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Abstract: Recently, Spatial Frequency Domain Imaging (SFDI) has gradually become an alternative
method to extract tissue optical properties (OPs), as it provides a wide-field, no-contact acquisition.
SFDI extracts OPs by least-square fitting (LSF) based on the diffuse approximation equation, but there
are shortcomings in the speed and accuracy of extracting OPs. This study proposed a Long Short-term
Memory Regressor (LSTMR) solution to extract tissue OPs. This method allows for fast and accurate
extraction of tissue OPs. Firstly, the imaging system was developed, which is more compact and
portable than conventional SFDI systems. Next, numerical simulation was performed using the
Monte Carlo forward model to obtain the dataset, and then the mapping model was established using
the dataset. Finally, the model was applied to detect the bruised tissue of ‘crown’ pears. The results
show that the mean absolute errors of the absorption coefficient and the reduced scattering coefficient
are no more than 0.32% and 0.21%, and the bruised tissue of ‘crown’ pears can be highlighted by the
change of OPs. Compared with the LSF, the speed of extracting tissue OPs is improved by two orders
of magnitude, and the accuracy is greatly improved. The study contributes to the rapid and accurate
extraction of tissue OPs based on SFDI and has great potential in food safety assessment.

Keywords: spatial frequency domain imaging (SFDI); optical properties; absorption; reduced scattering;
long short-term memory (LSTM)

1. Introduction

The study of the propagation process of light in biological tissue has been a hot issue.
It has been found that tissue optical properties (OPs) show great potential in biomedical
detection [1,2], OPs’ detection of fruit [3,4] and OPs’ detection of milk [5]. The propagation
behavior of light in biological tissue consists mainly of absorption and scattering, which
are generally quantitatively described by the absorption coefficient (µa) and the reduced
scattering coefficient (µ′s). The µa reflects the chemical composition of biological tissue,
whereas the µ′s reflects the physical structural properties of the tissues [6]. Therefore,
obtaining µa and µ′s of biological tissue is important for assessing the physicochemical
properties of biological tissue. There are various methods to obtain tissue OPs, such as the
temporally resolved [7], spatially resolved [8], and integrating sphere methods [9]. As a
new method to obtain tissue OPs, Spatial Frequency Domain Imaging (SFDI) is widely used
in burned tissue assessment [10], meat classification [11], and bruised fruit detection [12,13].
The SFDI technique is commonly used in the biomedical field, but it is rarely used in food
safety evaluation and agricultural product quality assessment.

There are two homogeneous forward models of mapping from OPs to diffuse re-
flectance in Spatial Frequency Domain Imaging. One model is an analytic approach based
on the diffusion approximation equation and another model is based on transport using
Monte Carlo (MC) simulations [14,15]. The main task of extracting tissue OPs by transport
models is to deal with an inverse process of mapping tissue OPs to spatial frequency
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diffuse reflectance. There are two ways to implement the inversion process, one is the
error minimization, and the other is the search method. For the first approach, the error
minimization problem (min ∑

(
Rd,model(fx) − Rd,sample(fx)

)
) is solved by inputting a guess

value of the optical properties into the model to obtain the diffuse reflectance (Rd,model)
closest to the actual value (Rd,sample). The second approach is a search problem, which first
generates a large amount of data using a forward model and then compares the diffuse
reflectance of the sample and dataset to find the optical properties values. Regardless
of which forward model is used, there are two common methods used for inversion so
far. One is the least-square fitting (LSF) method, and the other is the look-up table (LUT)
method [16,17]. Generally, to obtain accurate and stable results, diffuse reflectance at
multiple spatial frequencies is used [18,19]. However, whether using analytic approach
based on the diffusion approximation equation or MC simulations based on transport, the
LSF is computationally slow and unsuitable for fitting large numbers of pixels, which is an
inherent drawback of the fitting method. The LUT method generates a diffuse reflectance
dataset from a forward model and then builds a mapping table from diffuse reflectance to
OPs, and the inversion process usually uses interpolation to estimate the OPs. In theory, if
the interval of the LUT is small enough, extremely high inversion accuracy can be obtained.
However, with the decrease of LUT interval and the increase of frequency number, the
inversion time increases exponentially. The LUT therefore requires a compromise between
accuracy and speed. In conclusion, traditional inversion methods are not good to balance
accuracy and speed at the same time. Therefore, it is necessary to improve the speed and
accuracy of SFDI inversion to quantify the OPs of tissue quickly and accurately.

Machine learning is widely used in visual inspection [20], quality assessment of agri-
cultural products [21], and metal material research [22]. Since machine learning techniques
have great advantages in dealing with regression problems with large amounts of data,
they are used to replace the time-consuming model-based inversion process in diffuse
reflectance optics [23,24]. The mapping between OPs and diffuse reflectance is strongly
nonlinear in SFDI. Meanwhile, machine learning and regression techniques were found to
be highly advantageous in solving nonlinear problems; for example, an artificial neural net-
work (ANN) implementation for extraction of tissue OPs [25], and extraction of tissue OPs
based on random forest regressor (RFR) [26]. According to the literature [27,28], machine
learning-based extraction of OPs can be two orders of magnitude faster than conventional
methods, without degrading the accuracy of OPs, based on the SFDI technique. Although
these methods are based on machine learning, which greatly improves the prediction speed,
the prediction accuracy is still lacking.

The analysis of OPs allows for the assessment of physiological indicators such as
firmness and Soluble Solids Content (SSC) [6], which helps in the evaluation and classi-
fication of fruits. Fruits are prone to receive crushing and bruising during the picking,
transportation, and marketing process. Over time, the bruised tissues of pears will decay
and spread to the surrounding tissue, which eventually leads to a decrease in the economic
efficiency of pears. Furthermore, it is a good mean to detect the bruised tissue of fruits by
Ops. Therefore fast, accurate, and portable extraction of tissue OPs is of great importance
in agricultural production and food safety.

Researchers have been looking for fast and accurate inversion methods, aiming to
achieve real-time, accurate, and portable extraction of tissue OPs based on the SFDI tech-
nique. Common mapping models based on machine learning methods are used to extract
OPs, which greatly improve the prediction speed and prediction accuracy. However, accu-
racy is still lacking. In this study, a mapping method based on Long Short-term Memory
(LSTM) [29] was proposed to extract OPs, which is not only fast, but also improves accuracy.
This work lays a foundation for solving the problem of real-time, accurate, and portable
extraction of tissue OPs based on the SFDI technique. The purpose of this study was to look
for an alternative approach to extract OPs quickly and accurately from diffuse reflectance
images for bruised tissue detection in ‘crown’ pears. Therefore, the main objectives of this
research are as follows: (1) build a compact and portable system; (2) obtain data through
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Monte Carlo simulation; (3) establish a mapping model; and (4) detect the change of tissue
OPs after a ‘crown’ pear has been bruised.

2. Materials and Methods
2.1. Spatial Frequency Domain Imaging Instrumentation

The Spatial Frequency Domain Imaging system is shown in Figure 1a. The grayscale
illumination pattern is generated by a miniature projection module. In this study, we
used a digital projector (M1, Lenovo, Beijing, China), based on a digital micromirror-
based digital light processing (DLP) light engine (Texas Instruments, Dallas, TX, USA)
and an LED light source. A filter (λ = 525 nm, ∆λ = 10 nm, Beijing Optical Century
Instrument co. LTD (BOCIC), Beijing, China) was used in front of the lens of the projector
to filter out light with a wavelength of 525 nm. The diffuse light reflected from the sample
surface was captured by an 8-bit CCD camera (MV-CA060-11GM, Hikvision, Hangzhou,
China). The generation of the illumination pattern, the projection, and the acquisition of
the diffuse reflectance image of the sample were implemented by two ARM boards (Jetson
Nano, Nvidia Corporation, Santa Clara, CA, USA). The synchronization of the sinusoidal
illumination pattern projection and the sample diffuse reflectance acquisition was ensured
by network communication. Compared to conventional systems, this study abandoned the
strategy of using a personal computer as the control core and used miniature components,
making the system more portable and compact.
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Figure 1. (a) for SFDI instrumentation and (b) for data processing.

2.2. SFDI Processing

For the Spatial Frequency Domain Imaging technique, the sinusoidally modulated
light is projected onto the surface of the scattering medium first, and then the raw diffuse
reflectance image is captured with a camera. Sinusoidally modulated light at each fre-
quency needs to be projected three times with the phase 0π, 2π/3, and 4π/3. At least two
frequencies are required to map the optical properties (OPs) using the optical transport
model [30]. The data processing is shown in Figure 1b.

After obtaining the raw diffuse reflectance image, the modulation amplitude (M(f x))
needs to be obtained by three-phase demodulation, as in Equation (1).

M(fx) =

√
2

3
{(I 1(fx) − I2(fx))

2 +(I 2(fx) − I3(fx))
2 +(I 3(fx) − I1(fx))

2}1/2
(1)
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where Ii(f x) is the raw diffuse reflectance with different phases at the same frequency, and
M(f x) is the modulation amplitude. The correction is then performed using a reference
whiteboard with known diffuse reflectance, as in Equation (2),

Rd(fx)measured =
M(fx)measured
M(fx)reference

Rd(fx)reference (2)

where M(fx)measured is the modulated amplitude of the sample, M(fx)reference is the modu-
lated amplitude of the reference whiteboard, Rd(fx)measured is the diffuse reflectance of the
sample, and Rd(fx)reference is the diffuse reflectance of the reference whiteboard. According
to the diffuse approximation theory, the optical properties (µa, µ′s) can be solved using
curve fitting based on the diffuse equation [30] after the diffuse reflectance is obtained. This
is shown in Equation (3),

Rd(fx) =
3Aµ′s/µtr(

µ ′eff/µtr+1
)(
µ ′eff/µtr+3A

) (3)

where µtr= µa+µ′s is the transport coefficient, µ′eff =
√

3µaµtr+2πfx2 represents the
scalar attenuation coefficient in the spatial frequency domain, n is the refractive index
of sample, Reff= 0.63n + 0.668 + 0.71/n − 1.44/n2 is effective reflection coefficient, and
A = (1 − R eff)/2(1 + R eff) is a proportionality constant.

2.3. Monte Carlo Simulations

Unlike the diffuse approximation equation, Monte Carlo (MC) simulation is a stochas-
tic statistical method that simulates the transport of photons through tissue. After the
photons enter the tissue, they constantly interact, and some of the photons are absorbed
and disappear. Photons emitted from the upper surface of the tissue form diffuse light, and
photons emitted from the lower surface of the tissue form transmitted light. Given the opti-
cal properties (OPs) parameters, the purpose of MC simulations is to simulate the photons
transport process and then accurately calculate the corresponding diffuse reflectance. Many
researchers have implemented MC simulations programs for different purposes, some for
time-domain MC simulations [31], some for single-layer tissue MC simulations, and some
for multi-layer tissue MC simulations [32]. This study uses a GPU-accelerated simulations
program developed by Eric [33]. A large amount of mapping data (from OPs to diffuse
reflectance) was obtained through MC simulations, which was used to construct the Long
Short-term Memory Regressor model.

Given the value of the OPs, the diffuse reflectance Rd(r) can be obtained using the
MC simulations program. However, this spatially distributed diffuse reflectance Rd(r)
obtained by MC simulations is independent of the frequency of the structured light. The
diffuse reflectance Rd(fx) in the spatial frequency domain (SFD) can be derived by Fourier
transform [30]. As shown in Equation (4),

Rd(fx)= 2π
n

∑
i=1

riJ0(2πf xri)Rd(r i)∆ri (4)

where Rd(fx) is diffuse reflectance in SFD, ri is the radial distance of the ith photon from
the incident point of the light source in the MC simulation, fx is the frequency of the
sinusoidally modulated light, Rd(r i) is the reflection weight of the photon at the point
ri, ∆ri is the distance between radially adjacent photons, and J0 is the zeroth-order Bessel
function of the first kind. The initialization parameters of MC simulations are shown in
Table 1.
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Table 1. Parameter settings for the Monte Carlo simulations.

Parameters Symbols 1 Value

Number of photons N 3,000,000
Resolution dz 2, dr 3 0.01 cm
Anisotropy g 0.7

The thickness of tissue d 5 cm
Refractive index air n0 1

Refractive index of tissue n1 1.34
1 The symbols corresponding to the parameters. 2 The thickness of each tissue layer in the Monte Carlo simulations.
3 The thickness of each tissue layer in the radial direction of the light source.

2.4. Long Short-Term Memory Regressor Method

The Long Short-term Memory (LSTM) network model has great potential to solve
problems where input sequences have context relations. Meanwhile, the LSTM network
model performs very well in solving complex nonlinear problems. Therefore, this study
decided to build a mapping model based on a LSTM network model for mapping tissue
optical properties (OPs) from diffuse reflectance.

The Long Short-term Memory Regressor (LSTMR) model takes the n-dimensional
diffuse reflectance vector and maps it to a 2-dimensional OPs vector. The input of the LSTM
network is generally an n-dimensional vector with dimensions from 1 to n representing
n moments. The LSTM has a memory cell that records the memory of each moment.
Furthermore, the operations at each moment include adding memory and deleting memory
to extract the relevant details of the context. The structure of the LSTMR model is shown in
Figure 2, where the n-dimensional vector is the diffuse reflectance at different frequencies.
The model of the network could be a deep neural network, and only one layer of the neural
network is shown in the figure. The basic structure of the model is shown in the upper of
Figure 2, and equations are shown in Equations (5)–(10),

Ft= σ(W f[Yt−1, Xt] + zf) (5)

It= σ(W i[Yt−1, Xt] + zi) (6)

C̃t= tan h(W c[Yt−1, Xt] + zc) (7)

Ot = σ(W o[Yt−1, Xt] + zo) (8)

Ct= Ft �Ct−1+It � C̃t (9)

Yt= tan h(F t � Ct−1+It � C̃t) � Ot (10)

where � is the pointwise multiplication operation, σ is the sigmoid function, W is the
weight matrix of the network layer, z is the bias term of the network layer, Ft is the forget
gate, =It is the input gate, C̃t is the current memory, Ot is the output gate, Ct is the memory
cell at moment t, ht is the output at moment t, and Xt is the input at moment t. LSTM
modifies the content of the memory cell through all the forget and input gates to extract
context-related information. The final output of the model can be written as Equation (11),[

µa,µ′s
]
= ∑ wtYt (11)

where wt is the weight of the output corresponding to each component of the input vector,
and µa and µ′s are the OPs.
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The Long Short-term Memory Regressor model was constructed based on the PyTorch
framework (PyTorch, version 1.10.0+cu113, Meta, Menlo Park, CA, USA), which is a
mainstream framework for building machine learning models. To obtain reliable and
stable models, five-fold cross-validation was used in the optimization of model parameters.
Theoretically, if there are enough nodes, an artificial neural network with one hidden layer
can fit any complex function. This study obtained the best results when the number of
nodes was 25 and the number of hidden layers was 5. Too small a batch size will lead to
model oscillation and difficult convergence. Setting the batch size to the training set size is
a good choice due to the small dataset, and choosing the Resilient Propagation optimizer,
which is preferred when the batch size is equal to the training set size, has proven to be
a smart choice. When the initial learning rate of the model was 0.0001, the model had
a good convergence effect, and the model converged quickly before 200 epochs. Finally,
the dropout algorithm was used to prevent overfitting, and the final model training took
30 min.

2.5. Model Testing
2.5.1. Simulations Experiments

The Long Short-term Memory Regressor (LSTMR) model was tested using a simulated
dataset, and the tested dataset never appeared in the training dataset. To accelerate the
inversion speed, the two-frequency inversion strategy is usually adopted. In this study,
there were six alternative frequencies (fx = 0.167, 0.180, 0.200, 0.220, 0.250, 0.300 mm−1).
Different mapping models were built with different high frequencies, and a five-fold cross-
validation was used in the model-building process. Different models were used to map the
optical properties (OPs), and then the mean absolute error of OPs was used as the basis for
the preference.

After determining the optimal frequency, the full set of training dataset was used to
train the Long Short-term Memory Regressor mapping model. To highlight the advantages
of the model, least-square fitting (LSF), artificial neural network (ANN), random forest
regressor (RFR), and recurrent neural networks (RNN) mapping methods were imple-
mented in the experiments, respectively. The strengths and weaknesses of the models were
evaluated by the normalized mean absolute error (NMAE), the determination coefficient
(R2), the root mean square error (RMSE), and the mean absolute error (MAE). Look-up
table inversion was not chosen because it required a tradeoff in time and accuracy.
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2.5.2. Phantoms Experiments

By using Indian ink (Royal Talens, Apeldoorn, The Netherlands) as an absorbing
agent and titanium dioxide (T104950-500 g, Aladdin Biochemical Technology Corporation.,
Shanghai, China) as a scattering agent, deionized-water-based optical phantoms were
prepared. Five gradients were set for absorption and reduced scattering, respectively. The
volume fraction of India ink is 0.006–0.014% with a 0.002% interval and the volume fraction
of TiO2 is 0.04–0.12% with a 0.02% interval. Twenty-five small liquid phantoms with various
optical properties (OPs) were fabricated. The absorption range of these phantoms was
from 0.0945 mm−1 to 0.1905 mm−1, and the scattering range was from 1.3689 mm−1 and
4.1063 mm−1. According to Lambert’s law, the standard value of the absorption coefficient
was derived using the collimated transmittance T, and the collimated transmittance T is
obtained by spectrometer acquisition (QE65pro, Ocean Insight Corporation, Orlando, FL,
USA), as shown in Equation (12),

µa =
− ln(T)

D
=
− ln(I/I0)

D
(12)

where D is the length of the optical path passed in the liquid during collimated transmission,
and I0 and I are the transmitted light intensity of water and the transmitted light intensity
of the absorber, respectively. The standard value of the reduced scattering coefficient can be
calculated by using the Mie program [34] given the parameters of TiO2, the refractive index
of water, and the wavelength of light. The parameters of TiO2 include diameter, volume
fraction, and refractive index.

The phantom experiments were performed using a two-frequency strategy (high
frequency is the optimal frequency 0.25 mm−1) and an inversion was performed using the
Long Short-term Memory Regressor (LSTMR), the least-square fitting (LSF), the artificial
neural network (ANN), the random forest regressor (RFR), recurrent neural network (RNN),
respectively. A 300 × 300-pixel area near the center pixel of each phantom was selected as
the target area and the OPs images were computed.

2.5.3. Pear Experiments

‘Crown’ pears were selected as experimental objects, and all crown pears came from
fruit supermarkets. The surface of these pears was not damaged, and they were very fresh.
The experiments were conducted in March at an ambient temperature of 20 degrees Celsius.
During the bruising treatment, the pendulum motion was simulated by using a small
iron ball to hit the pear around the equator, thus inducing the formation of bruised tissue.
During the experiments, the experimental subjects were consistent before and after bruising,
and the images of normal pears were collected first, and then the images of bruised pears
were collected after bruising treatment. All experimental procedures used the same system
to acquire images and the same program to extract optical properties.

3. Results
3.1. Simulation Experiment Results

To obtain the best high frequency, the mapping models with different high frequencies
were built based on the training dataset, and the most suitable high frequencies were deter-
mined in the range of 0.167–0.300 mm−1. Figure 3 illustrates the mean absolute error (MAE)
of the optical properties (OPs), where the horizontal axis is the mapping model for different
high frequencies. The results show that the model has the best accuracy when the frequency
is chosen to be 0.25 mm−1, and when the MAE of the absorption coefficient (µa) and the
reduced scattering coefficient (µ′s) are 0.6240% and 0.5939%, respectively. The optimal
frequency of 0.25 mm−1 is very close to the commonly used optimal frequency of 0.2 mm−1,
which is consistent with the experimental results of Luo’s frequency preference [5].
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The prediction results of different models are shown in Table 2. The prediction
results of the Long Short-term Memory (LSTMR) are optimal in terms of normalized mean
absolute error (NMAE), MAE, root mean square error (RMSE), and determined coefficient
(R2). Except for the LSTMR model, the RFR model has the best prediction results. For
LSTMR, the MAE of the µa and the µ′s are 0.32% and 0.21%, respectively. This is an order-
of-magnitude improvement compared to the prediction accuracy of the LSF. As shown in
Figure 4, there is an extremely high linearity between the predicted and target values of the
LSTMR, with the R2 approaching 1. As can be seen in Figure 4, the target and predicted
values almost exactly coincide and overlap in a straight line, both for the µa and the µ′s.
This indicates that the model is an excellent fitting and that the model fits well as a function
of the diffuse reflectance and OPs. The experiments illustrate that LSTMR is an ideal model
for accurately mapping OPs.

Table 2. Predictive performance of different mapping models in simulation experiments.

OPs Metric LSTMR ANN RNN RFR LSF

µa

NMAE 0.0012 0.0069 0.0077 0.0049 0.0506
MAE 0.0032 0.0151 0.0181 0.0171 0.0597
RMSE 0.0002 0.0010 0.0012 0.0007 0.0207

R2 1.0000 0.9999 0.9999 0.9999 0.9999

µ′s

NMAE 0.0009 0.0046 0.0053 0.0036 0.0598
MAE 0.0021 0.0127 0.0139 0.0023 0.0770
RMSE 0.0060 0.0298 0.0350 0.0226 0.3323

R2 1.0000 0.9971 0.9966 0.9978 0.9996

3.2. Phantoms Experiments Results

To verify that the proposed Long Short-term Memory Regressor (LSTMR) mapping
model can be used to extract optical properties (OPs) accurately and quickly, 25 optical
phantoms with known OPs were produced. As shown in Table 3, LSTMR mapped OPs
at a speed of 253 ms for a 300 × 300-pixel image (CPU, Intel-I7-11800H). However, for
the least-square fitting (LSF) method, extracting the OPs of a 300 × 300-pixel image took
57,970 ms. The results show that the LSTMR inversion speed is improved by 2 to 3 orders
of magnitude compared to LSF. The speed of predicting tissue OPs based on machine
learning methods depends on the complexity of the model (number of nodes and number
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of network layers), so this study only implemented a speed comparison between LSTMR
and LSF.
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Table 3. The speed of mapping from diffuse reflectance to optical properties.

Methods Resolution/Pixel Speed ms/Pixel

LSF 300 × 300 0.6441
LSTMR 300 × 300 0.0028

The results of different inversion methods for the phantoms experiments are shown in
Figures 5 and 6, and the mean absolute error (MAE) of µa and µ′s are 0.0211 and 0.0674
using the LSTMR method, respectively. Furthermore, the R2 of µa and µ′s are 0.9916
and 1.0, respectively, which indicates that the predicted results of LSTMR have a good
linear relationship with the expected values. It confirms that LSTMR is an ideal choice for
inversion in Spatial Frequency Domain Imaging. Due to the inevitable experimental error,
the actual value of the phantom is different from the reference value, so the prediction
result of the phantom would be slightly worse than the simulation result. The relative error
of µ′s is larger than that of µa because the scattering agent is easily precipitated and is more
influenced by whether the liquid surface is stationary or not, resulting in a larger error in
the prediction of µ′s. Obviously, the mapping results of the LSTMR inversion model are
better than other models in the experiments.
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3.3. Pear Experiment Results

The results of the bruised tissue detection experiment for pears are shown in Figures 7 and 8.
Pears will form bruised tissue at an early stage after being slightly crushed. In this study, it
was demonstrated that bruised tissue forms on the surface of the pear after a slight impact.
The absorption coefficient of the tissue increases during the formation of bruised tissue.
The opposite is true for the reduced scattering coefficient, which is consistent with the
experimental results of Sun [25] and Luo [35]. Moreover, both absorption and reduced
scattering images could highlight the areas of bruised tissue. Therefore, using the Spatial
Frequency Domain Imaging technique, early bruised detection of fruits can be performed.
Furthermore, it can effectively control the bruised of fruits during transportation, thus
controlling the cost of the fruit industry. The optical properties (OPs) of apple tissues can
be used for nondestructive quality or ripeness prediction of apples [4], and the Long Short-
term Memory method proposed in this study can obtain prediction results more accurately
and quickly. Therefore, the rapid acquisition of OPs in tissues is of particular importance.
This further illustrates the need to improve the speed and accuracy of extracting the OPs of
tissues. It also lays the foundation for the real-time, portable acquisition of tissue OPs.
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4. Discussion

Absorption and scattering have different sensitivities to frequency. Absorption is
mainly sensitive to low frequency, whereas scattering is mainly sensitive to high frequency.
The non-zero frequency should not be too large or too small for the two-frequency inversion.
The simulations experimental results showed that fx = 0.25 mm−1 was the most suitable
frequency under these experimental conditions, which was also closer to the non-zero
frequency used in the existing literature [5]. The simulations experimental results show that
the mapping accuracy of the Long Short-term Memory Regressor (LSTMR) model could
be substantially improved, and the mean absolute error (MAE) of µa and µ′s could reach
0.32% and 0.21%, respectively. The mapping accuracy of LSTMR is much better than that
of the traditional LSF method, and it also performs better than the other machine learning
methods in the experiments. Compared with the LSF method, the phantoms experiment
not only shows that LSTMR has an advantage in mapping accuracy, but also has a huge
performance advantage in inversion speed.

Jäger et al. [23] combined spatial resolution technology with multiple artificial neural
network to extract optical properties (OPs). According to their reports, the normalized
mean absolute errors (NMAEs) of µa and µ′s are 6.1% and 2.9%, respectively. The MAE of
the deep neural network mapping model proposed by Stier [1] for µ′s is 6.8%. Song [28]
developed an OPs mapping model based on the deep neural network, and according to their
study, the mean and standard deviation of the percentage errors of µa and µ′s were 0.0 ± 1.4
and 0.0± 0.28%, respectively. Sun proposed an artificial neural network method [25] for the
inversion of OPs based on multi-frequency inversion, where the NMAEs of µa and µ′s are
0.18% and 0.027%, respectively. Sun used seven frequencies for inversion, whereas we used
only two frequencies to achieve comparable accuracy. Panigrahi [26] demonstrated that the
random forest regressor (RFR) method was a highly accurate and fast inversion method,
and the MAE of OPs could be reduced to 0.556% and 0.126%, respectively. Comparing the
MAE, it could be found that the µa of LSTMR was more accurate, whereas the µ′s of RFR
was more accurate. The µ′s of LSTMR is slightly less accurate than RFR due to the large
gradient (the interval of µ′s is 0.126 mm−1) of the µ′s of the dataset.

The phantom experimental results showed that the LSTMR not only has better inver-
sion accuracy than other methods, but also had a dramatic improvement in inversion speed,
with a speed improvement of 2 to 3 orders of magnitude compared to the LSF. The LSF
method requires continuous iterations for optimization until the error is within an accept-
able range, which consumes a lot of time during the iterations, and which is evident as the
number of frequency increases. The look-up table uses a search strategy in which the time
taken for the search process increases exponentially as the number of frequencies increases.
However, using multiple spatial frequencies for inversion can improve the robustness of
the model [18]. The machine learning method can solve the slow speed problem in the
process of multi-frequency inversion, and the mapping accuracy can be improved at the
same time. As can be seen from Table 3, LSTMR is more than 100 times faster than LSF.
This is also consistent with the results of Zhao’s study [27] and Song’s study [28].

5. Conclusions

The proposed Long Short-term Memory Regressor (LSTMR) method is an ideal map-
ping model to replace the inversion method based on the optical transport model. It can
quickly extract optical properties (OPs), but without loss of estimation accuracy. This
study not only compared the LSTMR method to the traditional LSF method, but also
to other machine learning methods that appeared in journals, and it turns out that the
LSTMR method is indeed a good choice. The experimental results show that the accuracy
of LSTMR inversion is comparable to or even better than that of the previous literature.
Furthermore, the speed of LSTMR is improved by 2~3 orders of magnitude compared with
LSF. These pear experiments proved that LSTMR can accurately distinguish bruised tissue,
which provides a feasible solution for the quality assessment of pears. All experiments are
based on our developed miniaturized Spatial Frequency Domain Imaging system. This
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study laid the hardware foundation and method foundation for real-time and portable OPs
acquisition of pears, and further applied it to pear quality evaluation.
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