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Abstract: This investigation examined how the Bacillus vallismortis laccase (rBVL-MRL522) influenced
the physicochemical characteristics, structural attributes, and functional capabilities of both dough
and noodles. Incorporating rBVL-MRL522 (1 U/g) did not lead to a substantial change in the water
absorption of wheat flour. However, the introduction of rBVL-MRL522 caused a significant elongation
in the formation time of wheat flour dough, extending it by 88.9%, and also resulted in a 50% increase
in the stabilization duration of wheat flour dough. Furthermore, adding rBVL-MRL522 led to a
proportional rise in both the elastic and viscous moduli (G” of the dough, signifying that r-BVL
(rBVL-MRL522) has a beneficial effect on the gluten strength of the dough. Integrating rBVL-MRL522
promoted the consolidation of the gluten-based cross-linked structure within the dough, decreasing
the size of starch particles and, more evenly, the dispersion of these starch particles. In the noodle
processing, adding rBVL-MRL522 at a rate of 1 U/g raised the L* value of the noodles by 2.34 units
compared to the noodles prepared without the inclusion of rBVL-MRL522. Using a greater amount of
rBVL-MRL522 (2 U/g) substantially increased the hardness of the noodles by 51.31%. Additionally,
rBVL-MRL522 showed a noteworthy enhancement in the elasticity, cohesiveness, and chewiness
of the noodles. In conclusion, rBVL-MRL522 promoted the cross-linking gluten, leading to a more
extensive and condensed three-dimensional network structure in raw and cooked noodles. As a
result, this study offers valuable insights into the environmentally friendly processing of dough and
associated products.

Keywords: Bacillus vallismortis laccase; cross-linking; dough; noodle; physicochemical properties

1. Introduction

Today, products made from flour, especially those derived from wheat, play a signifi-
cant role as fundamental dietary staples. They are a vital ingredient in the food industry
and are widely used in supermarkets [1]. Compared to other flour types, wheat flour
dominates the Chinese market, holding the largest share among flour-based products [2].
Nevertheless, differences in wheat types and cultivation conditions cause the medium or
low gluten strength of the wheat flour produced. High gluten-strength flour is somewhat
scarce, and the taste may not be optimal [3]. As consumers increasingly prioritize an
enhanced quality of life, their expectations regarding the safety and quality standards of
flour and flour-based products are rising [4]. As a result, there is a growing trend towards
using safe flour enhancers to elevate flour quality. This has led to the development of
custom-tailored flours designed for specific flour-based products, which has become a
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widespread commercial strategy [5]. This approach guarantees consistent and dependable
quality for various specialized flours and improves the overall production efficiency of
flour-based products.

Potassium bromate, a common chemical additive, is a potent gluten enhancer fre-
quently employed in flour [6]. Initially regarded as safe, it gained extensive use in multiple
food processing sectors, including the production of bread and pizza [7,8]. Potassium
bromate exerts a gradual oxidative effect on the flour, enhancing the dough’s rheological
characteristics and the cross-linking structure of gluten proteins. This, in turn, results
in improved dough strength and elasticity, ultimately elevating the flavor and texture of
baked flour-based products. Nonetheless, a troubling issue arises since potassium bromate
leaves behind a residual amount in the finished baked products, presenting a carcinogenic
risk even after the baking process [9]. Another frequently utilized chemical additive in flour
is benzoyl peroxide, which acts as a bleaching agent [10]. Its bleaching process involves
the oxidation and breakdown of unsaturated fat-soluble pigments in the flour, resulting
in a loss of color [11]. Extended ingestion of benzoyl peroxide can lead to its buildup
in the human body, potentially causing toxic effects and pathological changes in organs,
such as the liver and kidneys, due to an excessive burden [12]. Hence, the generation of
innovative enzyme-based flour quality enhancers to replace conventional additives like
potassium bromate and benzoyl peroxide holds substantial importance in the processing of
flour-based products.

Laccase (EC 1.10.3.2), belonging to the multicopper oxidase family, is characterized
by including four copper ions within its structure [13]. This enzyme exhibits remarkable
versatility in substrates, enabling the catalysis of various compounds. These include
natural macromolecules like lignin and humic acid and smaller molecules like phenolic and
aromatic amine compounds [14]. An important feature of laccase is that it generates only
water as a byproduct during oxidation [15]. Laccase plays a key role in the food industry
by catalyzing the oxidative cross-linking of amino acids within peptides and proteins.
This process results in the generation of a complex dough structure with improved gluten
strength [16]. Fungal laccases have shown a higher catalytic efficiency in oxidizing patatin-
enriched potato protein than potato protease inhibitors, even though the latter formed
more efficient oxidative cross-linked products [17]. The cross-linking of potato proteins
was achieved using either laccase alone or a laccase–ferulic acid system. In this context,
ferulic acid enhanced the extent of cross-linking and the antioxidant activity in modified
proteins [17]. Furthermore, as an oxidative-reductive enzyme, laccase is highly effective in
catalyzing mycotoxin decomposition in food and animal feed, significantly reducing the
safety risks associated with mycotoxin contamination [18]. Consequently, laccase can be
regarded as an ideal flour enhancer for altering dough and flour-based products’ quality
and sensory attributes.

In this study, “Yangmai” wheat flour was chosen as the primary raw material. The
study aimed to assess how varying dosages of laccase from the B. vallismortis strain in-
fluenced dough formation and its properties, including tensile strength and extensibility.
Additionally, the impact of rBVL-MRL522 on the elasticity, viscosity, and microstructure
of the dough was examined. To investigate the effects of rBVL-MRL522 on flour-based
products, noodles were taken as an example, and changes in whiteness, hardness, adhe-
siveness, chewiness, and elasticity were studied. Finally, a comparison was made between
the microstructure of uncooked and cooked noodles after adding different laccase dosages.
This study serves as a guide for applying laccase as a flour enhancer in the food industry.

2. Materials and Methods
2.1. Materials and Chemicals

The wheat used in this study, specifically the “Yangmai” variety, was procured from
Jiangsu Jintudi Seed Co., Ltd. (Nanjing, China) and stored at room temperature. The
Bacillus vallismortis fmb-103 strain, which served as a source of the wild-type laccase
gene, provided the genetic information necessary for laccase production. The genetic
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material was cloned into the Escherichia coli DH5α host for gene vector construction,
and a subcloning expression host, Escherichia coli BL21 (DE3) pLysS, was employed for
the expression of heterologous proteins. These strains used in this study were supplied
by the Institute of Food Biotechnology at Nanjing Agricultural University. The cloning
vector, pMD19-T, was obtained from TaKaRa Corporation’s subsidiary in Japan. The
Escherichia coli expression vector, pET28a, was obtained from Novagen, a German-based
company. Analytical grade potassium bromate and acetone were acquired from Shanghai
Lingfeng Chemical Reagent Co., Ltd. (Shanghai, China). Isoamyl acetate (analytical grade),
hydrochloric acid (analytical grade), and glutaraldehyde (analytical grade) were obtained
from Nanjing Chemical Reagent Co., Ltd. (Nanjing, China). Analytical grade 2% osmium
tetroxide was received from Shanghai Tungya Chemical Technology Development Co., Ltd.
(Shanghai, China).

2.2. Preparation of rBVL-MRL522

The laccase gene was derived from B. vallismortis fmb-103, a gene previously cloned,
identified, and stored in the laboratory. To obtain the laccase gene, it was amplified using
the primers lac-F (forward): ATGACACTTGAAAAATTTGTGGATGC and lac-R (reverse):
TTATTTATGGGGATCAGTTATATCCATCGGTC. The PCR process consisted of an initial
denaturation step at 94 ◦C for 5 min, followed by 30 cycles of denaturation at 94 ◦C for
50 s, annealing at 55 ◦C for 1 min, extension at 72 ◦C for 30 s, and a final extension step at
72 ◦C for 10 min. The PCR amplification products were examined using gel electrophoresis,
purified, and ligated into the pMD19-T vector, and their sequences were validated through
sequencing conducted by Nanjing GenScript Corporation (Nanjing, China).

The mutagenic laccase was generated by incorporating 0.05 U/µL of Taq DNA poly-
merase, 1 mM of Mg2+, 0.15 mM of dNTPs, and 0.1 mM of Mn2+. Following the DNA
shuffling rearrangement, a laccase variant named MRL522 was produced, demonstrating
an enzymatic activity of 8521 U/mg. The mutation sites in this variant were identified as
T415G/R416G/T418N.

2.3. Preparation of Dough

The raw dough was prepared based on the Ji et al. method and procedure [19],
in which a 4-α-glucan branching enzyme was added to prepare the dough. Here, the
procedure is the same as their report, and the enzyme used is different. Wheat flour and
water were mixed at a ratio of 5:3 (g:mL) and stirred for 30 min. Then, the mixture was
rested in a dough maker (AB-P10C; ACA, Zhuhai, China) for 30 min at 30 ◦C. In wheat
flour, 50 µg/g of potassium bromate or varying concentrations of rBVL-MRL522 (0.5, 1, or
2 U/g) were added to create the dough, and the native wheat flour, without any additives,
served as the control group. The properties of the wheat flour were analyzed using a
farinograph (Model:E-1; Brabender GmbH & Co. KG, Duisburg, Germany) with a 300 g
dough mixing bowl, and the torque was set at 9.8 ± 0.2 mN·m/FU. The fast and slow
mixing blade speeds were set at 63 ± 2 r/min and 31 ± 1 r/min, respectively.

2.4. Dynamic Rheological Properties of Dough

Dynamic rheological tests of the dough were carried out using a dynamic rheometer
(MCR 302, Anton Paar, Graz, Austria) following the method of Song [20] and Tang [21]. A
mold with a 4 cm diameter was employed, and the oscillation stress intensity was set at 30%.
The scanning frequency ranged from 0.01 to 20 Hz, and the normal force range was between
0.1 and 10.0 N in order to obtain the linear viscoelasticity zone. These measurements were
conducted at 25 ◦C. The water absorption of the wheat flour was determined using the
method described by Okuda et al. [22] based on the farinograph curve, and an appropriate
amount of water was added to achieve a dough consistency of (500 ± 20) BU at 25 ◦C. The
dough was then allowed to rest and ferment for 1 h under the same temperature conditions.
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2.5. Microstructure of Dough

To observe the dough’s microstructure, we followed a method described by Guo et al.,
with the same procedure and different samples and instruments [23]. After adding 50 µg/g
of potassium bromate or different concentrations of rBVL-MRL522 (0.5, 1, or 2 U/g), the
wheat flour was thoroughly mixed using a farinograph equipped with a 300 g dough
mixing bowl. Small dough samples, approximately 3–5 mm3, were then extracted and
taken for testing. These dough samples were placed in a 2.5% glutaraldehyde solution,
followed by three washes with a 0.1 M phosphate buffer. After fixation with 1% osmium
tetroxide, the samples were subjected to a gradient dehydration process using ethanol,
starting from 30% and increasing to 90%. Subsequently, ion sputter-coating was applied,
and the samples were examined using a scanning electron microscope (SEM, Hitachi S-4800;
Hitachi, Ltd., Tokyo, Japan).

2.6. Wet Gluten Content

Precisely 20 g of wheat flour was measured and mixed with 50 µg/g of KBrO3, various
concentrations of rBVL-MRL522 (0.5, 1, or 2 U/g), and water. These mixtures were allowed
to ferment at 25 ◦C for 10 min as well as 60 min. Following fermentation, the doughs were
carefully rinsed with deionized water, with kneading and rinsing repeated until the iodine
solution in the washing water no longer exhibited color (indicating the complete removal
of starch). Subsequently, the wet gluten content was determined by weighing the washed
doughs [24].

2.7. Amino Acid Composition

The analysis of the free amino acids in the dough was conducted using a Shimadzu
LC-2010A system (Shimadzu, Tokyo, Japan), based on Ijarotimi’s method with the same
procedure and different instruments [25]. In summary, the washed doughs were frozen
for 48 h to concentrate the protein content and then hydrolyzed with HCl at 110 ◦C for
24 h to release the free amino acids. The analytical column used was an Agilent 2622PH
(4.6 × 60 mm I.D.). The flow rate was set at 0.40 mL/min, the column temperature was
maintained at 57 ◦C, the reaction temperature was 135 ◦C, the detection wavelength was
570 nm, and the injection volume was 20 µL. HPLC-grade free amino acid standards (Asp,
Ser, Glu, Gly, Ala, Cys, Val, Met, Ile, Leu, Tyr, Phe, Lys, NH3, His, Arg) with a purity greater
than 99.9% were chosen as the standards for creating the calibration curves. The results
have been reported in mg of each standard per liter.

2.8. Cooking of Noodles

The cooking of noodles followed the method described by Sui et al. [26]. A total of
200 g of wheat flour was measured, and rBVL-MRL522 was added at concentrations of
0.5 U/g, 1 U/g, and 2 U/g, respectively. Then, 70 mL of water at 30 ◦C was added, and the
mixture was kneaded with a mixer for 5 min. Following this, the dough was allowed to
ferment for 30 min. Afterwards, the dough was pressed six times to form noodles with a
width of 3 mm and a length of 22 cm. Subsequently, 40 wet noodle samples were removed
and placed in 600 mL of boiling water. Once cooked, the noodles were taken out of the
boiling water and submerged in cold water for 10 s. Then, they were set on a sieve for 15 s
before undergoing a comprehensive assessment.

2.9. Physicochemical Properties of Noodles
2.9.1. Determination of Cooking Time

The noodle samples were boiled in boiling water for 4 min. At 30 s intervals, samples
were withdrawn from the boiling water and promptly submerged in ice-cold water for 5 s.
Subsequently, the noodles were flattened to determine where the white, hard line at the
center of the noodle disappeared. This disappearance time was recorded as the optimal
cooking time for the noodles [27].
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2.9.2. Determination of Noodle Water-Holding Capacity and Cooking Loss

In order to assess the water retention capacity of the cooked noodles, approximately
10 g of the cooked noodles were first weighed. They were then immersed in ice water at
0 ◦C for 5 s, after which they were removed and reweighed using a precision balance (in
g) [28]. The water-holding capacity of the noodles was determined using Equation (1).

Noodle water holding capacity (%) =
weight of cooked noodles (g)−weight of raw noodles (g)

weight of raw noodles (g)
(1)

A total of 100 mL of noodle soup was heated until it reached boiling point and was
allowed to evaporate, resulting in a reduced volume of liquid. Subsequently, the remaining
liquid was dried in a temperature-controlled oven at 105 ◦C until a constant weight was
achieved. The cooking loss rate was determined using the following Equation (2).

Loss of cooking(%) =
5M

G× (1−W)
× 100% (2)

where M represents the weight of dried, solid material after drying, measured in grams
(g); W denotes the moisture content of the noodles, expressed as a percentage (%); and G
represents the weight of the noodles before the boiling process, measured in grams (g).

2.9.3. Determination of Noodle Whiteness

The color distinction between the uncooked and cooked noodles was determined using
a method based on the procedure of Zhu et al., with minor modifications [29]. Noodles were
prepared following various formulations, including a blank control, 30 µg/g of potassium
bromate, 0.5 U/g of rBVL-MRL522, 1 U/g of rBVL-MRL522, and 2 U/g of rBVL-MRL522.
Subsequently, the L* (representing black to white), a* (indicating green to red), and b*
(representing blue to yellow) values were measured using a colorimeter (CR-400, Konica
Minolta, Tokyo, Japan).

2.9.4. Texture of Noodles

The A/LKB model texture analyzer (Stable Micro System Ltd., Godalming, England)
was utilized with specific settings, including a blade descent rate of 0.8 mm/s and a com-
pression distance of 0.7 mm, to examine various textural characteristics of the noodles.
These attributes encompass resilience, hardness, adhesiveness, chewiness, cohesiveness,
and elasticity. For shear testing, the blade descent rate of the texture analyzer was ad-
justed to 0.17 mm/s, corresponding to 90% of the noodle thickness. During the analysis
of the noodles, parameters such as maximum shear force, shear area, and shear time
were measured.

2.9.5. Microstructure of Raw and Cooked Noodles

Individual samples of raw and cooked noodles measuring around 3–5 mm3 in size
were chosen for examination and imaging through a scanning electron microscope (SEM).

2.10. Statistical Analysis

The assessment of pertinent parameters of flour, gluten content, and amino acid
content was carried out following a randomized design, including triplicate experiments
and triplicate measurements, to calculate the mean value for each data point. A one-way
analysis of variance (ANOVA) was conducted to assess the significance, and post hoc
comparisons were performed using the Tukey multiple comparison test within SPSS (IBM,
version 17.0). A significance level of p < 0.05 was used as the threshold for determining the
statistical significance of the observed differences.
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3. Results and Discussion
3.1. Effect of rBVL-MRL522 on Dough Farinograph Quality

The influence of KBrO3 and rBVL-MRL522 on the flour’s quality characteristics was
evaluated using a farinograph, and the outcomes are displayed in Table 1. Compared to
the control group, where KBrO3 was used, a 33% extension in dough development time
and a 111% increase in dough stability time were observed. Additionally, the weakening
effect on the flour decreased by 27.2%. Various concentrations of rBVL-MRL522 resulted
in improvements in the dough stability time and a reduction in the weakening effect on
the flour, thereby enhancing the quality of the flour. Both low and high concentrations of
rBVL-MRL522 exhibited no impact on the dough development time. However, adding
1.0 U/g BVL-MRL522 notably enhanced the flour quality, resulting in increased water
absorption, dough development time, stability time, and flour quality index compared
to the control group using KBrO3. These results suggest that the enzyme rBVL-MRL522
offers stronger improvements in dough quality than KBrO3, demonstrating its potential
as a promising dough strengthener. This implies that an appropriate laccase dosage can
effectively enhance gluten strength in the dough. Nevertheless, excessive quantities of
rBVL-MRL522 may decrease the flour’s powder quality index, which can significantly
impact the overall processing quality. Typically, the dough-stretching ratio or tensile
strength is a comprehensive indicator of dough processing performance [30]. This ratio
encompasses two critical measures, dough extensibility and resistance to extension, and
is utilized to evaluate flour processing quality [31]. A small ratio implies low resistance
and high extensibility, making such dough susceptible to rapid softening and dispersion
during fermentation and processing. Conversely, a large ratio indicates high resistance and
strong elasticity but limited extensibility, potentially resulting in a firmer overall texture
and reduced softness in the final baked products.

Table 1. Effects of rBVL-MRL522 on dough farinograph quality.

Group Water Holding
Capacity (%)

Formation Time
(min)

Duration of
Stability (min)

Degree of
Attenuation

(FU)

Flour quality
Index

Blank 60.7 ± 0.2 b 0.9 ± 0.1 b 1.8 ± 0.2 d 125.4 ± 5.0 a 18.3 ± 2.1 b

50 µg/g KBrO3 60.9 ± 0.1 b 1.2 ± 0.1 a 3.8 ± 0.3 a 91.0 ± 3.1 c 30.5 ± 3.2 a

0.5 U/g BVL-MRL522 60.8 ± 0.2 b 0.9 ± 0.1 b 2.7 ± 0.2 b 103.2 ± 7.3 b 27.2 ± 3.2 a

1.0 U/g BVL-MRL522 61.2 ± 0.2 a 1.7 ± 0.2 a 2.4 ± 0.2 c 88.4 ± 4.4 c 31.4 ± 2.2 a

2.0 U/g BVL-MRL522 60.9 ± 0.2 b 0.9 ± 0.1 b 2.2 ± 0.1 c 108.1 ± 2.2 b 27.2 ± 4.3 a

Note: Different lowercase letters indicate statistical significance (p < 0.05) within each column.

3.2. Effect of r-BVL on Dough Rheological Properties

As illustrated in Figure 1, when 50 µg/g of KBrO3 or rBVL-MRL522 was introduced,
the dough’s elastic and viscous moduli experienced corresponding increases. This observa-
tion suggests that rBVL-MRL522, acting as a dough strengthener, has a similar effect to the
positive control, KBrO3. As the dosage of rBVL-MRL522 increased, the dough’s elastic and
viscous moduli gradually increased. When the amount of rBVL-MRL522 added reached
2.0 U/g, the elastic modulus exhibited a 62.75% increase compared to the blank control,
indicating that rBVL-MRL522 improved the dough’s ability to recover after deformation.
The 59.35% increase in the viscous modulus suggests that rBVL-MRL522 enhanced the
dough’s resistance to flow. The results for the loss tangent value (tan(delta)) indicated that
as the addition of rBVL-MRL522 reached 0.5 and 1.0 U/g, tan(delta) gradually increased,
signifying an increase in the proportion of polymers within the dough due to rBVL-MRL522.
However, at a concentration of 2.0 U/g of rBVL-MRL522, tan(delta) first increased and
then decreased, suggesting that excessive rBVL-MRL522 could affect the dough’s flexibility.
Therefore, a careful addition of rBVL-MRL522 enhances the integrity of the dough’s gluten
network, augments its flexibility, and significantly improves its resilience. These findings
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are consistent with the earlier flour quality tests, confirming that an optimal amount of
rBVL-MRL522 enhances the dough’s strength. These results are consistent with the report
of Manhivi et al. [32]. They observed the laccase-treated dough’s storage modulus (G’)
and loss modulus (G′′) significantly increased. The improvement in dough rheological
properties may be attributed to the modification of proteins in the dough by disulphide
bond formation, oxidative gelation of mucilage, as well as hetero-cross-linking between
proteins and mucilage, which may strengthen the dough.
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3.3. Effect of r-BVL on the Amino Acid Composition of Dough
3.3.1. Effect of rBVL-MRL522 on Wet Gluten Content

The influence of rBVL-MRL522 on the moist gluten content in the dough is presented
in Table 2. The results from the control group show that the fermentation time of the dough
(10 min and 60 min) has a negligible impact on the moist gluten content. In contrast, KBrO3,
acting as a slow oxidant, exhibits an insignificant strengthening effect on dough quality
at a concentration of 50 µg/g when the dough mixing time is relatively short. In this
case, the quality of the extracted moist gluten does not significantly differ from that of the
control group. However, with the addition of rBVL-MRL522 at concentrations ranging from
0.5 to 2.0 U/g, the extracted moist gluten’s quality initially increases but then decreases.
At a dosage of 1.0 U/g of the enzyme, the extracted gluten mass was 6.78 g, marking a
13.6% enhancement compared to the control group and a 12.8% improvement compared to
the KBrO3 group. Furthermore, doughs to which rBVL-MRL522 was added after 60 min
of incubation led to a higher extracted moist gluten than those incubated for 10 min. This
implies that rBVL-MRL522 acts as a fast-acting oxidant, exerting oxidative effects on thiol
groups during the dough mixing stage. The oxidative effect becomes more pronounced
as the incubation time increases, resulting in more extracted moist gluten. Nonetheless,
an excessive addition of rBVL-MRL522 can reduce the extractable moist gluten content in
high-dough formulations. In summary, the findings suggest that adding an appropriate
amount of rBVL-MRL522 can boost the extractable moist gluten content in the dough.
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Table 2. Effect of rBVL-MRL522 on the wet gluten extraction ratio.

Group
10 min 60 min

Mass of Wet Gluten (g) Extraction Yield (%) Mass of Wet Gluten (g) Extraction Yield (%)

Blank 5.9 ± 0.2 aA 29.6 ± 0.4 b 6.0 ± 0.1 aA 29.8 ± 0.2 b

KBrO3 50 µg/g 6.0 ± 0.2 aA 29.8 ± 0.3 b 6.0 ± 0.2 aA 30.0 ± 0.3 b

rBVL-MRL522 0.5 U/g 6.1 ± 0.2 abA 30.7 ± 0.5 a 6.6 ± 0.1 bB 32.5 ± 0.4 a

rBVL-MRL522 1.0 U/g 6.2 ± 0.1 bA 31.2 ± 0.7 a 6.8 ± 0.1 cB 32.8 ± 0.2 a

rBVL-MRL522 2.0 U/g 6.0 ± 0.1 aA 30.2 ± 0.6 a 6.5 ± 0.3 bcB 31.9 ± 0.3 a

Note: Different lowercase letters indicate statistical significance (p < 0.05) within each column. Different uppercase
letters indicate statistical significance (p < 0.05) within each row.

3.3.2. Changes in Amino Acid Composition among Different Gluten Samples

The level of polar amino acids and disulfide bonds in wheat gluten proteins is a crucial
indicator of dough strength [33]. Analyzing alterations in the amino acid composition of
gluten samples following the introduction of rBVL-MRL522 necessitates evaluating dough
strength shifts.

As shown in Table 3, the hydrolyzed amino acid content in gluten initially increased
and then decreased within the range of 0.5–2.0 U/g with the addition of rBVL-MRL522.
However, all values were significantly higher than those in the control group. Particularly,
when 1.0 U/g rBVL-MRL522 was introduced, the total content of the hydrolyzed amino
acids increased by 12.80% compared to the control group. The levels of polar amino
acids, including histidine, arginine, lysine, aspartic acid, and glutamic acid, experienced
an increase. Glutamic acid (Glu) demonstrated the most noteworthy change, exhibiting a
17.50% increase compared to the control group. This implies that rBVL-MRL522 augmented
the protein content within the gluten. However, there was a 31.30% decrease in the content
of cysteine (Cys), indicating a reduction in the number of cysteine residues in the gluten.
This suggests that rBVL-MRL522 has a robust strengthening effect. On the other hand,
rBVL-MRL522 increased the content of the essential aminos crucial for human health, such
as threonine (Thr), valine (Val), isoleucine (Ile), and phenylalanine (Phe). These amino
acids can serve as additives to enhance the nutritional value of wheat-based products.

3.4. Effect of r-BVL on Dough Microstructure

As depicted in Figure 2, the outcomes of the SEM analysis of dough samples from
various experimental groups showcased evident microstructural differences. Upon mag-
nification to 1000 times, the dough from the blank control group displayed an absence of
clearly defined gluten networks. Starch granules were readily visible, and the structure
appeared loose and poorly cohesive with the granular arrangement. With the introduction
of KBrO3, an improved gluten cross-linking effect was evident, leading to a greater encap-
sulation of starch granules by gluten proteins. Following this, with the incorporation of
rBVL-MRL522, the network structure of gluten in the dough became progressively stronger
as the enzyme dosage increased, leading to a higher encapsulation of starch granules.
This led to intricate, interlinked gluten structures, forming a complex three-dimensional
spatial network. However, when 2.0 U/g of rBVL-MRL522 was added, the dough’s surface
appeared smoother and more cohesive than the other groups. This suggests that excess
rBVL-MRL522 may disrupt the gluten network and increase the dough’s extensibility. The
production of phenoxyl radicals, facilitated by the oxidation of ferulic acid within the flour
by rBVL-MRL522, fosters cross-linking among feruloyl arabinoxylans. This, in turn, causes
the dough’s ability to resist stretching. Additionally, laccase catalyzes the formation of
disulfide bonds by oxidizing thiol groups in gluten proteins. This process contributes to
the overall enhancement of mechanical strength and stability of the dough [34].



Foods 2023, 12, 4146 9 of 15

Table 3. Effect of rBVL-MRL522 and KBrO3 on the amino acid composition (mg/g dry gluten)
in gluten.

Types of Amino Acids Control KBrO3
rBVL-MRL522

0.5 U/g 1.0 U/g 2.0 U/g

Asp 26.67 ± 0.22 d 30.92 ± 0.24 a 30.99 ± 0.26 a 30.24 ± 0.18 b 28.48 ± 0.17 c

Thr * 22.03 ± 0.32 c 25.53 ± 0.37 a 25.64 ± 0.43 a 25.20 ± 0.27 a 23.64 ± 0.21 b

Ser 37.23 ± 0.27 c 47.99 ± 0.66 a 48.32 ± 0.38 a 47.90 ± 0.39 a 44.41 ± 0.41 b

Glu 289.09 ± 1.44 c 336.32 ± 2.02 a 338.57 ± 1.13 a 339.67 ± 2.05 a 313.55 ± 1.42 b

Gly 27.07 ± 0.52 d 30.15 ± 0.22 b 30.39 ± 0.31 ab 30.79 ± 0.21 a 28.31 ± 0.27 c

Ala 22.46 ± 0.37 c 25.40 ± 0.17 a 25.61 ± 0.32 a 25.58 ± 0.26 a 23.80 ± 0.31 b

Cys 29.20 ± 0.41 a 20.65 ± 0.24 c 21.10 ± 0.42 bc 21.48 ± 0.20 b 20.07 ± 0.26 c

Val * 35.34 ± 0.35 c 38.35 ± 0.32 a 38.53 ± 0.19 a 38.48 ± 0.18 a 36.08 ± 0.22 b

Met * 14.16 ± 0.33 b 15.81 ± 0.41 a 15.95 ± 0.31 a 15.54 ± 0.37 a 14.76 ± 0.25 b

Ile * 31.34 ± 0.25 c 34.05 ± 0.22 a 34.12 ± 0.20 a 34.18 ± 0.26 a 32.12 ± 0.31 b

Leu * 59.39 ± 0.21 d 65.66 ± 0.19 b 66.13 ± 0.37 a 66.27 ± 0.42 a 61.68 ± 0.37 c

Tyr 26.36 ± 0.19 d 29.30 ± 0.20 b 30.16 ± 0.28 a 30.24 ± 0.26 a 27.05 ± 0.28 c

Phe * 44.31 ± 0.27 b 47.31 ± 0.31 a 47.76 ± 0.27 a 47.99 ± 0.31 a 44.45 ± 0.33 b

Lys * 16.87 ± 0.33 b 17.68 ± 0.11 a 17.80 ± 0.21 a 17.91 ± 0.19 a 16.81 ± 0.24 b

His 17.63 ± 0.35 b 19.12 ± 0.19 a 19.19 ± 0.10 a 19.32 ± 0.26 a 17.97 ± 0.16 b

Arg 31.50 ± 0.31 c 34.37 ± 0.37 a 34.70 ± 0.17 a 34.35 ± 0.38 a 32.27 ± 0.30 b

Pro 93.59 ± 0.42 c 104.03 ± 0.63 a 104.84 ± 0.52 a 105.23 ± 0.57 a 97.41 ± 0.39 b

Total 824.23 ± 1.45 d 922.63 ± 2.15 b 929.78 ± 1.09 a 930.37 ± 1.92 a 862.86 ± 1.33 c

Note: * indicates essential amino acids, and n = 3. Note: Different lowercase letters indicate statistical significance
(p < 0.05) within each column.
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Figure 2. Comparison of microscopic analysis of doughs enhanced with different improvers. (A) con-
trol dough; (B) dough with 50 µg/g KBrO3; (C) dough with 0.5 U/g rBVL-MRL522 included;
(D) dough with 1.0 U/g rBVL-MRL522 added; (E) dough with 2.0 U/g rBVL-MRL522 added.
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3.5. Effect of r-BVL on Cooking Characteristics of Noodles

To improve the gluten strength of noodles, in addition to using high-gluten flour, other
agents have been suggested [35]. For example, introducing glutamine transaminase into
noodles can substantially increase gluten strength, resulting in enhanced chewiness and
cookability [36]. Furthermore, incorporating alkali water into flour can significantly bolster
gluten formation [37]. In the manufacturing of hand-pulled noodles, alkaline water is an
essential component. The heightened cross-linking of gluten proteins promotes the creation
of a network structure in noodles, which, in turn, minimizes the release of substances into
the cooking liquid when boiling. Consequently, this leads to a decrease in noodle loss,
prevents clumping, and enhances the texture of the noodles. Nevertheless, it is worth
noting that relatively limited studies are available on enhancing noodle quality through
biocatalyst utilization. Throughout the cooking process, starch granules in noodles undergo
gelatinization, absorbing water, which can result in the partial dissolution or suspension of
starch in the cooking liquid. As shown in Table 4, the incorporation of rBVL-MRL522 led to
a 3.9% increase in the rate of water absorption by the noodles, along with a 4.9% decrease
in the loss rate. Moreover, there is a minor extension in the optimal cooking time.

Table 4. Effect of adding rBVL-MRL522 on the cooking characteristics of noodles.

Group Moisture Content (%) Water Holding
Capacity (%) Loss Rate (%) Optimum Cooking

Time (%)

Blank 31.50 ± 0.41 a 111.60 ± 2.1 a 25.00 ± 2.11 b 5.20 ± 0.35 ac

KBrO3 50 µg/g 31.50 ± 0.31 a 114.50 ± 2.1 ab 21.90 ± 1.90 ab 5.80 ± 0.43 ab

0.5 U/g rBVL-MRL522 32.00 ± 0.36 a 115.60 ± 2.4 b 22.90 ± 2.45 ab 5.70 ± 0.67 ab

1.0 U/g rBVL-MRL522 33.10 ± 0.40 b 120.50 ± 1.9 c 20.10 ± 1.89 a 6.00 ± 0.36 b

2.0 U/g rBVL-MRL522 32.00 ± 0.29 a 115.70 ± 1.8 b 32.70 ± 2.13 c 4.90 ± 0.29 c

Note: Different lowercase letters indicate statistical significance (p < 0.05) within each column.

This phenomenon can be attributed to the catalytic effect of rBVL-MRL522 in gener-
ating hydrogen peroxides from polyunsaturated fatty acids, promoting the formation of
disulfide bonds within gluten proteins. These disulfide bonds intensify the cross-linking
between gluten protein molecules, improving gluten strength. Establishing and reinforc-
ing the gluten protein network structure contributes to increased water absorption by
the dough, reduced starch dissolution, and a decreased loss rate. However, an excessive
amount of rBVL-MRL522 can lead to an overly strong gluten strength, reduced water
absorbency, an extended cooking time, and an elevated loss rate for the noodles.

The whiteness of the noodles in the different treatment groups was assessed using a
colorimeter, and the effect of different levels of rBVL-MRL522 addition on noodle whiteness
is presented in Figure 3. The results reveal that, except for the 2.0 U/g addition, the impact
of the rBVL-MRL522 addition on the whiteness of the noodles is not significant. Excessive
addition of rBVL-MRL522, such as at the 2.0 U/g level, causes the noodles to exhibit a
yellowish hue, diminishing their whiteness. This color change may be associated with the
inherent color characteristics of the enzyme preparation used in the laboratory. Figure 4
displays the different noodle samples obtained from the experiment, aligning with the
color difference findings illustrated in Figure 3.

3.6. Effect of r-BVL on the Texture of Raw and Cooked Noodles

Hardness, adhesiveness, and chewiness were chosen as criteria to evaluate the firm-
ness, hardness, and elasticity of the noodles, along with various other attributes (Table 5).
The findings reveal that the inclusion of 1.0 U/g of rBVL-MRL522 led to notable improve-
ments in the noodles’ hardness, adhesiveness, and chewiness. Specifically, compared to the
control group, the addition of 1.0 U/g of rBVL-MRL522 resulted in an increase of 8.5% in
the raw noodle’s hardness, an increase of 8.05% in adhesiveness, and an increase of 12.49%
in chewiness. The enhancement in the quality of cooked noodles resulting from rBVL-
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MRL522 was notably superior to that observed in raw noodles. Following the addition of
1.0 U/g of rBVL-MRL522, the cooked noodles exhibited a substantial 22.87% increase in
hardness compared to the control group, along with a 13.65% boost in adhesiveness and a
17.08% increase in chewiness. These results imply that rBVL-MRL522 can greatly improve
the firmness and elasticity of noodles, particularly when they are cooked. This result is
consistent with the report of Gui et al. [38], where the addition of laccase contributed to a
higher hardness, cohesiveness, and chewiness of the protein gel.
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The maximum shear force is intricately linked to the texture of noodles. With the
incorporation of rBVL-MRL522, there was an evident increase in the shear force of the
noodles. Specifically, when the addition of rBVL-MRL522 was 1.0 U/g, the maximum shear
force of raw noodles led to a substantial increase of 34.60% in comparison to the control
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group, signifying that rBVL-MRL522 enhances the cookability of noodles, rendering them
chewier. However, when the addition of rBVL-MRL522 was increased to 2.0 U/g, the
strong gluten effect disappeared, aligning with the outcomes of the previous experiment.
This underscores the importance of using the right quantity of rBVL-MRL522 to enhance
noodles’ cookability. Furthermore, KBrO3, a potent gluten enhancer, notably amplified the
maximum shear force of cooked noodles. Specifically, when the addition of rBVL-MRL522
reached 1.0 U/g, the maximum shear force of the noodles led to a significant increase
of 31.80% compared to the control group. It exceeded that of the KBrO3 control group.
This demonstrates that an appropriate quantity of rBVL-MRL522 can enhance the noodles’
ability to resist deformation.

Table 5. Effect of rBVL-MRL522 on noodle texture parameters.

Group Hardness Gumminess Chewiness Resilience Cohesiveness Springiness

Raw
noodle

Sample 1 93.76 ± 0.21 c 25.85 ± 0.35 b 13.85 ± 0.29 b 0.21 ± 0.09 b 0.25 ± 0.07 b 0.54 ± 0.04 c

Sample 2 95.99 ± 0.23 b 24.83 ± 0.31 c 13.91 ± 0.41 b 0.21 ± 0.06 b 0.26 ± 0.06 b 0.56 ± 0.03 c

Sample 3 95.54 ± 0.18 b 24.52 ± 0.27 c 14.14 ± 0.22 b 0.22 ± 0.05 b 0.26 ± 0.08 b 0.55 ± 0.05 c

Sample 4 101.73 ± 0.27 a 27.93 ± 0.33 a 15.58 ± 0.46 a 0.23 ± 0.07 b 0.28 ± 0.06 b 0.57 ± 0.03 c

Sample 5 93.46 ± 0.22 c 25.55 ± 0.24 b 13.96 ± 0.39 b 0.22 ± 0.08 b 0.25 ± 0.09 b 0.53 ± 0.02 c

Cooked
noodle

Sample 1 10.80 ± 0.12 g 8.06 ± 0.21 f 9.66 ± 0.29 e 0.49 ± 0.07 a 0.70 ± 0.05 a 1.20 ± 0.03 ab

Sample 2 11.79 ± 0.17 f 8.50 ± 0.37 e 10.45 ± 0.21 d 0.49 ± 0.06 a 0.72 ± 0.04 a 1.23 ± 0.01 ab

Sample 3 12.73 ± 0.19 e 9.04 ± 0.28 d 11.29 ± 0.36 c 0.50 ± 0.05 a 0.71 ± 0.07 a 1.24 ± 0.04 ab

Sample 4 13.27 ± 0.16 d 9.16 ± 0.25 d 11.31 ± 0.29 c 0.52 ± 0.09 a 0.75 ± 0.04 a 1.25 ± 0.02 a

Sample 5 11.84 ± 0.13 f 8.52 ± 0.21 e 10.16 ± 0.26 d 0.48 ± 0.11 a 0.71 ± 0.08 a 1.19 ± 0.03 b

Note: Different lowercase letters indicate statistical significance (p < 0.05) within each column. Samples 1–5
represent blank, 50 µg/g KBrO3, 0.5 U/g rBVL-MRL522, 1.0 U/g rBVL-MRL522, and 2.0 U/g rBVL-MRL522,
respectively.

3.7. Effect of r-BVL on the Microstructure of Raw and Cooked Noodles

The influence of rBVL-MRL522 on the microstructure of raw and cooked noodles was
examined using SEM, and the findings are illustrated in Figure 5. Incorporating rBVL-
MRL522 or KBrO3 intensified the gluten cross-linking effect within the noodles, resulting
in a more pronounced fibrous network structure of gluten. Furthermore, it led to a more
uniform distribution of starch granules, with gluten tightly enveloping them.

Moreover, it is important to note that starch has the potential to undergo gelatinization
when subjected to boiling, leading to a more prominent gluten structure in cooked noodles
as opposed to their raw counterparts [39]. As proteins experience denaturation due to heat,
a stable network structure is established, and the starch granules are completely hydrolyzed
within the cross-section of the noodles, forming cavities [40]. In the case of cooked noodles
supplemented with rBVL-MRL522, these cavities within the starch granules were noticeably
smaller and displayed a uniform distribution. The internal structure displayed denser and
more porous features, as illustrated in Figure 5. This suggests that rBVL-MRL522 enhances
the gluten’s tensile strength within the noodles, consequently enhancing the overall quality
of the noodles. Based on this, adding rBVL-MRL522 contributes to improving the noodles’
firmness, elasticity, and overall mouthfeel. Furthermore, the internal gluten structure of
the noodles forms a more intricate and complex fibrous network, ultimately elevating the
noodles’ overall quality of the noodles.
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4. Conclusions

The impact of incorporating rBVL-MRL522 on the quality of both dough and noodles
was examined. In investigating its strengthening effect on the gluten networks in the
dough, rBVL-MRL522 was observed to significantly enhance the formation of wheat flour
dough, resulting in an extended stability period for the dough. When rBVL-MRL522
was added at a rate of 2 U/g, it increased both the elastic modulus (G′) and viscous
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modulus (G′′) of the dough by 62.75% and 59.35%, respectively, in comparison to the
negative control group. Additionally, the introduction of rBVL-MRL522 achieved a higher
interconnection of gluten networks, translating to increased resistance to dough stretching.
The compound also demonstrated enhanced capabilities in encapsulation, resulting in
a more even dispersion of starch particles within the dough. It is worth noting that the
inclusion of rBVL-MRL522 led to a decrease in cysteine (Cys) content in the dough, coupled
with elevated levels of glutamic acid (Glu) and aspartic acid (Asp). Furthermore, an increase
in the contents of threonine (Thr), valine (Val), isoleucine (Ile), and phenylalanine (Phe)
was observed. In enhancing the quality of noodle products, incorporating rBVL-MRL522
improved the hardness and whiteness of the cooked noodles. Moreover, rBVL-MRL522
was found to facilitate the interconnection of gluten networks, thereby enhancing the
firmness, adhesiveness, chewiness, and elasticity of the noodles. These findings collectively
suggest the potential of rBVL-MRL522 as a promising, safe, and residue-free bio-additive
for enhancing the quality of flour-based products.
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