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Abstract: Meat quality is an economically important trait for global food production. Copy number
variations (CNVs) have been previously implicated in elucidating the genetic basis of complex traits.
In this article, we detected a total of 112,198 CNVs and 10,102 CNV regions (CNVRs) based on
the Bovine HD SNP array. Next, we performed a CNV-based genome-wide association analysis
(GWAS) of six meat quality traits and identified 12 significant CNV segments corresponding to
eight candidate genes, including PCDH15, CSMD3, etc. Using region-based association analysis, we
further identified six CNV segments relevant to meat quality in beef cattle. Among these, TRIM77
and TRIM64 within CNVR4 on BTA29 were detected as candidate genes for backfat thickness (BFT).
Notably, we identified a 34 kb duplication for meat color (MC) which was supported by read-depth
signals, and this duplication was embedded within the keratin gene family including KRT4, KRT78,
and KRT79. Our findings will help to dissect the genetic architecture of meat quality traits from the
aspects of CNVs, and subsequently improve the selection process in breeding programs.

Keywords: copy number variation; association analysis; meat quality; beef cattle

1. Introduction

Growing consumer demand for high-quality beef has promoted the selection of cattle
for meat quality traits [1,2]. Backfat thickness (BFT) and marbling score (MS) represent
the fat content and influence meat palatability. Additionally, pH, meat color (MC), and fat
color (FC), also indicate beef quality by affecting visual appeal, consumer acceptance, and
freshness [3–8]. Over past decades, quantitative trait loci (QTLs) mapping has identified nu-
merous genomic regions associated with economically important traits in cattle. However,
progress characterizing the genetic basis of meat quality (exhibiting low to moderate heri-
tability) has been hampered by challenges in phenotype measurement. Several studies have
identified lists of candidate genes for meat quality in various cattle populations [6,9–11].
For instance, GABRB, PPP3R1 and CRYAB, etc. have been identified as candidate genes
related to MC and REA [12–14]. Meanwhile, the application of high-throughput approaches
has proven useful for understanding the genetic basis [15–18] and genetic improvement of
meat quality in cattle [19].

In recent years, genome-wide association studies (GWAS) have pinpointed thousands
of variants of human diseases [20–22]. However, the elucidation of the genetic architecture
of complex traits has mainly relied on single nucleotide polymorphisms (SNPs), while
few investigations of copy number variations (CNVs) have been explored [23–25]. CNVs,
including deletions and duplications, represent a vital source of genetic diversity which
can alter gene structure and expression, potentially with stronger effects than SNPs [26,27].
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CNVs have been linked to complex traits such as hair color [28], obesity [29], spina bi-
fida [30], vesicoureteral reflux [31], and seizure disorders [32] in humans. While studies
of CNVs in livestock have received much attention, relatively few studies have aimed
to detect candidate CNVs for economically important traits via association analysis on
a genome-wide level. To date, CNVs have shown potential relevance to traits like BFT
and REA [33,34], fat deposition [35], and coat color [36,37] in pigs, sheep, goats, and dogs.
Existing studies have mainly focused on the relationship between CNVs and growth traits
in cattle [38–42].

So far, many previous studies have reported on causal genes for meat quality via
SNP makers in cattle. For instance, one study has utilized SNPs to map the QTL on
BTA6 in approximately 3500 cattle from multiple cattle breeds, encompassing NCAPG and
LCORL related to BFT [43]. In particular, the role of the ACDSB gene in the β-oxidation
process, which in turn affects meat color stability, has already been reported with single
and multiple-trait SNP-GWAS in Nellore cattle [12]. Also, a recent study of Hanwoo beef
cattle described ENPP2, POLI, and CPAMD8 as candidate genes for MC and FC traits [44].
A separate study identified several key genomic regions accounting for over 1% of the total
genetic variance of traits like BFT and MS using GWAS of Montana Tropical Composite beef
cattle [45]. Moreover, a network analysis revealed numerous candidate genes, including
CAPN1, CAST, MYOM1, and CALCOCO1, involved in metabolic and cellular processes
that have potential impacts on the meat quality of Angus cattle [46].

However, few studies have conducted genome-wide CNV analyses for assessing
meat tenderness in Nelore cattle [47]. Therefore, a comprehensive genome-wide study
of CNVs for more meat quality traits in other cattle populations remains to be explored.
The objective of this study was to characterize the CNVs using a high-density SNP array.
By utilizing CNV-based GWAS and region-based CNV association analysis, we identified
several candidate CNV segments for meat quality with multiple strategies. The identified
candidate genes with copy number changes may offer potential genetic markers for the
selection of meat quality traits in cattle.

2. Material and Methods
2.1. Animal Populations

The studied population consisted of 1466 Chinese Simmental beef cattle, which were
born between 2008 and 2022 in Ulgai, Inner Mongolia. All cattle were uniformly managed
and fed a standardized diet based on the total mixed ratio (TMR) recommended at an
average age of 22 months, and then they were transferred to Inner Mongolia ZhongAo
Food Co., Ltd. (Chifeng City, Inner Mongolia Autonomous Region, China) for slaughter via
a consistent and streamlined process. No ethics statement was required for the collection
of the genetic material. The data from animals included in this study were derived from
previous analyses that obtained specific permissions.

Blood samples were obtained with routine quarantine inspection before slaughter.
Samples were genotyped using an Illumina BovineHD SNP array containing 777,962 SNPs.
The SNP positions were obtained according to the ARS-UCD1.2 genome assembly. More
details were described in our previous study [48].

2.2. Phenotype Measurement

Six meat quality traits, namely fat color (FC), meat color (MC), marbling score (MS),
backfat thickness (BFT), pH, and ribeye area (REA), were selected for the subsequent
analyses. The REA of the cattle was measured at the end of the fattening period between
the 12th and the 13th rib (longissimus thoracis muscle area). Afterwards, the carcass was
chilled for 48 h (partly 24 h post-slaughter). BFT was measured after slaughter in the same
position as the REA. The pH was measured at three locations of steak from the twelfth rib
at slaughter using a Mettler Toledo pH meter (Mettler Toledo, Greifensee, Switzerland).
Marbling score was assessed from 1 to 5. Meat color was graded in seven categories against
a standard color palette, from pale (grade 1) to dull red (grade 7). Fat color was graded
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in seven categories against a standard color palette. More details of the measurement of
phenotypes for meat quality were presented in previous analyses [24,25].

The significant effects (p < 0.05) were tested using variance analyses. A general linear
model was used to analyze the traits so that batch and sex were considered as the fixed
effects, and weight before fattening and PCs 1–3 were regarded as the covariates. The
fixed effects and covariates were adjusted in the linear regression model and the residuals
were further considered as adjusted phenotypes for the association test. Heritability was
calculated using GCTA [49].

2.3. Quality Control and Detection of CNVs

DNA was extracted from blood and genotyped using the Illumina Bovine HD 770K
Bead chip (Illumina Inc., San Diego, CA, USA). Genome Studio 2.0 were employed to
extract signal intensity data including Log R Ratio (LRR), B allele frequency (BAF), and
population frequency of the B allele (PFB) file. CNVs were detected using PennCNV
v.1.0.5, which is based on a hidden Markov model (HMM) [50]. The PFB file (containing
the position marker) was obtained according to a previous study [40], and the genomes’
positions were converted from UMD3.1 to ARS-UCD1.2 using a liftover tool. The GC file
(generated by calculating the GC content of the 1 Mb genomic regions surrounding each
marker) was obtained from UCSC genome bioinformatics. The final CNVs were obtained
after quality control based on cutoff values (LRR standard deviation 0.30, BAF drift 0.01,
and waviness factor 0.05) using the filter_cnv.pl function.

2.4. CNV Compilation

The CNVs were merged into CNV regions (CNVRs) using HandyCNV [51]. The
“call_cnvr” option identified CNVRs through the union of CNV sets that overlapped by at
least one base pair. CNVs of overlapping gain and were combined into a single region to
account for genomic regions where both events had happened (“mixed” CNVR).

2.5. CNV-Based GWAS

The CNV-based GWAS were performed using a CNVRanger package [52] between
each trait and CNV state based on a general linear model [53]. For association analyses,
CNVRanger re-established the CNV segments with the probes, while the probe with the
lowest p-value was considered as an indicator for this segment. The significance level of
the FDR correction (FDR < 0.05) was used to determine the associated CNV segments.

2.6. Region-Based GWAS

We then employed CNVtools, a tool that amalgamates signals from multiple CNV
probes to generate a one-dimensional LRR profile fitted with Gaussian mixtures [54]. This
method produces a regional estimate of the cumulative CNV burden. The Bayesian infor-
mation criterion (BIC) was utilized to select the optimal number of mixture components.
Copy number genotypes were assigned to each locus of the individual cattle. Standard
regression was used to test genetic associations between CNV burden estimates and meat
quality traits. We further applied a likelihood ratio test to principal components of the
adjusted phenotypes, identified via linear discriminant analysis. Significant association
regions were defined based on a threshold of p < 0.05.

2.7. CNV Validation Using Whole-Genome Sequencing

To confirm the identified CNVs, we further carried out validation using a ~20× whole-
genome sequencing (WGS) dataset [41]. To measure consistency, the overlapping regions
were estimated and visualized using an Integrative Genomics Viewer (IGV) [55]. Then, we
randomly selected CNV carriers from cattle with the candidate CNVs and normal cattle
from the sequencing datasets and observed the distribution of the readings. Additionally,
the reference genome was segmented into non-overlapping sliding windows according to
the target CNV fragment size. The raw read-depth was then calculated for each window
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using bedtools (v2.17.0) to assess the number of mapped reads within the boundaries of
each window [56]. Also, we compared the results of the current study with high-quality
CNVR datasets estimated from WGS (more than 12× depth) of 171 distinct populations,
including both Bos taurus and Bos indicus [57].

2.8. Annotation of CNVRs and Functional Enrichment Analyses

Next, we explored the candidate genes based on the identified CNVs via a UCSC
genome browser (ARS-UCD 1.2). Genes overlapping with the detected significant CNV seg-
ments were extracted for further analysis using bedtools [56]. GALLO software was used to
annotate the significant CNV regions identified by GWAS and their upstream/downstream
250 kb intervals based on the cattle QTLdb [58,59]. Additionally, QTL enrichment analysis
based on a hypergeometric approach was performed to directly connect the QTL regions
identified in CNV-based GWAS overlapping with QTLs, based on the cattle QTLdb. A gene
set enrichment analysis of the candidate genes was also conducted using g:Profiler [60].
The significance of GO terms was determined by the adjusted threshold (p < 0.05). STRING
(http://string-db.org/, accessed on 8 September 2023) was utilized to search for enriched
pathways and protein domains, and identify PPI networks based on candidate genes.

3. Results
3.1. The Detection of CNVs and CNVRs

We detected 217,369 CNVs across 29 autosomes in 1466 individuals. After quality
control, a total of 112,198 high-confidence CNVs in 1361 individuals was retained for subse-
quent analyses. We found that deletions (76.6%) were more abundant than duplications
(23.4%) across the genomes. Respectively, the length of the duplications was between 634 bp
and 1.6 Mb (3–304 probes), while deletions ranged from 602 bp to 1.7 Mb (3–509 probes).
The fraction of homozygous CNVs (CN 0 or 4) was low (17.3% or 0.4%; Figure 1A). Overall,
these CNVs were merged into nonredundant CNVRs. A total of 10,102 CNVRs were
identified including 5934 losses, 2315 gains, and 1853 mixed CNVRs, which were uniformly
distributed across autosomes (Figure 1A). We found that the highest percentage of CNVR
length (44.5%) was located on BTA7. Moreover, we observed the highest frequencies of
loss CNVRs on BTA1 and BTA12. For gain/mixed CNVRs, the highest frequencies were
observed on BTA4, BTA25, BTA12 and BTA23 (Figure 1B). Based on the identified CN-
VRs, we searched the genes using a UCSC genome browser (ARS-UCD1.2). We obtained
4207 CNVRs overlapping with 7074 genes, while 5895 CNVRs were located in intergenic
regions. Notably, we found the CNVRs with high frequency overlapping with highly
variable genes such as the OR gene family, TBX1 and CSMD3 (Figure 2).

3.2. CNV-Based Association Analyses for Meat Quality

To investigate the impact of CNVs on meat quality, we conducted a genome-wide
association analysis using CNV segments. The estimated heritability was consistent with
previous studies reporting that most traits have low heritability, except fat color (FC), which
has moderate heritability (0.40) [6,10,11]. Descriptive statistics and heritability estimates of
meat quality traits are presented in Table S1.

We identified six CNV segments located on BTA1, BTA2, BTA5, BTA6, BTA9, and
BTA29 using CNV-based GWAS. In this study, the significant CNV segments with adjacent
probes were merged together, from which we identified CNVR1 and CNVR12, uniquely
associated with MC and pH, respectively (Figure 3A,B). CNVR3, located at 92.8 Mb on
BTA9, was significantly associated with both BFT and REA (Figure 3C,D). Furthermore, six
of the candidate CNV segments overlapped with five genes, including KRT4, KRT78, KRT79,
TRIM77, and TRIM64 (Table 1). Additionally, we identified six CNV segments relating to
MS and FC using a suggested threshold (FDR cutoff of 0.1, −log10P = 3.69; Figure S1A,B).
Particularly, we found three significant signals in CNVR7, CNVR10, and CNVR11 related
to MS and FC, which embodied PCDH15, CSMD3, and OR56B2C, respectively.

http://string-db.org/
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Figure 1. (A) Landscapes of CNVR distribution in 29 autosomes and pie charts for the proportions of
four types of CNVs with different copy numbers. (B) Manhattan plots showing the −log10 p-values
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The red and black lines represent the genome-wide significance threshold at p value = 4 × 10−05,
2 × 10−04.

Table 1. Summary statistics of the CNV segments associated with meat quality traits and candi-
date genes.

Traits CNV
Segment BTA Location Type p Value FDR Candidate

Gene

MC CNVR1 5 27,085,360–27,119,759 Duplication 9.28 × 10−06 0.033 KRT4, KRT78,
KRT79

BFT
CNVR2 29 5,171,306–5,281,082 Duplication 2.20 × 10−05 0.030
CNVR3 9 92,831,482–92,843,287 Duplication 3.30 × 10−06 0.006

CNVR4 29 5,287,673–5,295,854 Duplication 9.28 × 10−06 0.032 TRIM77,
TRIM64

REA
CNVR3 9 92,831,482–92,843,287 Duplication 1.93 × 10−06 0.006
CNVR5 2 129,599,911–129,603,637 Deletion 6.22 × 10−05 0.042

MS

CNVR6 9 30,539,303–30,579,950 Deletion 6.22 × 10−05 0.087
CNVR7 26 4,750,372–4,775,984 Deletion 1.23 × 10−04 0.099 PCDH15
CNVR8 20 60,391,422–60,425,423 Both 1.15 × 10−04 0.099
CNVR9 1 37,762,712–37,775,698 Both 5.84 × 10−05 0.087

FC
CNVR10 14 51,244,826–51,249,961 Deletion 5.58 × 10−05 0.077 CSMD3
CNVR11 15 47,438,725–47,455,722 Both 3.10 × 10−05 0.077 OR56B2C

PH CNVR12 7 40,149,305–40,156,641 Deletion 9.28 × 10−06 0.075

3.3. Functional Annotation

To examine the functional annotation, we further intersected associated CNV seg-
ments with substantial QTLs based on the cattle QTLdb. Strong correlations were observed
for milk tetracosanoic acid content- and milk fat percentage-related traits (Figure S2A,B).
Furthermore, we performed Gene Ontology (GO) and Reactome (REAC) pathway en-
richment analyses of the candidate genes. We identified biologically relevant clusters
including potential factors for regulating meat skin coloration, such as keratin filaments
and intermediate filaments (Figure S3A), and pathways involved in keratinization and
developmental biology in the REAC database. The GO terms and significant pathways are
listed in Table S2. Additionally, we utilized the STRING database to investigate pathways
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and protein domains based on the genes annotated within a 1 Mb window of significant
CNV segments from the CNV-based GWAS. Interestingly, we observed three identified
networks associated with intermediate filaments and keratin (Figure S3B, Table S3).

3.4. Region-Based Association Analyses of Candidate CNV Segments

To further investigate the significant association of CNV segments, we explored
potential correlations between raw Log R Ratio (LRR) values and corresponding meat
quality traits with a robust statistical analysis framework. After a likelihood ratio test, we
found significant associations for MC, MS, pH, and BFT based on the nominal p values.
As expected, we confirmed a duplication CNVR1 with 34 kb on BTA5 (Figure 4A,B) and
CNVR12 with 7 kb (Figure 4C,D) for MC and pH, while other peak signals were observed
within CNVR4 (Figure S4A,B) and CNVR8 (Figure S4C,D). In contrast, we observed CNVR5
for REA, which was detected using CNV-based GWAS (p = 6.22 × 10−05), though it did not
show significant association signals using region-based association analysis (p = 0.0629).

3.5. Analysis of Candidate CNVs Using Whole-Genome Sequencing Data

We then validated the candidate CNVs identified by high-density SNP array using
whole-genome sequencing (WGS) data from the same cattle. As shown by the Integrative
Genomics Viewer (IGV), the accuracy levels of CNV calling obtained from the array were
consistent with the whole-genome sequencing data [41]. Among twelve significant CNV
segments based on CNV-based GWAS, five CNV segments were confirmed by read-depth
signals from sequencing cattle. In this study, we identified that the OR56B2C gene in
CNVR11 (17 kb) was potentially related to FC, as read-depth signals also confirmed the
occurrence of a 32 kb CNV (Figure 5). Moreover, we found strong read-depth signals around
the region of CNVR8 for MS, which is located in exon regions of PCDH15 gene (Figure S5).
Additionally, the distribution of the normalized read-depth of the CNV segment suggested
the presence of CNVR3, which was associated with BFT and REA (Figure S6). In addition,
we compared our results with the high-quality CNVRs detected with WGS from different
populations in a previous report [57]. Of those, CNVR1, CNVR2, CNVR9, and CNVR12
were shared by both Bos taurus and Bos indicus (Table S4). Notably, we especially found
CNVR2 and CNVR4 for BFT overlapping with several CNVRs detected with WGS, which
includes TRIM77 and TRIM64.

3.6. 34 kb-Duplication as a Candidate CNV Segment Related to Meat Color

We confirmed a ~127 kb duplication encompassing the keratin gene family KRT4, KRT8,
KRT18, etc. (Figure 6A). Remarkably, the main associated probe (BovineHD0500007947,
−log10P = 5.02) was located within CNVR1, which was validated with read-depth signals
from sequencing data. Using CNV-based GWAS and region-based association, we further
identified an association signal at 27.1 Mb on BTA5 for MC, which was overlapped with
KRT78, KRT79 (Figure 6B). The distribution of normalized read-depth signals for the
34 kb region from duplication-carriers indicates this multi-allelic locus has copy number
(CN) changes (Figure 6C). In addition, we observed ~2.5 kb regions with CNVs at BTA
5:27,087,501-27,090,000 in both Bos taurus and Bos indicus (Figure 6D, Table S4). Our results
confirm the presence of 34 kb duplication based on whole-genome sequencing analysis and
suggest that KRT78, KRT79, and KRT4 with copy number changes are promising genes for
affecting MC.
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Figure 4. Region association tests of CNV segments at 27 Mb on BTA5 and 4 Mb on BTA7 for MC and
pH. (A) The adjusted traits against signals (LogRR) for CNV segments at 27 Mb on BTA5. (B) The
adjusted traits against copy number states (MAPs) estimated for CNV segments on BTA5 using
mixture model assignment. (C) The adjusted traits against signals (LogRR) for CNV segments at 4 Mb
on BTA7. (D) The adjusted traits against copy number states (MAP) estimated for CNV segments on
BTA7 using mixture model assignment.
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Figure 6. (A) Characterization of read-depth signals with duplication at the sequencing depth using
IGV, and the regions encompassing this duplication, represented by read-depth coverage. The
boundaries of CNV (127 kb) and CNVR1 (34 kb) detected with CNV-based GWAS are marked in red.
The main associated SNP probe for 34 kb duplication is marked with a black asterisk. (B) Region
plots showing CNVR1 for MC (on BTA5) identified using CNV-based GWAS. From red to black the
color of different dots corresponding to the level of significance of CNVRs. (C) The difference in
sequencing depth signals between the CNV region and the normal region. (D) Schematic diagram of
a zoomed-in 34 kb duplication (BTA 5:27085360-27119759) showing 2.5 kb CNV overlapping with
CNVRs from WGS samples of multiple cattle populations.
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4. Discussion

Our study performed high-resolution CNV mapping for 1466 beef cattle using a high-
density SNP array. For the CNVRs identified with high frequency, we obtained several
candidate genes, including olfactory receptor gene family OR2T29 and OR2T2, as well as
TBX1 and CSMD3. By conducting a comprehensive CNV-based GWAS, we identified a
total of twelve candidate CNV segments related to meat quality traits. Additionally, we
compared the results of an SNP-based GWAS with the CNVs identified in the current study
using the same cattle population; we actually, for the first time, revealed several genes with
copy number changes which have not been detected with SNP-based GWAS, suggesting
that CNVs contribute to the potential lack of heritability of meat quality [25,61]. We believe
our findings will contribute new insights into the genetic architecture of meat quality traits,
as some CNVs may not be flagged by SNPs in cattle genomes [62].

It was noted that the detection of CNV segments for meat quality traits using genome-
wide association analysis has been demonstrated in many previous studies [52,53,63,64]. In
fact, CNVRanger divided potential CNV segments across genomes using a single probe and
chose candidate CNVs based on the probes within segments that had the lowest p-value.
Moreover, we implemented a robust likelihood ratio test (LRT) on raw LRR values for the
candidate regions identified using CNV-based GWAS [54,65]. LRR is an approximation of
the actual copy number and is affected by noise [66–68]. By incorporating this LRT and
read-depth signals from sequencing analysis, our study enhances the accuracy of detecting
candidate CNV segments CNV-based association analyses [52].

In the present study, we used WGS data from the same population of cattle based on
read-depth signals to validate their CNVs, and compared them to the occurrence of CNVRs
from WGS samples of multiple cattle populations. Strikingly, among these twelve CNVRs,
four candidate CNV segments were found to be partially overlapped with the CNVRs
of high confidence from other cattle populations. Eventually, we characterized CNVR1
and confirmed the presence of the ~12 kb CNV at 27.119 Mb on BTA5 in Bos taurus and
Bos indicus based on read-depth signals which have undergone selection in a previous
report [57]. The previous study suggests that among three KRT gene families overlapping
with CNVR1 could have a role in the development of skin. For instance, mutations in
the KRT4 gene have been proven to encode mucosa-specific keratins which may cause
white sponge naevus in humans [69]. Meanwhile, variants overlapping with the KRT79
gene lead to the destabilization of K14 in sebocytes, attenuating sebocyte differentiation
and lipid content in the skin [70]. In livestock, an overexpression of the KRT4 gene was
found to bind Tβ4, mediating the ERK signaling pathway in cashmere goats, which might
control the developmental patterning of hair follicles [71]. Previous studies also found
that the expression levels of KRT4 and KRT78 were higher in telogen compared to catagen
and anagen through analysis of the transcriptome data of yak hair follicles at different
developmental stages [72]. Despite the fact that many previous findings have shown
that these three genes encoding keratin filament may be related to hair generation, the
functional activity of KRT genes and the CNV dosage effect of KRT for MC still need to be
fully examined by multi-omic strategies and molecular experiments.

We also identified several CNV segments for BFT and MS, which were overlapping
with genes such as PCDH15, CSMD3, TRIM77, and TRIM64. For MS, the PCDH15 gene,
which encodes protocadherin, has been reported to play an essential role in the stereocilia
development of mice and glutamate levels [73–75]. Moreover, two recent studies detected
that PCDH15 genes were related to meat production in lambs and Tibetan sheep [76,77].
CSMD3 was reported to have an impact on autistic spectrum disorders and immunity
via QTL information [78,79]. Additionally, TRIM77 and TRIM64 are members of the
TRIM family of E3 ubiquitin ligase proteins. Specifically, these genes play an important
role in foam cell formation and cytokine production via the NF-κB signaling pathway.
Pathway analysis of the candidate genes highlighted several processes for intermediate
filament regulation. Interestingly, a recent study reported that an overexpression of TRIM64
suppresses lipid accumulation [80]. While the biological functions of TRIM64 have been
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partially explored regarding cancers, these genes in livestock remain unknown [80,81]. Our
study revealed several CNVs corresponding to TRIM77 and TRIM64 for BFT, suggesting
that these two genes may be involved in lipid metabolism.

Notably, we found that this CNV segment harbored a 3.5 kb duplication (BTA
29:5,239,001–5,242,500), which have been indicated that under selection for climatic adap-
tion in previous study [57]. Our strategy by integrating phenotypic with association for
CNVs can help to clarify effects of new variants on complex traits. Our findings revealed
several novel CNVs for meat quality traits in cattle. With advances in multi-omics and
functional annotation [82,83], further studies are required to assess the impacts of CNVs
on gene expression and their functional regulation, with experimental validations of the
complex traits of farm animals.

5. Conclusions

Our study identified twelve candidate CNV segments for meat quality traits by using
CNV-based GWAS of beef cattle. By integrating region-based association and sequence
validation based on read-depth signals, we wholly obtained two candidate CNV segments
(corresponding to KRT and TRIM) for MC and BFT. Moreover, we reported a 34 kb du-
plication on BTA5 harboring KRT4, KRT78, and KRT79 for MC. Our findings provide
novel insights into elucidating the genetic basis of meat quality traits from the aspects of
CNV and may offer further potential markers for selection during the breeding process of
farm animals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12213986/s1, Figure S1. Manhattan plots showing the
−log10 p-values for CNV-based GWAS; Figure S2. QTL enrichment results based on genes identified
in CNV-based GWAS; Figure S3. Functional enrichment of candidate genes obtained through CNV
analysis; Figure S4. Region association of BFT and MS for CNV segments at 5 Mb on BTA29 and
4 Mb on BTA26; Figure S5. Identification of the 34 kb duplication (BTA 20:60391422-60425423) based
on WGS of a subject using the IGV program; Figure S6. Identification of an 11.8 kb duplication
(BTA 9:92831482-92843287) based on WGS of a subject using the IGV program; Table S1. Descriptive
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