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Abstract: Internally mildewed sunflower seeds, which cannot be recognized and discarded based on
their appearance, pose a serious risk to human health. Thus, there is a need for a rapid non-destructive
mildew grade discrimination method. Currently, few reports are available regarding this process.
In this study, a method based on the combination of the near-infrared diffuse reflectance and near-
infrared diffuse transmission (NIRr-NIRt) fusion spectra and a one-dimension convolutional neural
network (1D-CNN) is proposed. The NIRr-NIRt fusion spectra can provide more complementary
and comprehensive information, and therefore better discrimination accuracy, than a single spectrum.
The first derivative (FD) preprocessing method could further improve the discrimination effect. By
comparison against three conventional machine learning algorithms (artificial neural network (ANN),
support vector machine (SVM), and K-nearest neighbor (KNN)), the 1D-CNN model based on the
fusion spectra was found to perform the best. The mean prediction accuracy was 2.01%, 5.97%, and
10.55% higher than that of the ANN, SVM, and KNN models, respectively. These results indicate that
the CNN model was able to precisely classify the mildew grades with a prediction accuracy of 97.60%
and 94.04% for the training and test set, respectively. Thus, this study provides a non-destructive and
rapid method for classifying the mildew grade of sunflower seeds with the potential to be applied in
the quality control of sunflower seeds.

Keywords: near-infrared spectroscopy; fusion spectra; 1D-CNN; sunflower seed; internal mildew

1. Introduction

Sunflower seeds, one of the four largest oil crops and a major source of vegetable oil
worldwide, contain many nutrients, including unsaturated fatty acids, proteins, human-
essential amino acids, fiber, and vitamins [1]. To prevent microbial contamination, sun-
flower seeds are typically stored, transported, and marketed as whole seeds with their
shells intact. In China, shelled sunflower seeds are usually eaten directly or used for
the extraction of edible oil [2]. However, shelled sunflower seeds are prone to develop
internal mildew, meaning that the kernels become moldy with observable mildew spots
inside the shell. Unfortunately, most internally moldy sunflower seeds, without external
evidence, cannot be recognized using manual sorting or color sorting equipment. For this
reason, accidental ingestion is frequent, negatively affecting human health and consumer
experience [3,4].

As mold contamination is a gradual process, timely intervention could reduce eco-
nomic loss; however, sunflower seeds with different mildew degrees do have their own
uses, e.g., slightly moldy seeds can be detoxified and fed to animals [5]. Thus, the grading
and sorting of sunflower seeds is of great significance for guaranteeing product quality
and economic value. Manual sorting, the traditional detection method, has several dis-
advantages, including a low efficiency and a high rate of missed detection. Color sorting
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technology is an effective technology to identify and sort external mildew or defected
seeds [6]. Unfortunately, most internally moldy shelled sunflower seeds, which have a
normal-looking shell and do not show external evidence of mildew, cannot be recognized
and discarded using color sorting equipment. Thus, there is a need to develop a rapid,
precise, and non-destructive method for detecting internally moldy whole sunflower seeds.

Recently, various types of imaging and spectral sensor technologies [7,8] have been
applied to the non-destructive sorting of grains. Among them, near-infrared spectroscopy
(NIRS) has been widely used due to its strong penetrability, high efficiency, and simultane-
ous analysis of multiple components [9]. For nuts with thicker and harder husks, only a few
reports are available regarding the identification of internal mildew [10,11], with the avail-
able studies mainly focusing on internal hollowness, defects, insect pests, and nutrients
based on NIRS technology [12–14]. Additionally, very few reports are currently available
regarding the discrimination of internal mildew grades inside nuts, especially small nuts
(e.g., sunflower seeds), because differences among the spectra of different mildew grades
are weak, with near-infrared light intensity weakened when passing through the shell.
Thus, it is imperative to improve the discrimination accuracy.

Near-infrared diffuse reflectance (NIRr) and near-infrared diffuse transmission (NIRt)
are two common NIR spectroscopic methodologies. Since the two types of spectra have
their own advantages [15,16], the NIRr-NIRt data fusion method is a promising alternative
to achieve high discrimination accuracy based on the complementary or enhanced signals of
the two spectra. Our previous study on the determination of rice flour constituents showed
that the data fusion method has higher detection accuracy than NIRr or NIRt alone [17].
A one-dimension convolutional neural network (1D-CNN) can be used to analyze the
NIRr-NIRt fusion spectral data. This algorithm, originally derived from 2D image data
analysis [18], can be applied to spectral analysis [19,20] with strong feature extraction
and learning abilities, weight sharing, and no need for the manual selection of features.
Thus, the NIRr-NIRt data fusion method combined with a 1D-CNN represents a promising
technique for the classification of the internal mildew grades of whole sunflower seeds.

The following summarizes the main objectives of this work: (1) to explore the optimal
pretreatment conditions for the fusion of NIRr and NIRt data; (2) to construct a 1D-CNN
model based on NIRr-NIRt fusion spectra and to verify its superiority over the single
spectra; and (3) to verify the superiority of the 1D-CNN model based on the NIRr-NIRt
data fusion method over other traditional methods.

2. Materials and Methods
2.1. Materials

The samples were obtained from a batch of shelled sunflower seeds with high water
content from Qiaqia sunflower seed factory in Bayan Nur, Inner Mongolia, in 2020. The
collected samples were immediately placed in presterilized polyethylene bags and stored
in freezers at −20 ◦C until further use.

Sunflower seeds with shells were used to collect spectra. Then, they were hulled
and manually assessed at three mildew grades (normal, slightly moldy, and seriously
moldy) by several professional experts using national standards [21]. The characteristics
of the different mildew grades are shown in Table 1 and Figure 1. After this evaluation,
252 normal samples, 154 slightly moldy samples, and 254 seriously moldy samples were
obtained for spectral analysis. During spectral analysis, the Kennard–Stone method [22]
was used to separate the datasets of each mildew grade into a training set and a test set at a
ratio of 2:1.
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Table 1. Characteristics of internally mildewed sunflower kernels with different mildew grades.

No. Mildew Grade Visual Grading Standards

1 Normal Off-white or slightly gray color, uniform, and glossy

2 Slightly moldy Locally black or brown spots with a mold damage area of less
than 50%

3 Seriously moldy
Locally black or brown spots with a mold damage area

greater than 50%, obvious shrinkage, and even a loss of the
surface characteristics of sunflower seeds

Note: the mildew grade was determined by the area of mold damage as a percentage of the kernel.
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Figure 1. Sunflower seed kernels at different mildew grades: (a) normal, (b) slightly moldy, and
(c) seriously moldy.

2.2. Verification of the Mildew Grade

Mid-infrared (MIR) spectroscopy, which characterizes molecular functional groups,
is used by the US Food and Drug Administration to determine chemical composition,
while the plate colony counting method counts the microorganisms on the surface of the
crops [23]. In seeds, mildew infection is a gradual process, and the mildew phenotype is
closely related to the change in the biomass and metabolites. Thus, MIR spectroscopy and
the plate colony counting method were used to verify the rationality of the visual grading
standard. Each type of collected sunflower seed kernel sample (normal, slightly moldy,
and seriously moldy) was reduced to about 3 g using the quarter method to guarantee a
representative sample [24].

When using MIR spectroscopy to analyze the chemical composition, about 1 g of
sunflower seed kernels with different mildew grades were fully crushed and mixed well
in liquid nitrogen, followed by freeze drying (FD-1A-50 freeze dryer; Shanghai Bilang
Instrument Co., Ltd. Shanghai). The samples for MIR measurement were prepared by
mixing 2 mg of freeze-dried sunflower seed kernel powder with 150 mg of dried potassium
bromide, followed by pressing under a pressure of 15 MPa for 3 min to obtain a disk pellet.
The samples were then subjected to MIR measurement (Bruker Optics GmbH, Ettlingen,
Germany) with the spectral range of 4000–400 cm−1, a resolution of 4 cm−1, and with
64 scans per sample. The results were then analyzed using OPUS 7.0 data processing
software. Before the spectral data analysis, all the spectra were pretreated by vector
normalization and baseline correction. Consistency with the visual results was determined
by comparing the differences between MIR spectra and characteristic peaks at different
mildew grades.

When performing the microbial counts, 2 g of kernels at each mildew grade were
mixed with 200 mL of sterile water in a shaker bottle and incubated for 20 min with shaking
at 200 rpm. Each dilution was plated on Rose Bengal medium supplemented with 30 g/L
sodium chloride; this separation medium can reduce the growth of filamentous fungi.
The plates were observed after culture for 7 days in the dark at 28 ◦C. Consistency with
the visual results was determined by comparing the differences in the colony number at
different mildew grades.
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2.3. NIR Spectra Collection

Before spectra collection, sunflower seeds were placed in the dryer to balance the
moisture. In this study, all spectra were collected using a MPA Fourier transform near-
infrared spectrometer (Bruker, Ettlingen, Germany), which can be operated under two
measurement modes: NIRr and NIRt. The measurement conditions are as follows: one
single shelled sunflower seed was placed in the sample window above the light source.
Then, the NIRr spectrum was measured with the diffuse reflection mode, and the NIRt
spectrum was measured with the diffuse transmission mode. In each mode, the spectrum
was collected once on the front and back side of the shelled seed. The final spectrum of
each sample was obtained by averaging both sides. To ensure data quality, the spectral
variables greater than 10,000 cm−1 in NIRr and NIRt (e.g., greatly interfered by noise) were
removed. The ranges of the spectra recorded under NIRr and NIRt were 3996–10,000 cm−1

(1000–2502 nm) and 5793–10,000 cm−1 (1000–1726 nm), respectively, with a resolution
of 16 cm−1. Each acquired spectrum was the average of 64 scans and represented in
absorbance (A = logR−1). Lastly, the NIR data were analyzed using OPUS software (Bruker
Optik GmbH, Ettlingen, Germany).

2.4. Evaluation of Spectral Fusion of NIRr and NIRt and Optimization of Fusion Conditions

To eliminate any interference caused by spectral baseline drift or the scattering effects
by particle size difference, as well as the inconsistency of the absorbance and morphology
between NIRr and NIRt spectra during fusion, first derivative (FD) and standard normal
variable transformation (SNV) were used for the fusion spectra of NIRr and NIRt and the
single spectra. For FD, the Savitsky–Golay method was used with the number of smoothing
points as 17 and the polynomial order as 2, and no preprocessing (NP). The appropriate
preprocessing method was selected by comparative analysis under the 1D-CNN model.
Additionally, zero mean normalization (Z-score) was taken before preprocessing for all
the spectra.

2.5. 1D-CNN Discriminant Model Construction

The basic architecture of the 1D-CNN model was mainly structured as an input layer,
two convolutional layers, two pooling layers, one flattening layer, two fully connected
layers, and an output layer (softmax classifier). In this study, the fusion and single spectral
data were used as the input and the predicted classification result was used as the output.
This model employed two convolutional layers, each followed immediately with a pooling
layer, which can reduce the output size and risk of overfitting. The flattening layer was
used to flatten the multidimensional input data into 1D data as the transition from the
convolutional layer to the fully connected layer. The fully connected layer was then applied
to provide 1D data for the softmax classifier. By connecting the softmax classifier, the
classification probability of the near-infrared data was calculated.

In our research, in order to establish the reliable model consistent with the real sit-
uation, we adopted the samples with naturally occurring mildew because, in China, the
internal mildew of sunflower seeds mainly occurs naturally in the field [25]. Although
more artificial mildew samples can be obtained via artificial humidification, data from
these samples could not fully correspond to the real state. However, it is difficult to obtain
a large number of samples due to the low occurrence rate of internal mildew; thus, the
potential risk of overfitting was taken into consideration. To address this, in addition to the
design of the architecture of the 1D-CNN model, the ReLU function and dropout method
were adopted, as they can effectively reduce overfitting by enhancing generalization ability.
Furthermore, several key parameters were also adjusted to obtain the optimized model for
all the fusion and single spectral datasets based on the reliability and the discrimination
accuracy. The main parameter settings of the 1D-CNN model are shown in Table 2. For all
the datasets, the 1D-CNN models were randomly trained and tested eight times, and the
average and standard deviation of these tests were used as the final result. The accuracy
and loss function were used to diagnose the models.



Foods 2023, 12, 295 5 of 18

Table 2. The basic architecture and main parameter settings of the 1D-CNN model for the fusion and
single spectral datasets.

Layers Model Parameters

Input layer (I1) NIRS data
Conv 1D (C2) Kernel size = 3, strides = 1, filters = 64, the ReLU function

MaxPooling (S3) Pooling size = 3,
Conv 1D (C4) Kernel size = 3, strides = 1, filters = 64, the ReLU function

MaxPooling (S5) Pooling size = 3
Flatten (F6) Flatten the feature vector of S5 layer into 1 vector

Dense (F7) 64 Output neurons fully connected to all neurons in layer F6, the
ReLU function

Dense (F8) 3 Output neurons fully connected to all neurons in layer F7, the
ReLU function

Output layer The softmax function

2.6. Conventional Classification Methods

For comparison with the 1D-CNN model, three commonly used machine learning al-
gorithms, namely, artificial neural network (ANN) [26], support vector machine (SVM) [27],
and K-nearest neighbor (KNN) [28], were used to classify the fusion spectra. To obtain
reliable results, the three classification algorithms were randomly trained and tested eight
times, and the mean prediction accuracy (PA) and standard deviation (SD) of these tests
were used as the final result. The parameters used in the model are summarized in the
following sections.

2.6.1. ANN

The fusion spectral data of the training set samples were imported into the artificial
neural network of MATLAB, with each layer adopting the sigmoid transfer function, a
target error of 0.001, a learning rate of 0.1, and 1000 as the number of training iterations.
Here, the values 0, 1, and 2 represent the normal, slightly moldy, and seriously moldy
samples, respectively. The deviation threshold was set to 0.5, and the recognition result was
determined to be accurate when the difference between the true value and the predicted
value was within the range of 0.5. The network was also optimized by adjusting the
number of neuron nodes in the hidden layer based on the discrimination accuracy. After
optimization, the number of neuron nodes was set to 100.

2.6.2. SVM

The radial basis function (RBF) was used as the kernel function, and the sigmoid
function was selected as the excitation function. The penalty parameter (c) was also
adjusted to achieve the highest classification recognition rate. After optimization, the
penalty factor was set to 0.8.

2.6.3. KNN

The model was also optimized by adjusting the number of neighbors based on the
discrimination accuracy. After optimization, the number of neuron neighbors was set to 3.

2.7. Model Evaluation Method and Software

The performance of the classification model was comprehensively evaluated by the
joint use of the mean prediction accuracy (PA), mean F1 score, and SD. A higher PA and F1
score and a smaller SD were associated with a better performance of the model. Among
these, the F1 score was the mean value of the weighted F1 score of three categories. PA was
calculated as follows (Equation (1)):

PA = (Nc/N) × 100% (1)
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where N denotes the total number of samples and Nc denotes the number of samples
predicted to be real.

All data preprocessing and ANN calculations were performed using MATLAB 2015b
(MathWorks, Inc., Natick, MA, USA). The training and testing of 1D-CNN, SVM, and
KNN were all implemented in Python (3.8.8) using the Keras library (v2.4.3) and Tensor-
Flow (v2.3.0).

3. Results
3.1. Verification of the Mildew Grade
3.1.1. Microbial Detection

The plate colony counting method was used to identify mold-infected sunflower seeds
with different mildew grades. The analysis results, as shown in Figure 2, indicate that the
microbial counts were consistent with the results from visual inspection.
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3.1.2. MIR Detection

Samples with different mildew grades were evaluated by comparing their MIR spectra,
as shown in Figure 3. Prominent differences in intensity were observed for the peaks at
about 1710 cm−1 and 1415 cm−1, which were closely related to the mildew grade. Seriously
moldy and slightly moldy samples both had a sharp peak at 1710 cm−1, and the peak
intensity of seriously moldy samples was significantly higher than that of the slightly
moldy samples, while normal samples had no peak at 1710 cm−1. The normal and slightly
moldy samples both had a peak at 1415 cm−1, while the seriously moldy samples had no
such peak. Bands at 1710 cm−1 and 1415 cm−1 corresponded to the C=O bending and C-N
bending of fat and protein, respectively, for sunflower seed kernels contain about 50% fat
and 30% protein. We conclude that fat produces a large number of small molecular ketones
and aldehydes under the action of mold lipase and lipoxygenase, while protein produces
peptides and amino acids under the action of mold protease. As a result, C=O bending
appeared and C-N bending disappeared after mildew infection.

Above all, the results show that the microbial count and MIR spectra of the samples
with different mildew grades were markedly different, consistent with the results from
visual inspection, indicating the reliability of the visual inspection standard. It was precisely
because of the differences in the microbial count and metabolites within the kernels that
NIR could capture enough information to build a discriminant model.



Foods 2023, 12, 295 7 of 18

Foods 2023, 12, x FOR PEER REVIEW 7 of 18 
 

 

tones and aldehydes under the action of mold lipase and lipoxygenase, while protein pro-
duces peptides and amino acids under the action of mold protease. As a result, C=O bend-
ing appeared and C-N bending disappeared after mildew infection. 

 
Figure 3. Mid-infrared spectra of sunflower seed kernels with different mildew grades. 

Above all, the results show that the microbial count and MIR spectra of the samples 
with different mildew grades were markedly different, consistent with the results from 
visual inspection, indicating the reliability of the visual inspection standard. It was pre-
cisely because of the differences in the microbial count and metabolites within the kernels 
that NIR could capture enough information to build a discriminant model. 

3.2. Fusion Spectra Analysis under Different Pretreatment Conditions 
The mean fusion spectra of NIRr and NIRt under different pretreatment conditions 

are shown in Figure 4. The raw spectra of different mildew grades closely overlapped, 
and thus do not show differences among different grades of mildewed samples. The NIRr 
and NIRt spectral fingerprint exhibited different absorbance values. At 10,000–7500 cm−1 
(1000–1333 nm), an absorption peak corresponding to C-H stretching (second overtone) 
in the region of 8264–8696 cm−1 (1150–1210 nm) can be observed in the NIRt region, but 
only a relatively flat curve in the NIRr region. The range of the NIRr spectrum at 3996–
5793 cm−1 (1726–2502 nm) consists of a large number of absorption peaks closely related 
to protein and fat, e.g., C-H stretching (first overtone) at 5555–5882 cm−1 (1700–1800 nm), 
C-H stretching (combination tone) at 4347–4166 cm−1 (2300–2400 nm), N-H stretching 
(combination tone) at 4878–4854 cm−1 (2050–2060 nm), and C=O bending (second over-
tone) at around 5263 cm−1 (1900 nm). However, this range is not included in the NIRt spec-
trum. Additionally, the absorbances recorded in the NIRt spectra were higher than those 
recorded in the NIRr spectra due to the thickness of the kernel, leading to less NIRt light 
returned to the sensor. Due to the differences in the absorbance, there was a noticeable 
gap at the splicing site of the NIRr and NIRt spectra.  

After SNV treatment (Figure 4b), the gap between the NIRr and NIRt spectra was 
reduced, and the difference between the different mildew grades was enhanced to some 
extent, which could be found between regions with characteristic absorption. In NIRr ex-
clusive region of 3996–5793 cm−1 (1762–2502 nm), several absorption peaks, including a 

4500 4000 3500 3000 2500 2000 1500 1000 500 0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
b
s
o
r
b
a
n
c
e

Wavenumber(cm−1)

 Normal
 Slight moldy
 Serious moldy

14151710

Figure 3. Mid-infrared spectra of sunflower seed kernels with different mildew grades.

3.2. Fusion Spectra Analysis under Different Pretreatment Conditions

The mean fusion spectra of NIRr and NIRt under different pretreatment conditions
are shown in Figure 4. The raw spectra of different mildew grades closely overlapped,
and thus do not show differences among different grades of mildewed samples. The NIRr
and NIRt spectral fingerprint exhibited different absorbance values. At 10,000–7500 cm−1

(1000–1333 nm), an absorption peak corresponding to C-H stretching (second overtone) in
the region of 8264–8696 cm−1 (1150–1210 nm) can be observed in the NIRt region, but only a
relatively flat curve in the NIRr region. The range of the NIRr spectrum at 3996–5793 cm−1

(1726–2502 nm) consists of a large number of absorption peaks closely related to protein and
fat, e.g., C-H stretching (first overtone) at 5555–5882 cm−1 (1700–1800 nm), C-H stretching
(combination tone) at 4347–4166 cm−1 (2300–2400 nm), N-H stretching (combination tone) at
4878–4854 cm−1 (2050–2060 nm), and C=O bending (second overtone) at around 5263 cm−1

(1900 nm). However, this range is not included in the NIRt spectrum. Additionally, the
absorbances recorded in the NIRt spectra were higher than those recorded in the NIRr
spectra due to the thickness of the kernel, leading to less NIRt light returned to the sensor.
Due to the differences in the absorbance, there was a noticeable gap at the splicing site of
the NIRr and NIRt spectra.

After SNV treatment (Figure 4b), the gap between the NIRr and NIRt spectra was
reduced, and the difference between the different mildew grades was enhanced to some
extent, which could be found between regions with characteristic absorption. In NIRr
exclusive region of 3996–5793 cm−1 (1762–2502 nm), several absorption peaks, including a
peak corresponding to C=O bending (second overtone) around the region of 5263 cm−1

(1900 nm) and N-H stretching (combination tone) 4878–4854 cm−1 (2050–2060 nm) were
observed. At 10,000–7500 cm−1 (1000–1333 nm), several absorption peaks of the NIRt
region were observed, which also corresponded to fat and protein, e.g., an absorption
peak corresponding to C-H stretching (second overtone) in the region of 8264–8696 cm−1

(1150–1210 nm), but in the NIRr region, the curve was relatively flat with no obvious
difference between the different mildew grades.

For the NIRr-NIRt (FD) spectrum (Figure 4c), the gap at the splicing site between
the NIRr and NIRt spectra could be effectively reduced, with the absorbance oscillating
around zero. Additionally, a significant difference among the different mildew grades was
found between regions with strong characteristic absorption, which showed obvious peaks
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and valleys, while the absorbance values in other regions were approximately zero. As
shown in Figure 4c, in the range spanning 3996–7000 cm−1 (1428–2502 nm) of the NIRr
region, especially in its exclusive region 3996–5793 cm−1 (1762–2502 nm), several strong
absorption peaks, including a peak corresponding to C=O bending (second overtone) in
the region of 5263 cm−1 (1900 nm), and a peak corresponding to C-N bending (second
overtone) in the region of 5208 cm−1 (1920 nm), were observed. This region exhibited
absorption bands corresponding to fat and protein. Meanwhile, only flat curves in the
NIRt region of 5793–7000 cm−1 (1428–1762 nm) were observed. Multiple absorption peaks
in the region 7000–10,000 cm−1 (1000–1428 nm) of the NIRt region were observed, which
also corresponded to fat and protein. Furthermore, peaks corresponding to C-H stretching
(second overtone) in the region of 8200–8300 cm−1 (1204–1219 nm) and N-H stretching
(second overtone) in the region of 9850–10,000 cm−1 (1000–1015 nm) were observed, while
the spectral curve of NIRr in the region of 7000–10,000 cm−1 (1000–1428 nm) was relatively
flat [29]. This shows that the spectral quality of NIRr is better than NIRt over the long wave-
length range, and vice versa during the short wavelength range, which can be observed in
Figure 4a,b.

Therefore, it can be concluded that FD strengthens the difference among the spec-
tra from sunflower seeds with different mildew grades, which was weak due to the
blocking of the shell and the small size of the sunflower seeds, in order to establish a
discrimination model.
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3.3. 1D-CNN Discrimination Model under Different Optimization Conditions

As shown in Table 3, under different pretreatment conditions, the classification effect
of the fusion spectrum of NIRr and NIRt was better than that of the NIRr model and NIRt
model under the same conditions. Fusion spectra provided a more comprehensive spectral
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signal than single spectra. Additionally, the fusion spectral model under FD pretreatment
gave rise to the best and most robust classification effect, with a mean PA of 94.04%, a mean
F1 score of 93.93%, and the lowest standard deviation. These results were also consistent
with the spectra presented in Figure 4.

Table 3. Discriminant effects of NIRr-NIRt fusion spectral and single spectral 1D-CNN model under
different pretreatment methods.

Spectral
Data

Pretreatment
Method Train-PA (%) Train-F1

Score (%) Test-PA (%) Test-F1
Score (%)

NIRr

NP 86.82 ± 2.01 85.59 ± 1.84 79.35 ± 1.57 78.68 ± 1.61

FD 93.72 ± 0.64 93.66 ± 0.59 90.71 ± 0.87 90.44 ± 0.96

SNV 91.00 ± 0.6 90.58 ± 0.72 83.89 ± 0.96 82.87 ± 0.98

NIRt

NP 78.60 ± 3.49 78.97 ± 0.83 71.91 ± 3.03 69.87 ± 0.33

FD 89.28 ± 0.47 89.16 ± 0.48 86.58 ± 1.27 86.92 ± 1.39

SNV 90.78 ± 1.17 90.69 ± 1.18 82.22 ± 1.09 82.04 ± 1.03

Fusion
NIRr-NIRt

NP 94.54 ± 0.77 94.52 ± 0.76 80.50 ± 1.25 80.00 ± 1.29

FD 97.60 ± 0.60 97.63 ± 0.69 94.04 ± 0.65 93.93 ± 0.60

SNV 97.48 ± 0.44 97.46 ± 0.45 84.98 ± 0.33 84.72 ± 0.45
Note: The experimental group with the best results is indicated in bold. Abbreviations: 1D-CNN, one-dimension
convolutional neural network; NIRr, near-infrared diffuse reflectance; NIRt, near-infrared diffuse transmission;
FD, first derivative; SNV, standard normal variable transformation; NP, no preprocessing.

The accuracy and loss function values of the models under FD pretreatment are
shown in Figure 5. With an increase in the epoch number, the accuracy of the test and
training sets of the three CNN models reached stability with the accuracy of fusion spectra
higher than for single spectra, and exhibited a quick convergence of the loss function value.
For all the models, the overfitting phenomenon was not significant, and the results are
reliable. Additionally, the model also showed good robustness and a strong generalization
ability overall.
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The t-distributed stochastic neighbor embedding (t-SNE) method is a technique
used for nonlinear dimensionality reduction to visualize high-dimensional data in low-
dimensional space, while maintaining high-dimensional characteristics [30]. In our study,
the t-SNE method was adopted to visualize the features of the layers by giving each data
point a location on a two-dimensional map, and to intuitively demonstrate the effective-
ness of the classification model. As shown in Figure 6a, for NIRr-NIRt fusion spectra,
the t-SNE scatter plots of different mildew grades were mixed and overlapped before
adopting 1D-CNN. After adopting the 1D-CNN model combined with NIRr (Figure 6b) or
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NIRt (Figure 6c), the separation degree increased with confusion among different mildew
grades to some extent. Furthermore, the separation degree of NIRr was higher than that
of NIRt. Clear boundaries can be observed between the visualization data obtained from
the 1D-CNN model of NIRr-NIRt fusion spectra (Figure 6d), indicating that the fusion
spectra contained more effective features. This visual result is also consistent with the
results presented in Table 3. Therefore, this method has the potential to explain the effec-
tiveness of fusion spectra combined with 1D-CNN for the establishment of a rapid visual
classification method.
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Figure 6. Visualization maps of sunflower seeds using 1D-CNN and t-SNE (0, normal; 1, slightly
moldy; and 2, seriously moldy): (a) t-SNE before CNN, (b) t-SNE after CNN and NIRr, (c) t-SNE
after CNN and NIRt, and (d) t-SNE after CNN and NIRr-NIRt fusion spectra. Note: x and y axes
represent two dimensions. Abbreviations: 1D-CNN, one-dimension convolutional neural network;
NIRr, near-infrared diffuse reflectance; NIRt, near-infrared diffuse transmission; t-SNE, t-distributed
stochastic neighbor embedding.

Thus, under the effective extraction of features by the 1D-CNN, the NIRr-NIRt data
fusion method achieved a more satisfactory complementary effect, and therefore, better
discrimination accuracy, than single spectra.
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3.4. Comparison of the 1D-CNN Model with Conventional Classification Algorithms

To evaluate the performance of the CNN model, the ANN, SVM, and KNN models
of NIRr-NIRt fusion spectra were established for comparative analysis. The training and
testing results of the models are shown in Table 4.

Table 4. Prediction results of the 1D-CNN and the other methods.

Algorithm Train PA (%) Train F1 Score (%) Test PA (%) Test F1 Score (%)

CNN 97.60 ± 0.60 97.63 ± 0.69 94.04 ± 0.65 93.93 ± 0.60
ANN 96.60 ± 0.21 97.52 ± 0.16 92.03 ± 0.35 91.95 ± 0.31
SVM 92.08 92.63 88.07 87.75
KNN 91.4 91.08 83.49 83.67

Abbreviations: PA, prediction accuracy; CNN, convolutional neural network; ANN, artificial neural network;
SVM, support vector machine; KNN, K-nearest neighbor.

As shown in Table 4, the mean prediction accuracy and the mean F1 value for both
training and test sets of the 1D-CNN model were higher than those of other three machine
learning models. The mean prediction accuracy of the 1D-CNN model for the training
set increased by 1.0%, 5.52%, and 6.2% compared to the ANN, SVM, and KNN mod-
els, respectively. Furthermore, the mean prediction accuracy of the 1D-CNN model for
the test set increased by 2.01%, 5.97%, and 10.55% compared with the ANN, SVM, and
KNN models, respectively. For F1 score, the 1D-CNN model also showed an advantage
over the other models. These results indicate that the 1D-CNN model produced the best
classification results.

3.5. Discrimination Effect of Sunflower Seeds at Specific Mildew Grade

The mean confusion matrices of the fusion spectral 1D-CNN for the training and
test sets are shown in Figure 7. The prediction accuracy of the normal sample was the
highest (99.69%), followed by the seriously moldy (95.44%) and slightly moldy samples
(83%), the latter of which being the lowest. The results show that the slightly moldy
samples were more difficult to discriminate than the samples at other mildew grades. In
addition, the proportion of slightly moldy samples misjudged as normal samples (6.01%)
was much lower than that of the slightly moldy samples misjudged as seriously moldy
samples (11.06%), indicating that slightly moldy and seriously moldy samples are prone to
being confused.

To evaluate the classification accuracy at the specific mildew grade, the fusion spectral
1D-CNN model was compared with the single spectral 1D-CNN and fusion spectral ANN
model, which had the highest overall classification accuracy among the machine learning
methods evaluated (Figure 8). As shown in Figure 8, for 1D-CNN, the fusion spectra
exhibited the best classification performance at all mildew grades. For the discrimination
accuracy of normal and seriously moldy samples, NIRr was better than NIRt. However,
in terms of the discrimination accuracy of the slightly moldy samples, NIRt was better
than NIRr. After spectral fusion, the discrimination accuracy at specific mildew grade
all increased, with the slightly moldy samples increasing the most significantly. For the
fusion spectral ANN model, the prediction accuracy rate of the normal, slightly moldy,
and seriously moldy samples decreased by 1.94%, 2.93%, and 1.79% compared to fusion
spectral CNN model, respectively, demonstrating the superiority of CNN over traditional
machine learning algorithms.
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1D-CNN, one-dimension convolutional neural network; NIRr, near-infrared diffuse reflectance; NIRt,
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Figure 8. Overall prediction accuracy and prediction accuracy at specific mildew grade using the four
different evaluation methods. Abbreviations: CNN, convolutional neural network; ANN, artificial
neural network; NIRr, near-infrared diffuse reflectance; NIRt, near-infrared diffuse transmission.

4. Discussion

Previous studies have investigated non-destructive identification methods of internal
mildew based on NIRs. Hu et al. [10] used near-infrared diffuse reflectance spectroscopy
to identify normal and mildewed chestnuts, and the prediction accuracy was 100% and
96.37%, respectively. Similarly, Zhou [11] established a discrimination model for normal,
surface moldy, and internal moldy chestnut based on NIRS with prediction accuracies
of 94.74%, 94.44%, and 92.31%, respectively. However, to date, few reports are currently
available regarding the discrimination of internal mildew grades inside the sunflower seeds
due to the lack of high-precision discrimination method.
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The data fusion method is a promising alternative based on the complementary
or enhanced signals. Common multisensor data fusion technologies [31–33] have to be
realized based on different instruments. However, the NIRr-NIRt data fusion method based
on NIRS instrument alone provide a lower cost and a higher identification efficiency than
other data fusion techniques without combining with other instruments.

In previous studies, NIRr has been mainly reported for the non-destructive detection
of internal mildewing of the seeds [10,11], since it is able to evaluate the main mildew
characteristics, namely, mold contamination and the change in chemical composition, from
around the surface layer of seed kernels. Despite not targeting the surface of the kernels,
NIRt allows for the analysis of optical path depth information accumulation, thereby
providing information about the internal structure of the seed kernels [34]. Compared with
NIRr, NIRt can also reduce the interference from the outer shell and stray light [35]. On
the other hand, our research reveals that the spectral quality of NIRr is better than that
of NIRt over the long wavelength range, and vice versa in the short wavelength range.
From mid-infrared analysis results, it can be seen that the characteristic absorption peaks
of complementary regions are closely related to the main mildew marker metabolites.

Compared with single spectrum, NIRr-NIRt spectrum fusion technology could effec-
tively realize the classification accuracy of different mildew degrees, especially the slightly
moldy degree, based on the synergistic advantages of complementary or enhanced signals
of the two spectra.

In addition, the 1D-CNN model produced better classification results than other
traditional learning methods. We thus conclude that a deep learning method with stronger
feature learning and extraction capabilities is more suitable for analyzing the complicated
fusion near-infrared spectral data than shallow learning methods. Thus, the combination
of NIRr-NIRt fusion spectra and the 1D-CNN obtained the best performance.

5. Conclusions

In this study, the potential of the NIRr-NIRt fusion spectra coupled with a 1D-CNN was
evaluated for its ability to non-destructively classify the internal mildew grades of shelled
sunflower seeds. To this end, sunflower seeds were divided into three grades of internal
mildew (normal, slightly moldy, and seriously moldy) using a reasonable evaluation
standard. Precisely because of the differences in microbial count and metabolites among
the different mildew grades, NIR was able to capture the information needed to build a
reliable discriminant model. Subsequently, the NIRr-NIRt fusion spectra was confirmed to
be capable of providing a better discrimination result than single spectra. Following this,
the spectral characteristics of sunflower seeds with different mildew grades were effectively
analyzed using 1D-CNN with FD pretreatment further improving this effect. The fusion
spectral model based on 1D-CNN yielded a prediction accuracy of 97.60% and an F1 score
of 97.63% for the training set, and a prediction accuracy of 94.04% and an F1 score of 93.93%
for the test set, both of which were superior to those of the single spectra. The results also
indicate that the CNN model with strong feature extraction and learning ability yielded
better recognition performance than SVM, and KNN models and slightly better than ANN
model. These results demonstrate that this method represents a promising alternative for
the non-destructive classification of internally moldy sunflower seeds based on NIRS. In
future studies, the NIRr and NIRt data fusion method should be implemented at other
grades (e.g., medium and high grades). Furthermore, more effective algorithms for the
optimal extraction of data could also be developed.
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