convolution with BN
and ReLU to increase non-linearity. Finally, it went through a sigmoid activation function
to produce the channel attention vector; the procedure can be defined as:

CA = Sig(Conv1×1(GAP(Ri ⊕ Di))) (3)

where GAP(·) denotes the global average pooling,
⊕

denotes the element-wise addition,
Sig(·) represents the sigmoid function, and Conv1×1 indicates a convolutional layer with
1 × 1 kernel size, followed by BN and ReLU.

Figure 6. The structure of CAB. GAP indicates global average pooling,
⊕

denotes element-wise
addition,

⊗
indicates pixel-wise multiplication, C© represents cross-channel concatenation, Mean

represents mean function along the channel dimension.

In spatial attention branch, we calculated the average value for all pixels of the additive
feature map along the channel dimension to obtain spatial descriptor. Then, we applied a
3 × 3 convolution with BN and ReLU to smooth the spatial descriptor. Finally, the spatial
attention vector was obtained by passing it through a sigmoid activation function; the
procedure can be defined as:

SA = Sig(Conv3×3(Mean(Ri ⊕ Di))) (4)
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where Mean(·) denotes mean function along the channel dimension. The attention weights
of channel and spatial dimensions enhanced the correlation and complementarity of the
RGB and depth features. Based on cross-modal attention, the enhanced RGB feature
map and depth feature map were obtained. The enhanced features were then further
concatenated and fed into a 1 × 1 convolution to obtain the complementary RGB-D features
Ci; the procedure can be defined as:

Ci = Conv1×1(Concat(Ri ⊗ CA⊗ SA, Di ⊗ CA⊗ SA)) (5)

where Concat(·) denotes cross-channel concatenation and
⊗

indicates pixel-wise multiplication.
After the proposed CAB, we obtained the cross-modal features {Ci}4

i=0. To further
enhance semantic features, we adopted a multi-scale fusion network to combine the local
detailed information of low-level features and the global context information of the high-
level features, progressively. This enabled our model to extensively capture the co-occurring
food items, especially the small objects in the images, resulting in accurate nutrition
estimation. We used the first cross-modal feature map F0 as the input of the feature fusion
network; the feature was then refined by a ResNet convolutional block and combined with
the next cross-modal feature map C1 to generate the fused feature map F1. We repeated this
operation at the next stage. In this way, we combined the cross-modal features at different
scales. The procedure can be defined as:

Fi = Ci ⊕ Resi(Ci−1) (6)

where Resi indicates the i-th ResNet convolutional block.
Through the multi-scale fusion network and CAB, we fully utilized the complementary

RGB and depth information to generate the final feature representation F4. Then, it was fed
into a full connected (FC) layer and five multi-task FC heads (with dimensions 2048 and 1,
respectively) to generate the estimated nutrition values.

2.2.3. Loss Function

As a multi-task learning model, our DPF-Nutrition predicts the contents of calories,
mass and three essential macronutrients of food (fat, carbohydrates and protein). For each
subtask, L1 loss was used to measure the bias between the estimated nutritional values and
ground-truth ones, which can be defined as:

Lcal =
1
N

N

∑
i=1

∣∣∣ycal − y
′
cal

∣∣∣ (7)

where Lcal denotes the subtask loss of calories, ycal indicates the estimated value of calorie
and y

′
cal represents the ground-truth calorie value. The loss of other subtasks follow

this equation.
The scale of the subtask losses are various, which can cause some tasks to dominate

other tasks during the training phase. The geometric loss combination [33] is invariant to
the scale of individual losses, thereby maintaining a balanced approach towards subtask
losses of varying scales. Thus, we used the geometric loss strategy as our loss function,
which can be defined as:

Ltotal = 5
√

Lcal LmassL f atLcarbLprotein (8)

where Ltatal denotes the overall loss function.

2.3. Evaluation Metrics

In this paper, we adopted the two evaluation metrics of mean absolute error (MAE)
and percentage of mean absolute error (PMAE), which are defined as:

MAE =
1
N

N

∑
i=1

∣∣∣yi − y
′
i

∣∣∣ (9)
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PMAE =
MAE

1
N ∑N

i=1 yi
(10)

where y is the estimated nutrient value while y′ is the ground-truth nutrient value. Caloric
values are measured in standard kilocalorie units, while the other three nutrient values are
measured in grams. A higher level of accuracy in nutrient estimation is achieved when the
MAE and PMAE values for evaluation are lower.

In addition, to evaluate the accuracy of depth estimation, we adopt the three evaluation
metrics of absolute relative error (AbsRel), root mean squared error (RMSE) and accuracy
with threshold, which are defined as:

AbsRel =
1
N

N

∑
i=1

∣∣∣di − d
′
i

∣∣∣
di

(11)

RMSE =

√√√√ 1
N

N

∑
i=1

∣∣di − d′i
∣∣2 (12)

Accuracy = % o f di s.t. max(
di

d′i
,

d
′
i

di
) = δ < thr (13)

where d represents the ground-truth depth value while di represents the predicted depth
value. A higher level of accuracy in depth prediction is achieved when the AbsRel and
RMSE values are lower and accuracy is nearer to 1.

3. Results
3.1. Experimental Detail

All the experiments were conducted on a 24G NVIDIA GTX 3090 GPU. To main-
tain the experimental fairness, the same setup was utilized for all experiments. For the
training of the depth prediction module, we resized the input images to have a long side
of 384 pixels and train on random square crops of size 384. The process not only meets
the input size requirement of the vision transformer but also serves as an augmentation
technique to enhance the model’s generalization capabilities. The encoder network was
initialized with ImageNet1K pre-trained weight while the decoder network was initialized
randomly. We utilized the Adam optimizer [34] with an initial learning rate of 1 × 10−5

and implemented a cosine annealing strategy for learning rate decay. The learning rate
declined to 1 × 10−6 after cosine annealing. We trained the model for 60 epochs with a
batch size of 8. For the training of the RGB-D fusion module, the input images were resized
to 336 × 448 pixels to reduce memory consumption while maintaining the original aspect
ratio. Image augmentation methods including center cropped and random horizontal flip
were applied to training images to enhance the model’s generalization capabilities. The
backbone network was initialized with Food2K [35] pre-trained weight. Food2K is a large
dataset for fine-grained food recognition that offers features specifically suitable for transfer
learning in food-related vision tasks. We chose the Adam optimizer with an initial learning
rate of 5 × 10−5 and implemented an exponential decay strategy for updating the learning
rate, with a decay rate set to 0.98. We trained the model for 150 epochs with a batch size of
8. The optimization techniques, including optimizer selection, learning rate strategies and
batch size are all carefully chosen based on experimental experiences, in order to achieve
the best possible results.

3.2. Backbone Comparison

It is essential to select a suitable backbone networks for the model. In this section, we
made a comparison among several widely used convolutional neural networks (CNNs)
and the recently popular vision transformer [29]. According to Table 2, ResNet101 achieved
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better performance, with the best mean PMAE of 20.9%. Therefore, we used ResNet101 [23]
as the backbone network for our DPF-Nutrition, unless otherwise specified.

Table 2. Comparison of the performance of different backbones. The best results were highlighted
in bold.

Methods Calories
MAE (kCal)/PMAE (%)

Mass
MAE (g)/PMAE (%)

Fat
MAE (g)/PMAE (%)

Carb
MAE (g)/PMAE (%)

Protein
MAE (g)/PMAE (%)

Mean
PMAE (%)

ViT [29] 52.4/20.4 32.5/16.3 3.78/29.4 5.72/28.9 5.72/28.9 24.6
VGG16 [28] 47.9/18.6 29.2/14.6 3.61/28.0 5.18/26.2 4.71/26.8 22.8
InceptionV3 [36] 46.2/18.0 28.4/14.2 3.24/25.1 5.1/25.8 4.37/24.8 21.6
ResNet50 [23] 46.9/18.2 27.7/13.8 3.61/28.0 4.51/22.8 4.56/25.9 21.7
ResNet101 [23] 46.0/17.9 27.2/13.6 3.42/26.5 4.56/23.0 4.31/24.5 21.1

3.3. Depth Prediction Analysis

To evaluate the performance of the Dense Prediction Transformer (DPT) in food images,
we compare it with three depth prediction methods based on fully convolutional networks.
To ensure a fair comparison, we consistently maintained the experimental settings and
dataset splits across all methods. We compare the methods including: DPT [24], FCRN [37],
UNet [26] and HRNet [38]. The experimental results are shown in Table 3. Due to the vision
transformer’s capability of preserving image resolution and granularity throughout the
encoding process, the Dense Prediction Transformer (DPT) achieved the best performance
in depth estimation.

Table 3. Comparison of the performance of different depth prediction methods.The best results were
highlighted in bold.

Method δ > 1.25 δ > 1.252 δ > 1.253 AbsRel RMSE

UNet [26] 0.573 0.771 0.860 0.661 0.211
FCRN [37] 0.634 0.799 0.877 0.529 0.189
HRNet [38] 0.692 0.864 0.906 0.387 0.162
DPT [24] 0.743 0.893 0.942 0.322 0.128

Furthermore, in order to assess the influence of depth map quality on nutrition es-
timation, we evaluated the performance of nutrition estimation models that integrated
RGB images and depth maps. These depth maps included the ground-truth ones and
those generated by DPT, FRCN, UNet and HRNet. All the experiments employed the
same RGB-D fusion module and experimental settings. The result is shown in Table 4. The
results of the actual depth maps were best, with a mean PMAE of 17.2%. And a better
performance of nutrition estimation was achieved when the quality of the predicted depth
maps was better.

Table 4. Comparison of the performance of nutrition estimation using depth maps from different
sources.The best results were highlighted in bold.

Depth
Source

Calories
MAE (kCal)/PMAE (%)

Mass
MAE (g)/PMAE (%)

Fat
MAE (g)/PMAE (%)

Carb
MAE (g)/PMAE (%)

Protein
MAE (g)/PMAE (%)

Mean
PMAE (%)

UNet [26] 41.6/16.2 22.6/11.3 3.29/25.5 4.43/22.4 4.01/22.8 19.6
FRCN [37] 40.7/15.8 22.7/11.3 3.17/24.6 4.28/21.6 3.87/22.0 19.1
HRNet [38] 39.3/15.3 21.6/10.8 3.01/23.3 4.13/20.9 3.72/21.2 18.3
DPT [24] 37.9/14.7 21.2/10.6 2.92/22.6 4.09/20.7 3.56/20.2 17.8
Depth sensor 36.5/14.2 20.4/10.2 2.76/21.4 4.08/20.6 3.48/19.8 17.2

3.4. Cross-Modal Fusion Analysis

To evaluate the effectiveness of our proposed CAB, we compared it with two RGB-D fu-
sion methods. The result is shown in Table 5. These two methods followed the cross-modal
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fusion paradigms demonstrated in Figure 5, referred to as “fusion–enhancement” and
“enhancement–fusion”. To ensure fairness in the comparison, we maintained consistency
in the specific feature enhancement method, which included spatial attention and channel
attention mechanisms. Additionally, the experimental settings and dataset splits remained
the same. CAB utilized cross-modal interaction information to enhance single-modal fea-
tures so as to generate complementary fused features. Among the three methods compared,
CAB demonstrated the best performance by following a “fusion–enhancement–fusion”
paradigm, resulting in a mean PMAE of 17.8%.

Table 5. Comparison of the performance of different cross-modal fusion methods.The best results
were highlighted in bold.

Method Calories
MAE (kCal)/PMAE (%)

Mass
MAE (g)/PMAE (%)

Fat
MAE (g)/PMAE (%)

Carb
MAE (g)/PMAE (%)

Protein
MAE (g)/PMAE (%)

Mean
PMAE (%)

Enhancement–Fusion 39.1/15.2 22.6/11.3 3.03/23.5 4.14/20.9 3.80/21.6 18.5
Fusion–Enhancement 39.3/15.3 21.6/10.8 3.01/23.3 4.13/20.9 3.72/21.2 18.3
CAB 37.9/14.7 21.2/10.6 2.92/22.6 4.09/20.7 3.56/20.2 17.8

3.5. Method Comparison

To evaluate the performance of DFP-Nutrition, we compared it with three representa-
tive nutrition estimation methods. To ensure a fair comparison, we consistently maintained
the experimental settings and dataset splits across all methods. The experimental results
are shown in Table 6. We referred to the methods proposed by Thames et al. [10] and
Shao et al. [15] as Google-Nutrition and RGB-D Nutrition, respectively. We compared
the methods including: Google-Nutrition, RGB-D Nutrition, Swin-Nutrition [11] and our
proposed DPF-Nutrition.

Google-Nutrition was introduced in conjunction with the publication of the Nutri-
tion5k dataset, which was widely regarded as the baseline method for nutrition estimation.
Google-Nutrition offered two variations: Google-Nutrition-monocular, which utilized
monocular images, and Google-Nutrition-depth, which incorporated food images and
depth data. Swin-Nutrition achieved the state-of-the-art performance in nutrition estima-
tion based on monocular images. Swin-Nutrition employed Swin-Transformer [39] as the
backbone and used a feature fusion module to obtain discriminative feature representation
to improve the accuracy of nutrition estimation. It should be noted that the results of Swin-
Nutrition in this paper differed from the original ones published in [11]. This is because
we replicated their method to avoid the data inconsistency caused by their experimental
data cleaning. RGB-D Nutrition achieved the state-of-the-art results in nutrition estimation
based on RGB-D images. RGB-D Nutrition employed balanced feature pyramid [16] and
convolutional block attention module [17] to perform effective RGB-D fusion to improve
the accuracy of nutrition estimation.

As demonstrated by the experimental results, DPF-Nutrition showed advantages
in monocular image-based nutrition estimation. In comparison to Google-Nutrition-
monocular and Swin-Nutrition, the mean PMAE improved by 11.3% and 2.6%, respectively.
This improvement highlights the effectiveness of the deep prediction module in enhancing
the accuracy of nutrition prediction by incorporating 3D information. Furthermore, when
compared to the state-of-the-art RGB-D method, DPF-Nutrition demonstrated a competi-
tive performance with a 0.7% improvement in the mean PMAE. Considering the potential
impact caused by the bias between predicted depth maps and actual depth maps, the im-
provement underscored the effectiveness of our exploration of RGB-D fusion for nutrition
estimation. Overall, our DPF-Nutrition exhibited a highly competitive performance when
compared to existing methods.
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Table 6. Comparison of the performance of different methods.The best results were highlighted
in bold.

Input Methods
Calories

MAE (kCal)/
PMAE (%)

Mass
MAE (g)/

PMAE (%)

Fat
MAE (g)/

PMAE (%)

Carb
MAE (g)/

PMAE (%)

Protein
MAE (g)/

PMAE (%)

Mean
PMAE (%)

RGB-D images Google-Nutrition-depth [10] 47.6/18.8 40.7/18.9 2.27/18.1 4.6/23.8 3.7/20.9 20.1
RGB-D Nutrition [15] 38.5/15.0 21.6/10.8 3.0/23.5 4.43/22.4 3.69/21.0 18.5

Monocular images
Google-Nutrition-monocular [10] 70.6/26.1 40.4/18.8 5.0/34.2 6.1/31.9 5.5/29.5 29.1
Swin-Nutrition [11] 41.5/16.2 27.5/13.7 3.21/24.9 4.32/21.8 4.47/25.4 20.4
DPF-Nutrition (ours) 37.9/14.7 21.2/10.6 2.92/22.6 4.09/20.7 3.56/20.2 17.8

3.6. Ablation Study

To validate the effectiveness of the proposed modules, comprehensive ablation studies
were conducted on the various components comprising our DPF-Nutrition. The experi-
mental results are shown in Table 7. The baseline was the RGB stream that used only a
ResNet101 network to estimate nutrients from RGB images. Similarly, depth stream used a
single network to estimate nutrients from depth images generated by the depth prediction
module. Model (c) and Model (d) employed simple feature vector concatenation and the
proposed multi-scale fusion network, respectively, to integrate the RGB stream and depth
stream. Model (e) represented the complete DPF-Nutrition which incorporates the CAB on
the basis of Model (d).

According to Table 7, Model (a) achieved a mean PMAE of 20.9%, whereas model
(b) achieves a mean PMAE of 38.6%. The results demonstrated that relying solely on
depth information alone cannot accurately estimate nutrients. Model (c) concatenated the
RGB and depth features at the last layer of the feature extraction network, and achieves a
mean PMAE of 19.6%, which is a 1.5% improvement compared to Model (a). The result
demonstrated the effectiveness of complementing RGB images with estimated images
for nutrition estimation and validated the efficacy of our depth prediction module. The
improvements achieved by Model (d) and Model (e) evaluated the effectiveness of the
proposed multi-scale fusion network and Cross-modal Attention Block (CAB), respectively.
Model (e) achieved an improvement over Model (c), with a 1.8% decrease in mean PMAE,
as well as reductions of 4.8 kCal in calories MAE and 3.8 g in mass MAE. The results of
the ablation experiment demonstrated that all of the depth prediction module, multi-scale
fusion network and CAB can effectively improve the accuracy of nutrient prediction.

Table 7. Comparison with different ablation settings.The best results were highlighted in bold.

Index Model
Calories

MAE (kCal)/
PMAE (%)

Mass
MAE (g)/

PMAE (%)

Fat
MAE (g)/

PMAE (%)

Carb
MAE (g)/

PMAE (%)

Protein
MAE (g)/

PMAE (%)

Mean
PMAE (%)

(a) RGB Stream 46.0/17.9 27.2/13.6 3.42/26.5 4.56/23.0 4.31/24.5 21.1
(b) Depth Stream 83.5/32.5 44.7/22.3 6.29/48.8 8.08/40.8 8.53/ 8.5 38.6
(c) (a) + (b) + direct fusion 42.7/16.7 25.0/12.5 3.17/24.6 4.31/21.8 3.97/22.6 19.6
(d) (a) + (b) + multi-scale fusion 40.7/15.8 24.8/12.4 3.01/23.3 4.13/20.9 3.88/22.1 18.9
(e) (d) + CAB 37.9/14.7 21.2/10.6 2.92/22.6 4.09/20.7 3.56/20.2 17.8

3.7. Visualization Analysis

To visually showcase the efficacy of our method, we began by visualizing the per-
formance of the depth prediction module. As depicted in Figure 7, our depth prediction
module successfully recovered the depth information and smoothed out the noise in the
original depth.

Next, we employed Grad-Cam [40] to visualize the RGB-D fusion module, which
generated a heat map highlighting the regions of interest (ROIs) identified by the model.
This visualization allowed for a more intuitive understanding of how our method leveraged
food images to make accurate predictions. The visualization results of certain dishes and
the corresponding nutrition facts are shown in Figure 8. The regions that the model focuses
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on are marked in red, while the opposite regions are marked in blue. As illustrated in the
visualization, our model demonstrated a focused attention on specific regions for each
nutrient task. For instance, when estimating the fat and protein content in dish_156278816,
the model exhibited a strong focus on the pork and fish components. Conversely, when
estimating the carbohydrate content, the model primarily emphasized the rice and corn ele-
ments. This indicated that our model effectively captured relevant visual cues and assigned
appropriate importance to different regions based on the specific nutrient being estimated.

Figure 7. The sample results of the depth estimation. (a) RGB images. (b) Estimated depth maps.
(c) Actual depth maps.

Figure 8. The visualization results. (a) The ROI heat-maps of different nutrients. (b) The nutri-
tion facts.
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4. Discussion

Daily nutrient intake is essential for people’s health. According to previous studies, it
has been found that a moderate caloric restriction (ranging from 18% to 30%) can lead to
various positive effects on the health of obese patients, including a reduction in visceral fat,
an improvement in insulin sensitivity and a decrease in the risk of developing metabolic
diseases [41,42]. Furthermore, the results of a long-term experiment revealed that, after
therapy, the weight of participants of obesity class II decreased by 22.4% while their calorie
and carbohydrate intake decreased by 18.3% and 15.6%, respectively [43]. Although our
DPF-Nutrition demonstrated an improvement in nutrition estimation, it is important to
note that there were still errors in estimating the contents of calories, mass, protein, fat
and carbohydrates, which reached 14.7%, 10.6%, 20.2%, 22.6% and 20.7% respectively.
These errors may be disadvantageous, especially in the context of dietary monitoring for
medical purposes.

In order to investigate the limitations of our model, we examined the test samples that
yielded poor results. We discovered that the most significant errors primarily originated
from three categories of images. The first category includes images with food stacking and
covering. For instance, in the case of dish_1560367980, where the low-calorie spinach signif-
icantly obscured the high-calorie pizza, the estimated calorie value was 31.6% lower than
the actual value. The second category comprises images containing minuscule components
that are imperceptible, such as oil and sugar. For example, in the case of dish_1562617939,
where a large amount of olive oil was added to the dish, the calorie PMAE was up to 52.5%,
while the fat PMAE was dramatically 68.3%. The third category comprises images with
food items that are rarely encountered in the training data. For example, in the case of
dish_1562617703, which involved the uncommon ice-cream in the Nutrition5k dataset, the
calorie PMAE reached up to 39.5%, while the carbohydrate PMAE reached up to 57.4%. It is
evident that food stacking, imperceptible components and insufficient data are the primary
factors that restrict the performance of DPF-Nutrition. When we removed these samples
in the experiments, the performance of DPF-Nutrition in the estimation of calories, mass,
protein, fat and carbohydrates reached 13.4%, 10.2%, 21.2%, 19.2% and 18.9%, respectively.
The mean PMAE improved by 1.2%. Although removing these challenging samples can
result in improved results, the dietary scenarios containing food stacks and imperceptible
ingredients cannot be ignored, as they are real-life situations. In addition, the impact of
scarcity of datasets on food nutrition estimation is significant. Deep learning techniques rely
heavily on the dataset; however, the diversity and scale of the existing nutrition datasets
are far from sufficient for practical application. Furthermore, due to the high local and
cultural characteristics of food, the transferability between datasets of different cuisines
are relatively weak. For example, the model trained on the Western food dataset cannot be
directly used for nutrition estimation of Chinese food. Generally, Chinese dishes offer a
wide range of variety, with complex ingredients and richer cooking methods, which can
pose more challenges in vision-based nutrition estimation.

In the future, we will focus on overcoming the problems of food stacking and imper-
ceptible components for more accurate nutrition estimation. One potential solution for food
stacking involves detecting the stacked portion in the food image, conducting structural
analysis on this segment and ultimately calculating nutrition adjustments. Furthermore,
we are committed to creating an extensive public food dataset to facilitate comprehensive
dietary assessment. Given the limited transferability across food datasets, our goal is to
construct a specialized dataset, specifically focusing on a Chinese breakfast dataset. This
dataset will be compact yet of high quality, ensuring its practical usability in daily applica-
tions. In addition to further improving our algorithms, we are also ambitious to integrate
DPF-Nutrition into practical applications. Many existing dietary tracking apps such as
MyFitnessPal, MyDietCoach and FatSecret require some manual input, such as recalling
what you ate or weighing the food. In contrast, our proposed DPF-Nutrition achieves a
fully automated process from capturing an image to estimating its nutritional content. The
practical application of DPF-Nutrition holds immense potential in alleviating user burden,
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reducing costs and enhancing accuracy in dietary monitoring. However, the practical
application of DPF-Nutrition should consider additional issues such as computational com-
plexity and image quality. Our current design primarily focuses on improving accuracy,
without taking into account the computational complexity of the model. Yet, in practical
scenarios, the computational complexity directly affects resource utilization and running
speed, which are closely associated with user experience. Therefore, in the next stage,
we need to address the problem of reducing the model’s complexity while maintaining
accuracy. Moreover, factors like angles, distances and lighting conditions during the image
capture process can all impact image quality. It is crucial to find solutions to mitigate the
impact of low image quality on nutrition estimation, as this is another practical issue that
needs consideration in the application of DPF-Nutrition.

We strongly believe that the study of automated nutritional assessment holds great
promise. By automating dietary assessment, individuals can receive real-time feedback on
the nutritional content of their meals, thereby increasing their awareness and understanding
of their dietary choices. This empowers individuals to make informed decisions about their
food intake and ultimately adopt healthier eating habits. The convenience, affordability
and efficiency of automated dietary assessment make it suitable for meeting the dietary
monitoring needs of diverse populations. It is our hope that our study will contribute to
the advancement of automated dietary assessment, ultimately enhancing dietary education
and improving public health outcomes.

5. Conclusions

In this paper, we proposed our DFP-Nutrition for dietary assessment, aiming to
develop an automated, cost-effective and precise method for nutrition estimation. Our
proposed method offered a novel approach by predicting the depth map from a monocular
image and incorporating the recovered 3D information with RGB food images to improve
nutrition estimation. To assess the effectiveness of our method, we performed experiments
on the Nutrition5k dataset and compared its performance with that of state-of-the-art image-
based nutrition estimation methods. The results clearly demonstrated the effectiveness of
our proposed method, showcasing its competitive performance when compared to other
existing methods. In the future, we envision the widespread utilization of automated vision-
based nutrition estimation methods in our daily lives, making a significant contribution to
improving dietary education and public health.
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