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Abstract: (1) Background: Rapid and accurate determination of the content of the chemical dye
Auramine O(AO) in traditional Chinese medicines (TCMs) is critical for controlling the quality of
TCMs. (2) Methods: Firstly, various models were developed to detect AO content in Dendrobium
officinale (D. officinale). Then, the detection of AO content in Saffron and Curcuma using the D. officinale
training set as a calibration model. Finally, Saffron and Curcuma samples were added to the training set
of D. officinale to predict the AO content in Saffron and Curcuma using secondary wavelength screening.
(3) Results: The results show that the sparrow search algorithm (SSA)-backpropagation (BP) neural
network (SSA-BP) model can accurately predict AO content in D. officinale, with Rp

2 = 0.962, and
RMSEP = 0.080 mg/mL. Some Curcuma samples and Saffron samples were added to the training
set and after the secondary feature wavelength screening: The Support Vector Machines (SVM)
quantitative model predicted Rp

2 fluctuated in the range of 0.780 ± 0.035 for the content of AO
in Saffron when 579, 781, 1195, 1363, 1440, 1553 and 1657 cm−1 were selected as characteristic
wavelengths; the Partial Least Squares Regression (PLSR) model predicted Rp

2 fluctuated in the range
of 0.500± 0.035 for the content of AO in Curcuma when 579, 811, 1195, 1353, 1440, 1553 and 1635 cm−1

were selected as the characteristic wavelengths. The robustness and generalization performance of
the model were improved. (4) Conclusion: In this study, it has been discovered that the combination
of surface-enhanced Raman spectroscopy (SERS) and machine learning algorithms can effectively
and promptly detect the content of AO in various types of TCMs.

Keywords: surface-enhanced Raman spectroscopy; Chinese herbal medicine; Auramine O; dyeing
adulteration; machine learning

1. Introduction

In recent years, the market for Chinese herbal medicines has lacked standardization,
leading to occasional events of adulteration and counterfeiting within the industry of
Chinese Herbal Slices. Dyeing and adulteration are the most common phenomenon. The
main coloring agents causing concern in the marketplace are pigments, food coloring, and
inorganic dyes [1]. Auramine O (AO) is a contact carcinogen that causes conjunctivitis,
dermatitis, and irritation of the upper respiratory tract. Prolonged exposure can lead to
liver and kidney damage, as well as more severe cases of cancer and other illnesses [2].
In addition, AO should not be found in Chinese herbal medicines, proprietary Chinese
medicines, or Chinese herbal medicine tablets as it is a non-food substance, according to
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the National Drug Administration. However, some dishonest producers still abuse AO to
dye Chinese herbal medicines.

Curcuma xanthorriza Roxb (Curcuma), derived from the dried root tuber of the ginger
plant Curcuma longa L., has various medical applications, including promoting blood circu-
lation, relieving pain, antioxidant and anticancer [3–5]. Dendrobium officinale (D. officinale),
sourced from the dried stem of the orchid plant Dendrobium officinale Kimura et Migo. As
a traditional and highly valued Chinese medicinal substance, it possesses the functions
of enhancing digestive health, alleviation of alcoholic fatty liver [6], improving respira-
tory function, alleviating coughs, combating inflammation, and reducing blood glucose
levels [7]. Additionally, Saffron is known for its therapeutic properties as a traditional
Chinese herbal medicine, including the ability to enhance blood circulation, eliminate
blood clots, detoxify the body, alleviate depression, and promote relaxation of the nervous
system [8,9]. Most of the existing research on the adulteration of valuable Chinese herbal
medicines is focused on the identification of counterfeit products. Jana [10] chose ultra-high-
performance reverse-phase liquid chromatography coupled with tandem high-resolution
mass spectrometry to detect the following potential botanical adulterants used for a Saffron
substitution or dilution. Similarly, Younis [11] chose the UPLC-HR-MS/MS technique to
detect adulteration in five traded Saffron. Pejman [12] based on soft computing methods,
Vis-Nir imaging, and chemical analysis to detect and classify Saffron adulterants.

In addition to the conventional detection techniques, novel methodologies are exten-
sively utilized to identify fraudulent goods in Chinese herbal medicines. Holz [13] used
loop-mediated isothermal amplification (LAMP) and lateral-flow-assay (LFA) to detect the
Carthamus tinctorius and Curcuma longa in Saffron, which can achieve detection adulterants
in Saffron within 25 min. In 2019, Yang [14] used LAMP to identify 17 samples of D. officinale
and 32 adulterant samples from other Dendrobium species. Molecular biological methods
for the detection and identification of Saffron and its adulterants are used by Bansal [15] and
Zhao [16]. Normal light and fluorescence microscopy can be employed for identifying plant
species. Chu [17] used these techniques to distinguish D. officinale from three commonly
misidentified species. However, it is impossible to establish a high-performance liquid
chromatography (HPLC) detection method due to the lack of resources, or the varieties
with similar provenances can not be identified by microscopic observation, such as Dendro-
bium huoshanense. Hu [18] designed polymerase chain reaction-restriction fragment length
polymorphism (PCR-RFLP) primers, which provided a new idea for the rapid identifica-
tion of Dendrobium huoshanense. Also, as a part of molecular biology, Wang [19] used a
DNA barcode to accurately identify Dendrobium huoshanense and its common adulterant
Dendrobium candidum.

With the rapid development of spectral technology, new methods have been devel-
oped to identify counterfeit Chinese herbal medicines. Li [20] employed cloud-internet
portable near-infrared spectroscopy along with chemometrics to differentiate five prevalent
counterfeit products in the Saffron. Attenuated-total-reflectance Fourier-transform infrared
(ATR-FTIR) spectroscopy and chemometrics are used to detect the expired Saffron in fresh
Saffron [21]. To determine the quality of Saffron, Dai [22] developed a method which is a thin
layer chromatography technique coupled with Raman spectroscopy, which can determine
the artificial pigments (red 40 or yellow 5 at 2–10% (w/w)) and the other plant adulterants
such as Safflower and turmeric at 20–100% (w/w). The multispectral system, coupled with
Principal Component Analysis (PCA) and Bhattacharyya distance, gave an R2 detection
rate of 0.99 for tartrazine in turmeric powder [23].

Although there have been many studies on the detection of counterfeit products in
Saffron, Curcuma, and D. officinale. However, the detection and use of AO in three traditional
Chinese medicines have not been described. Aftermarket research has revealed that the
surface color of Curcuma tends to become lighter due to extended storage time or high
storage temperatures, which makes it possible for criminals to dye it illegally with the
AO [24]. Because of the high price of Saffron, illegal traders use AO to process and dye
cheap daylilies and grass seedlings to make counterfeit products [25]. The glossy surface of
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D. officinale is characteristically yellow-green. Therefore, AO was usually used to dye its
desired color [26].

At present, the detection methods of AO in food and medicine mainly include chro-
matography [2,27] and fluorescence [28–30], which have the advantages of high accuracy
and good detection sensitivity. In addition, adsorptive stripping voltammetry [31], bio-
nanosorbent [32], and terahertz spectroscopy [33,34] have also been applied for the de-
termination of AO in foods and herbs. However, these types of detection methods have
some disadvantages, such as expensive instruments, complicated sample processing, and
complicated operation, which greatly limit their wide application in field detection. So,
it is urgent to develop a rapid and simple method to detect the AO in different Chinese
herbal medicines.

Raman spectroscopy (RS) is a spectroscopic technique for characterizing molecular
structure based on the Raman effect, including molecular vibration and rotation [35]. Since
it was discovered by Indian scientist C.V. Raman in 1928, with the continuous progress and
development of computer and signal detection technology, Raman spectroscopy technology
has gradually become more intelligent, non-destructive, convenient, and fast [36]. How-
ever, the fluorescence phenomenon, background noise, background baseline, and other
signals will affect the weak Raman signal, which will reduce the signal-to-noise ratio of the
spectrum and increase the analysis error, thus limiting its development in trace detection.
Surface-enhanced Raman spectroscopy (SERS) is a technology in which the existence of
metal nanoparticles can cause a plasma effect to enhance Raman spectrum signals. This
technology was proved experimentally in 1977 [37]. C.V. Raman and K.S. Krishnan discov-
ered Raman scattering, which is characterized by a small energy difference between a part
of scattered light and incident light. With the rapid development of Raman spectroscopy
technology, SERS was discovered and widely used. SERS is more specific and sensitive
than Raman spectroscopy and can enhance the Raman signal of the molecule to be detected
by 1013~1015 times. Therefore, SERS technology has a long-term application prospect in
the detection of adulteration of Chinese herbal medicines [35], pesticide residues [36], and
food safety testing [37].

SERS has great potential and advantages in the rapid detection of AO due to its good
sensitivity, high accuracy, and simple and rapid operation. Shao [38] established a rapid
qualitative and quantitative method for AO in beverages based on SERS. The minimum
detection limits of AO pigment in carbonated and functional drinks are as low as 2.5 µg/L
and 5.0 µg/L, which has the advantages of simple sample pretreatment, portable detection
equipment, fast detection speed, and low detection cost. Yan [39] improved the detection
sensitivity of basic light yellow II, basic orange II, and soap yellow in bean products by
optimizing the pretreatment steps, and the detection limits were 3.0, 1.0, and 4.0 mg/kg,
respectively. Zhang [40] used Dynamic Surface-enhanced Raman spectroscopy to remove
the interfering impurities in the spectra acquisition process by dispersed matrix solid phase
extraction and finally found that the established method can realize rapid detection of AO
in Yuba, with the quantitative limit of 0.5 mg/kg.

Fewer studies are using SERS for illicit pigments in Chinese herbal medicines. Li
D. [41] used paper-based surface-enhanced Raman spectroscopy to realize the rapid, simple,
and non-destructive detection of four common dyes, such as AO, in adulterated Saffron,
which met the requirements of rapid on-site detection. In the same year, Li D. [42] used
AgNPs as a substrate for surface-enhanced Raman scattering, resulting in a fast, convenient,
and extremely sensitive platform for dye adulteration detection in medicinal herbs, which
was able to detect nine different dyes in TCMs. Zhang [25] optimized the wetting agent
concentration, spraying time, and spraying amount of AgNPs and realized the rapid
detection of four dyes such as AO in Saffron by thin-layer chromatography coupled with
surface-enhanced Raman spectroscopy (TLC-SERS). Solomon [43] coupled the SERS sensor
with multivariate models for the detection of Sudan II and IV in palm oil.

Most of the current research concentrates on identifying illicit coloring agents in
individual Chinese herbal medicines, and there are fewer studies on identifying illegal
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pigments in a variety of Chinese herbal medicines. Therefore, in this study, AgNPs were
used as the enhancement substrate for SERS and combined with the machine learning
method for the rapid and accurate detection of AO content in Chinese herbal medicines.

In recent years, the method of SERS combined with machine learning for the de-
termination of target substances has gained widespread use with the advancement of
chemometrics. Li [44] combined SERS with a deep learning convolutional neural network
(CNN) algorithm to detect the thiram and pymetrozine in tea, with correlation values of
0.995 and 0.977. The method proposed by Sha [45] is to identify midazolam and diazepam
by combining SERS with CNN. The coefficient of detection reaches up to 0.966. Raman spec-
troscopy combined with a long short-term memory (LSTM) neural network has enabled
the prediction of microplastics in olive oil [46].

The sparrow search algorithm (SSA) is a new algorithm of swarm intelligence opti-
mization algorithm, which has the characteristics of strong optimization ability and small
error. It can not only accelerate the convergence speed of the backpropagation (BP) neural
network but also avoid the result falling into local extreme value [47,48]. Therefore, this
technique has widespread applications in gas detection [49], trajectory prediction [50,51],
and other relevant industries. Luo [47] combined SSA-BP with laser-induced breakdown
spectroscopy to rapidly detect the contents of Cd, Cu, and Pb in Fritillaria thunbergii, with
Rp

2 of 0.972, 0.991, and 0.956, respectively. Nevertheless, the integration of SERS with
SSA-BP in conventional Chinese medicine has not been documented.

In general, the objectives of this study are as follows: Firstly, a prediction model for
the content of AO in Chinese herbal medicines Curcuma, D. officinale, and Saffron was
established based on SERS Raman spectroscopy combined with PLSR, SVM, and SSA-
BP methods; then, the generalizability of different models among different herbs was
investigated. The method established in this study provides a rapid detection method for
predicting the content of adulterated pigment AO in different Chinese herbal medicines,
which has the effect of achieving rapid on-site detection, curbing the fight against illegal
dyeing and counterfeiting, and ensuring the safety of Chinese herbal medicines to protect
people’s health.

2. Materials and Methods
2.1. Materials

AO was purchased from Shanghai Yuanye Bio-Technology Co. (Shanghai, China).
Accurately weigh 10 mg of AO powder, dissolve in water, and transfer to a 10 mL constant
volume volumetric flask. Using the above solution as the original solution, solutions
of AO were prepared at concentrations of 0.500 mg/mL, 0.100 mg/mL, 0.050 mg/mL,
0.010 mg/mL, 0.005 mg/mL and 0.001 mg/mL. The Curcuma used in the experiment was
produced in Leshan, Sichuan Province, and washed the surface soil section, respectively,
with the above concentration gradient AO staining, each gradient staining 20 groups,
drying spare. The D. officinale was produced in Taizhou, Zhejiang Province, China, and the
Saffron was produced in Naqu, Tibet, China, dyed as above, and then dried.

The laboratory self-assembled Raman spectroscopy detection equipment, including
QE-Pro spectrometer (Ocean Optics, FL, USA), Laser-785 nm laser, Y-type optical fiber,
Raman detection probe, and object stage. The detection principle is as follows: The 785 nm
laser beam is transmitted through an optical fiber to the probe, which focuses on the surface
of the object and excites the Raman scattered light. The probe transmits the Raman signal
to the spectrometer through the optical fiber and focuses it on the Charge coupled Device
(CCD) array, which enables rapid acquisition of Raman scattering from the detected object.
The schematic diagram of spectrum acquisition was shown in Figure S1.

2.2. Preparation and Characterization of AgNPs

AgNPs were prepared according to the Frens method [52]. Accurately weigh 1.06 mL
of silver nitrate solution with a concentration of 0.100 mol/L, add ultrapure water to a
constant volume of 100 mL, stir while heating under the condition of an oil bath until the
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solution slightly boils, and add 2 mL of 1% sodium citrate solution drop by drop, continue
heating at a constant temperature for 1 h and observe that the color of the solution changes
from colorless to yellow and finally to grey-green, then cool to room temperature and
store in a refrigerator at 4 ◦C The ultraviolet absorption spectrum (SHANGHAI METASH
INSTRUMENTS Co., Ltd., Shanghai, China) results of AgNPs prepared by the Frens method
are shown in Figure 1a.
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Figure 1. Structural characterization diagram of AgNPs: (a) Ultraviolet absorption spectrum of
AgNPs; (b) Transmission electron microscope diagram of AgNPs.

The preparation method for 30-fold concentrated AgNPs is to accurately weigh 30 mL
of the prepared AgNPs into a centrifuge tube, centrifuge at a speed of 5000 r/min for
20 min, discard 29.5 mL of the supernatant, and add 0.5 mL of ultrapure water. The
results of the transmission electron microscope (Thermo Fisher Scientific, MA, USA) are
shown in Figure 1b. It can be seen from the figure that the AgNPs prepared in this study
have a maximum absorption at 419 nm and are a single characteristic wavelength, so it
is preliminarily judged to be spherical silver nanoparticles with good dispersibility. TEM
images show that it is spherical in shape and about 50 nm in diameter.

2.3. SERS Spectra Acquisition

Firstly, AgNPs and AO solution were prepared in the ratio of 2:1, 3:1, and 4:1 by volume
to determine the Raman characteristic peaks of the AO solution. Then, the previously
stained and reserved herbal medicines were prepared and tested according to the above
ratios. The sample to be detected is placed on the detection platform, and the detection is
based on the Raman spectrum detection system built by the laboratory. The parameters of
the Raman spectrometer are set as follows: laser power 320 mW, integration times 2 times,
integration time 3000 ms, and sampling distance 2 mm. To reduce fluorescence interference,
it was collected in a black box. Each sample is tested three times at different test points and
then the average value is taken as the final Raman spectrum data of the final sample.

2.4. Sample Set Division

The 100 samples of D. officinale were divided into calibration and test sets in a ratio
of 7:3 using the SPXY algorithm. Thirty samples of Saffron and Curcuma with different
concentrations were randomly selected as the test set, and the subsequent test sets for
predicting AO content in Saffron and Curcuma refer to the above samples. The remaining
55 samples of Saffron and 60 samples of Curcuma were divided into groups with 5 samples
in each group starting from the low concentration of AO and then added to 70 D. officinale
training sets according to the experimental needs. Sample information and data set division
are shown in Table 1.
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Table 1. Sample information and data set division table.

Name Origin Dataset Size Calibration Set Test Set

Dendrobium officinale Taizhou, Zhejiang 100 70 30
Saffron Naqu, Tibet 85 n × 5 (n = 1, 2, . . ., 11) 30

Curcuma xanthorriza Roxb Leshan, Sichuan 90 m × 5 (m = 1, 2, . . ., 12) 30

2.5. Data Pre-Processing and Characteristic Wavelength Screening

The selection of appropriate pre-processing methods for the collected Raman spectra
can not only effectively eliminate the background noise, but also optimize the spectra data
and improve the prediction ability of quantitative models. In this study, the selected spectra
range is 400–1800 cm−1, and the spectra pre-processing methods include SG smoothing,
airPLS baseline correction, standard normal variable transformation (SNV), multivariate
scattering correction (MSC), and their combinations [53].

After removing the edge bands with a low signal-to-noise ratio of the spectra data
in the spectra curves, the Competitive Adaptive Re-weighting Algorithm (CARS) was
adopted to select the characteristic wavelengths, which was used to improve the speed of
model computation and increase the prediction accuracy [54]. The spectra data of 100 D.
officinale samples stained with different concentrations of AO were screened by CARS to
determine nine characteristic wavelengths such as 452, 551, 649, 778, 1195, 1353, 1444, 1553,
and 1635 cm−1.

2.6. Method
2.6.1. PLSR

In this study, the PLSR model was used to predict the content of AO in different
Chinese herbal medicines. This approach amalgamates the benefits of MLR and PCA. It
is better suited for solving the regression problem with more bands and greater autocor-
relation than the traditional linear regression method [55]. Firstly, the PLSR diminishes
the dimensions of the multivariate variables Y and X and transforms the original variables
into orthogonal principal components. This extraction not only identifies the principal
components in X and Y but also maximizes the correlation between the extracted principal
components, thus eliminating spectral overlap information.

In this experiment, spectral data were designated as the independent variable X,
while the concentration of AO was designated as the dependent variable Y. To avoid the
overfitting of the model, the cross-validation strategy was used to determine the number of
latent variables in PLSR. The final result is the comparison between the predicted value
of the model and the real value. The PLSR model performance is evaluated using R2

and RMSE.

2.6.2. SVM

The SVM is a classical supervised machine learning algorithm, that can effectively deal
with various nonlinear problems brought by small samples and high-dimensional data, so
it has been widely used in many fields. The algorithm’s principle involves mapping sample
data into a high-dimensional space and converting nonlinear problems into linear ones.
Nevertheless, regression calculations after elevation mapping require more computation
as the feature dimension of the sample data increases. To tackle this problem, a kernel
function has been added to the SVM [22,56]. The kernel function avoids the problem of
high computational complexity, which enables SVM to deal with complex data sets and
improves the generalization ability of the model. This study employs the Radial Basis
Function (RBF) kernel function. Similarly, to avoid over-fitting of the model, the penalty
factor c and insensitive coefficient g in the SVM kernel function were optimized by using
the cross-validation strategy, which improves the accuracy of prediction results.
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2.6.3. SSA-BP

The SSA is a group-based optimization technique, which was introduced by Xue
Jiankai et al. in 2020. Its inspiration is mainly derived from the foraging behavior of
sparrows. The algorithm categorizes the sparrow population into three groups: discoverers,
joiners, and scouts. By considering their predatory behaviors, the search for targets can
be optimized [47]. It has the characteristics of simple results, few control parameters, and
strong local search ability.

The BP neural network is a commonly used machine learning algorithm. However,
it is easy to fall into the local optimal solution in the training process, which leads to the
poor prediction performance of the model. Therefore, it is necessary to introduce the
SSA algorithm to optimize it [51]. By updating the positions of discoverers, joiners, and
scouts in turn, the global optimal threshold and weight are finally output. Then input
the optimized threshold and weight into the BP neural network to train and predict the
data [57]. Using spectral data as the input factors, prediction models were established to
detect AO in various Chinese herbal medicines. The schematic of the SSA-optimized BP
neural network is shown in Figure 2. In addition, the Layer-wise Normalization was used,
resulting in a smoother optimization landscape for neural network loss.
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2.6.4. Models Building Procedure

It is important to select a suitable model for predicting the AO content of adulterated
pigments in experimental samples. In this study, we compared the effectiveness of Partial
PLSR, SVM, and SSA- BP SSA-BP for predicting adulterant pigment AO content in herbal
medicines, and selected the method with higher measurement accuracy to establish the
adulterant pigment detection model. D. officinale was used as the source sample, and Saffron
and Curcuma were used as the target samples. The 30 of 85 Saffron and 90 Curcuma were
randomly selected as the test set (including each concentration of AO). The experimental
study was carried out from three aspects. First, PLSR, SVM and SSA-BP calibration
models were developed for 70 stained D. officinale set samples for the content of AO in
Chinese herbal medicines, and 30 stained D. officinale test sets were used to predict the
accuracy of the models; then, 70 D. officinale training samples, PLSR, SVM and SSA-BP
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calibration models were established, respectively, samples, and the contents of AO in
30 test concentrations of Saffron and Curcuma were predicted; finally, the remaining Saffron
and Curcuma samples were sequentially grouped from low to high concentration, with each
five as a group, and five Saffron samples and five Curcuma samples were added each time to
the training samples consisting of 70 D. officinale samples, and the new sample set was used
as a correction set to establish correction model. The regression model was used to predict
the AO content in 30 Saffron samples and Curcuma samples until all samples were added.
Comparison of the prediction accuracy of the D. officinale calibration model for the content
of AO in D. officinale and two other Chinese herbal medicines; analysis of the relationship
between the number of target samples added to the training set and the performance of the
model. The spectral preprocessing method, modeling method and formula used in this
study were shown in Table 2.

Table 2. Spectral transformation method, modeling method and formula.

Name Formula Descriptions

airPLS

F = ∑m
i=1(xi − zi)

2, R = ∑m
i=2(zi − zi−1)

2, Q = F + λR

Qt =
m
∑

i=1
ωt

i
∣∣xi − zt

i
∣∣2+λ

m
∑

j=2
ωt

i

∣∣∣zt
j − zt

j−1

∣∣∣2
ωt

i =

0 xj ≥ zt−1
i

exp
(

t(xi−zt−1
i )

|dt |

)
xj < zt−1

i

x is the original spectra, z is the fitted spectra, m is the
abscissa of spectral data, F is fidelity, R is the roughness of
the z, Q is the balance parameters, Qt is the weighted
penalty least square formula (t is the number of iterations)

SG ŷj =
∑m

i=−m ai xj+i+a0
n

ŷj is the smoothed spectra, xj+i is the original spectra, ai
and a0 is the smoothing coefficient, n is the number of data
in the sliding window, m is the window width, n = 2m + 1.

MSC A = 1
n ∑n

i=1 Ai, Ai = ki A + bi, Ai(MSC) =
Ai−bi

ki

A is the average spectra, n is the spectral number, Ai is the
original spectra information of article i, k is the regression
coefficient, b is the regression constant, Amsc is the
corrected spectra.

SNV XSNV = xk−x√
∑m

i=k(xk−x)2

(m−1)

XSNV is the transformed spectra, x is the average value of
the spectra of the i, k = 1, 2, . . ., m, i = 1, 2, . . ., n is the
number of the samples.

PLSR
X = DPT + E, Y = UQT + F,

U = D
(

DT D
)−1DTU, Ypre = DpreBQ

X is the Raman spectra matrix, Y is the AO matrix, D and U
are Principal factor score matrix, P is the load matrix,
E and F are the fitting residual matrix.

SVM f (x) = ω∗φ(x) + b =
m
∑

i=1

(
ai − a∗i

)
K
(

xi, yj

)
+ b

ω∗ is the weight vector, φ(x) is the SERS spectrum,

ai and a∗i is the Lagrange factor, K
(

xi, yj

)
is the

kernel function.

2.7. Model Evaluation Indexes

The determination coefficient (coefficient of determination, R2) and the root mean
square error of prediction (RMSEP) were used as model evaluation indicators.

R2 = 1− ∑n
i=1(yi−ŷi)

2

∑n
i=1(yi−yi)

2

RMSEP =

√
1

n−1

n
∑

i=1
(yi − ŷi)

2

In the above formula, n is the number of samples in the test set; yi is the true value
of AO content in the i sample in the test set; ŷi is the predicted value of AO content in the
i sample in the test set; yi is the average value of AO content in the test set samples. The
prediction decision coefficient R2 is used to measure the correlation between the predicted
value and the real value, and the closer it is to 1, the higher the correlation of the model is.
RMSEP is used to measure the error between the predicted value and the true value of AO
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content in the test set samples, and the closer to 0, the stronger the prediction ability of the
model [60].

The technical flow chart of this study was shown in Figure 3.

Foods 2023, 12, x FOR PEER REVIEW 9 of 18 

𝑅 = 1 − ∑ (𝑦 − 𝑦 )∑ (𝑦 − 𝑦 )  

𝑅𝑀𝑆𝐸𝑃 = 1𝑛 − 1 (𝑦 − 𝑦 )  

In the above formula, 𝑛 is the number of samples in the test set; 𝑦  is the true value 
of AO content in the 𝑖 sample in the test set; 𝑦  is the predicted value of AO content in 
the 𝑖 sample in the test set; 𝑦  is the average value of AO content in the test set samples. 
The prediction decision coefficient 𝑅  is used to measure the correlation between the pre-
dicted value and the real value, and the closer it is to 1, the higher the correlation of the 
model is. 𝑅𝑀𝑆𝐸𝑃 is used to measure the error between the predicted value and the true 
value of AO content in the test set samples, and the closer to 0, the stronger the prediction 
ability of the model [60]. 

The technical flow chart of this study was shown in Figure 3. 

Figure 3. Experimental flow chart. 

3. Results and Discussion
3.1. SERS Spectra Analysis of AO

The Raman spectra intensity of AO solution mixed with concentrated AgNPs in dif-
ferent ratios are shown in Figure 4a. The AO solution without AgNPs has no obvious 
characteristic Raman wavelength. When the volume ratio of AgNPs to AO solution is 2:1, 
noticeable Raman signals appear in 1000–1700 cm−1; while in 400–1000 cm−1, there is no 
effective Raman characteristic wavelength. It can be seen that the addition of AgNPs has 
a certain effect on the enhancement of the Raman signal in the AO solution. The reason 
might be that AO is a cationic molecule, while the AgNPs also carry a positive charge, the 
two molecules rely on physical adsorption to achieve the interaction. there are fewer 
AgNPs in the system and the enhancement effect is unsatisfied. When the volume ratio is 
3:1, the Raman wavelength has been significantly enhanced in the whole range of 400–
1800 cm−1. That may be due to the increase in the content of AgNPs in the system and the 

Figure 3. Experimental flow chart.

3. Results and Discussion
3.1. SERS Spectra Analysis of AO

The Raman spectra intensity of AO solution mixed with concentrated AgNPs in
different ratios are shown in Figure 4a. The AO solution without AgNPs has no obvious
characteristic Raman wavelength. When the volume ratio of AgNPs to AO solution is 2:1,
noticeable Raman signals appear in 1000–1700 cm−1; while in 400–1000 cm−1, there is no
effective Raman characteristic wavelength. It can be seen that the addition of AgNPs has a
certain effect on the enhancement of the Raman signal in the AO solution. The reason might
be that AO is a cationic molecule, while the AgNPs also carry a positive charge, the two
molecules rely on physical adsorption to achieve the interaction. there are fewer AgNPs
in the system and the enhancement effect is unsatisfied. When the volume ratio is 3:1, the
Raman wavelength has been significantly enhanced in the whole range of 400–1800 cm−1.
That may be due to the increase in the content of AgNPs in the system and the increase
in the contact area of the AO molecules. However, when the proportion of AgNPs in the
system was further increased and the volume ratio was adjusted to 4:1, the concentration
of AO solution was diluted and the Raman characteristic wavelength intensity decreased
compared to that at 3:1. It suggests that the Raman enhancement effect is unsatis factory
due to inappropriate dosage of AgNPs.

The Raman characteristic wavelength of AO standard solution at a 3:1 volume ratio of
AgNPs and AO are shown in Figure 4b and Table 3. According to the relevant literature [40],
the intense bands at 551 cm−1 and 649 cm−1 are attributed to υ(C-H). The band at 735 cm−1

is assigned to δ(H-C-H); the intense band at 778 cm−1 is attributed to δ(C-N-C). The band at
1189 cm−1 is assigned to υ(C-C), and the bands at 1438 cm−1 and 1481 cm−1 are attributed
to ring stretching vibrations. The intense band at 1598 cm−1 is attributed to τ(C-N). The
Raman band at 778 cm−1 is more clearly visible in the low-concentration solution so it is
identified as the characteristic wavelength of AO in the subsequent study [25,41,61].
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Figure 4. Raman spectra of Auramine O solution: (a) Raman spectra of Auramine O solution and
AgNPs in different proportions; (b) Raman characteristic wavelength of Auramine O solution at 3:1;
(c) Raman spectra at 778 cm−1 at different ratios of AgNPs and Auramine O solution in three Chinese
herbal medicines.

Table 3. Bands assignment of Raman Auramine O spectra.

Wavelength (cm−1) Assignment

551 cm−1, 649 cm−1 C-H stretching vibration
735 cm−1 H-C-H deformation vibration
778 cm−1 C-N-C deformation vibration
1189 cm−1 C-C stretching vibration

1438 cm−1, 1481 cm−1 Benzene ring stretching vibration
1598 cm−1 C-N twisting vibration

The SERS signals were collected from the Curcuma, D. officinale, and Saffron, which
were dyed and prepared in advance, dropping the concentrated AgNPs in different ratios.
Taking the standard characteristic wavelength at 778 cm−1 as a reference, it was observed
that the SERS band was strongest when the volume ratio of AgNPs to AO was 3:1, as
shown in Figure 4c. The SERS signals of the three herbal medicines were measured at
a volume ratio of 3:1. The analysis of the detection limit of AO solution in three kinds
of Chinese herbal medicines was carried out according to the above conditions, and the
results are shown in Figure 5. When the concentration of AO in the dye solution was as low
as 0.010 mg/mL, the color of the dye solution was no longer visible at this time, but the
characteristic wavelength at 778 cm−1 was still clearly visible during the SERS detection
in the three kinds of Chinese herbal medicines. According to the principle of three times
noise [62], the LOD and LOQ of the method established in this study are 0.003 mg/mL
and 0.009 mg/mL respectively. Thus, this method can be used for the trace detection
of AO dyes in three kinds of Chinese herbal medicines, given the prohibition of AO in
Chinese herbal medicines. With the decrease in AO dye concentration, the SERS signal
decreased gradually.

3.2. Model Establishment and Research
3.2.1. Predictive Modelling of AO Content in D. officinale

The study established PLSR, SVM, and SSA-BP regression models for the adulterant
pigment AO in D. officinale. The results are shown in Figure 6 and Table 4. The prediction
coefficients of determination of the three models were 0.940, 0.930, and 0.962, and the
RMSEP were 0.099 mg/mL, 0.209 mg/mL, and 0.080 mg/mL, respectively. The results of
wavelength selection by the CARS algorithm showed that the characteristic wavelengths
of AO in D. officinale were mainly located at 452, 551, 649, 778, 1195, 1353, 1444, 1553, and
1635 cm−1, which corresponded to the characteristic wavelength of the AO standard. The
three prediction models established can effectively predict the content of the adulterated
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pigment AO in D. officinale, and the SSA-BP model has the highest prediction accuracy. The
fitness curve of SSA-BP model was shown in Figure 7.
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Table 4. Prediction results of Auramine O content in D. officinale by PLSR, SVM, SSA-BP.

Calibration Set Test Set Pre-Processing Rc
2 RMSEC/mg/mL Rp

2 RMSEP/mg/mL

PLSR 70 30 airPLS + SG + MSC 0.946 0.085 0.940 0.099
SVM 70 30 airPLS + SG + SNV 0.963 0.140 0.930 0.209

SSA-BP 70 30 airPLS + SNV 0.977 0.054 0.962 0.080

3.2.2. Generalization of the Prediction Model across Multiple Chinese Herbs

The model calibrated by D. officinale samples was explored to predict the AO content in
different Chinese herbal medicines, Saffron and Curcuma. The results are presented in Table 5
and Figure 8. As indicated in Table 5, the performance of the PLSR model for the prediction
of AO content in Saffron achieved Rp

2 = 0.751 and RMSEP = 0.344 mg/mL. The PLSR model
predicted the content of AO in Curcuma with Rp

2 = 0.399 and RMSEP = 0.623 mg/mL.
This suggests that the calibration model established by D. officinale samples is capable of
predicting the AO content in Saffron, but not accurately predicting AO content in Curcuma.
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Table 5. Prediction results of Auramine O content in Saffron and Curcuma by three models with D.
officinale as calibration set.

Calibration Set Test Set Pre-Processing Rc
2 RMSEC/mg/mL Rp

2 RMSEP/mg/mL

PLS
70 D. officinale 30 Saffron

SG + MSC 0.910 0.119 0.751 0.344
SVM airPLS + SG 0.919 0.241 0.714 0.662

SSA-BP airPLS + SG + MSC 0.981 0.054 0.628 0.238

PLS
70 D. officinale 30 Curcuma

SNV 0.929 0.106 0.399 0.623
SVM SG + SNV 0.937 0.202 0.229 1.257

SSA-BP airPLS + SNV 0.938 0.099 0.005 0.460
Foods 2023, 12, x FOR PEER REVIEW 13 of 18 

(a) (b) 

Figure 8. Prediction results of Auramine O content in Saffron and Curcuma using PLSR model cali-
brated by D. officinale samples: (a) Prediction results of Auramine O content in Saffron by PLSR; (b) 
Prediction results of Auramine O content in Curcuma by PLSR. 

3.2.3. Improvement of the Prediction Precision of AO Model for Multiple Chinese Herbs 
To predict the AO content of Saffron and Curcuma test samples accurately, it is neces-

sary to prevent the model from learning the intrinsic information of Chinese medicinal 
materials except for the AO substance. It is proposed that the calibration sample set of the 
AO model could consist of more categories of Chinese medicinal materials. A new training 
set was rebuilt by adding Saffron and Curcuma samples into D. officinale samples. Five sam-
ples of Saffron and Curcuma were incremented, and the prediction effects of the three mod-
els were evaluated in Table 6. The results showed that SVM was the most effective model 
for predicting AO in Saffron, whereas PLSR was the best model for Curcuma among the 
compared models. Therefore, SVM and PLSR models were used to predict the AO content 
in Saffron and Curcuma in the following steps. 

Table 6. Prediction results of Auramine O content in Saffron and Curcuma chrysalis by different mod-
els after adding target Chinese herbal medicines. 

Calibration Set Test Set Pre-Processing Rc2 𝑹𝑴𝑺𝑬𝑪/mg/mL Rp2 𝑹𝑴𝑺𝑬𝑷/mg/mL 
PLS 70 D. officinale + 

5 Saffron +  
5 Curcuma 

30 Saffron 
SG + SNV + MSC 0.811 0.169 0.394 0.353 

SVM SNV 0.901 0.248 0.580 0.815
SSA-BP SG + SNV 0.879 0.135 0.224 0.344 

PLS 70 D. officinale + 
5 Saffron +  
5 Curcuma 

30 Curcuma 
SNV 0.894 0.127 0.210 0.620

SVM SNV 0.908 0.246 0.037 1.018
SSA-BP SG + SNV 0.8323 0.159 0.005 0.999 

The results of the Rp2 and RMSEP of the optimized model for predicting AO content 
in the Saffron and Curcuma test set are shown in Figure 9. As the number of Saffron and 
Curcuma samples added into the training set increased, the predicted Rp2 of the calibration 
model gradually raised and 𝑅𝑀𝑆𝐸𝑃 gradually decreased. Nevertheless, the predicted Rp2 
shows a saturation trend, requiring model stability investigation in the future. 

Figure 8. Prediction results of Auramine O content in Saffron and Curcuma using PLSR model
calibrated by D. officinale samples: (a) Prediction results of Auramine O content in Saffron by PLSR;
(b) Prediction results of Auramine O content in Curcuma by PLSR.

3.2.3. Improvement of the Prediction Precision of AO Model for Multiple Chinese Herbs

To predict the AO content of Saffron and Curcuma test samples accurately, it is necessary
to prevent the model from learning the intrinsic information of Chinese medicinal materials
except for the AO substance. It is proposed that the calibration sample set of the AO model
could consist of more categories of Chinese medicinal materials. A new training set was
rebuilt by adding Saffron and Curcuma samples into D. officinale samples. Five samples
of Saffron and Curcuma were incremented, and the prediction effects of the three models
were evaluated in Table 6. The results showed that SVM was the most effective model
for predicting AO in Saffron, whereas PLSR was the best model for Curcuma among the
compared models. Therefore, SVM and PLSR models were used to predict the AO content
in Saffron and Curcuma in the following steps.
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Table 6. Prediction results of Auramine O content in Saffron and Curcuma chrysalis by different
models after adding target Chinese herbal medicines.

Calibration Set Test Set Pre-Processing Rc
2 RMSEC/mg/mL Rp

2 RMSEP/mg/mL

PLS 70 D. officinale +
5 Saffron +
5 Curcuma

30 Saffron
SG + SNV + MSC 0.811 0.169 0.394 0.353

SVM SNV 0.901 0.248 0.580 0.815
SSA-BP SG + SNV 0.879 0.135 0.224 0.344

PLS 70 D. officinale +
5 Saffron +
5 Curcuma

30 Curcuma
SNV 0.894 0.127 0.210 0.620

SVM SNV 0.908 0.246 0.037 1.018
SSA-BP SG + SNV 0.8323 0.159 0.005 0.999

The results of the Rp
2 and RMSEP of the optimized model for predicting AO content

in the Saffron and Curcuma test set are shown in Figure 9. As the number of Saffron and
Curcuma samples added into the training set increased, the predicted Rp

2 of the calibration
model gradually raised and RMSEP gradually decreased. Nevertheless, the predicted Rp

2

shows a saturation trend, requiring model stability investigation in the future.
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70 + 5 + 5 0.751 0.549 0.494 0.428 
70 + 10 + 10 0.762 0.580 0.474 0.421 
70 + 15 + 15 0.792 0.592 0.468 0.297 
70 + 20 + 20 0.754 0.604 0.493 0.289 
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Figure 9. Changes of model performance after adding different number of target samples: (a) Variation
of model performance of SVM for the prediction of Auramine O content in Saffron; (b) Variation of model
performance of PLSR for the prediction of Auramine O content in Curcuma.

The characteristic wavelengths were obtained by the CARS algorithm. The charac-
teristic wavelengths of AO in Saffron and Curcuma samples were selected and compared
with the 9 characteristic wavelengths of D. officinale previously discussed. The optimal
characteristic wavelengths of Saffron were 579, 781, 1195, 1363, 1440, 1553, and 1657 cm−1;
and those of Curcuma were 579, 811, 1195, 1353, 1440, 1553, and 1635 cm−1. Due to the
complex composition of traditional Chinese medicine, the Raman characteristic wavelength
of the adulterant pigment AO added to different herbs will be shifted. The characteristic
wavelengths were chosen to build predictive models for 30 samples of Saffron and Curcuma
using SVM and PLSR. Table 7 shows the changes in prediction accuracy as the number of
target samples increases. Following the wavelength selection method and adding vary-
ing amounts of other herbs, the SVM and PLSR models predicted that Rp

2 fluctuated
between 0.780 ± 0.035 and 0.500 ± 0.035. Compared with the prediction model calibrated
by D. officinale samples, the addition of some other herbs and further feature wavelength
selection, not only reduces the influence of redundant bands, and effectively enhances
the accuracy and stability of feature wavelength variable selection but also simplifies the
model and improves the prediction accuracy. It also provides a fast and simple prediction
method for the detection of adulterated pigment AO content in different kinds of Chinese
herbal medicines.
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Table 7. Changes of model performance after adding different numbers of Saffron and Curcuma
samples after secondary feature screening.

Calibration Set
Sample Size

Saffron Curcuma

Rp
2 RMSEP/mg/mL Rp

2 RMSEP/mg/mL

70 + 5 + 5 0.751 0.549 0.494 0.428
70 + 10 + 10 0.762 0.580 0.474 0.421
70 + 15 + 15 0.792 0.592 0.468 0.297
70 + 20 + 20 0.754 0.604 0.493 0.289
70 + 25 + 25 0.754 0.727 0.495 0.305
70 + 30 + 30 0.790 0.541 0.495 0.354
70 + 35 + 35 0.791 0.668 0.477 0.384
70 + 40 + 40 0.811 0.483 0.470 0.337
70 + 45 + 45 0.814 0.447 0.476 0.313
70 + 50 + 50 0.807 0.411 0.493 0.299
70 + 55 + 55 0.812 0.341 0.510 0.288
70 + 55 + 60 0.782 0.414 0.525 0.283

4. Conclusions

In this study, Surface-enhanced Raman spectroscopy and three machine learning
models (PLSR, SVM, and SSA-BP) were used to explore the possibility of the chemical dye
AO across multiple Chinese herbal medicines. The prediction of AO content in various
Chinese herbal medicines by using D. officinale as a calibration model was investigated.
The results showed that the SSA-BP model had the highest accuracy in predicting the
content of AO in D. officinale with Rp

2 = 0.962 and RMSEP = 0.080 mg/mL. The PLSR
model calibrated by D. officinale samples had acceptable prediction effects of AO content
in Saffron, but could not effectively predict AO content in Curcuma. After adding some
Saffron and Curcuma samples to the calibration set of D. officinale, the prediction accuracy
of the PLSR model for AO content in Saffron and Curcuma gradually increased. As the
characteristic wavelengths of Saffron and Curcuma herbs were further selected, the model
changes tended to stabilize. using selected characteristic wavelengths of 579, 781, 1195,
1363, 1440, 1553, and 1657 cm−1, the Rp

2 of the SVM quantitative model for predicting AO
content in Saffron varied between 0.780 ± 0.035. For the selected wavelengths of 579, 811,
1195, 1353, 1440, 1553, and 1635 cm−1, the PLSR model predicted Rp

2 fluctuations within
0.500 ± 0.035 for the AO content in Curcuma. The D. officinale calibration set successfully
predicted the AO content in various types of Chinese herbal medicines. In this study,
various model prediction methods for the content of AO in different kinds of adulterated
Chinese herbal medicines were investigated and a new rapid detection method based on
SERS Raman spectroscopy was proposed, which is practical to provide a detection method
with higher accuracy, reduced model calculation and lower detection cost for the detection
of adulteration content of artificial pigment AO in Chinese herbal medicines. In the future,
to enhance the reliability and effectiveness of research, it can be approached from the
following two angles. On the one hand, it is necessary to explore a new SERS substrate that
was based on the existing experiments and combined with flexible materials to reduce the
detection limit of AO; on the other hand, expanding the representative data set which can
expand the universality and diversity of this study.
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