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Abstract: In this study, near-infrared spectroscopy (NIRS) combined with a variety of chemo-
metrics methods was used to establish a fast and non-destructive prediction model for the pur-
chase price of fresh tea leaves. Firstly, a paired t-test was conducted on the quality index (QI) of
seven quality grade fresh tea samples, all of which showed statistical significance (p < 0.05). Fur-
ther, there was a good linear relationship between the QI, quality grades, and purchase price of
fresh tea samples, with the determination coefficient being greater than 0.99. Then, the original
near-infrared spectra of fresh tea samples were obtained and preprocessed, with the combination
(standard normal variable (SNV) + second derivative (SD)) as the optimal preprocessing method.
Four spectral intervals closely related to fresh tea prices were screened using the synergy inter-
val partial least squares (si-PLS), namely 4377.62 cm−1–4751.74 cm−1, 4755.63 cm−1–5129.75 cm−1,
6262.70 cm−1–6633.93 cm−1, and 7386 cm−1–7756.32 cm−1, respectively. The genetic algorithm
(GA) was applied to accurately extract 70 and 33 feature spectral data points from the whole de-
noised spectral data (DSD) and the four characteristic spectral intervals data (FSD), respectively.
Principal component analysis (PCA) was applied, respectively, on the data points selected, and
the cumulative contribution rates of the first three PCs were 99.856% and 99.852%. Finally, the
back propagation artificial neural (BP-ANN) model with a 3-5-1 structure was calibrated with the
first three PCs. When the transfer function was logistic, the best results were obtained (Rp

2 = 0.985,
RMSEP = 6.732 RMB/kg) by 33 feature spectral data points. The detection effect of the best BP-ANN
model by 14 external samples were R2 = 0.987 and RMSEP = 6.670 RMB/kg. The results of this study
have achieved real-time, non-destructive, and accurate evaluation and digital display of purchase prices
of fresh tea samples by using NIRS technology.

Keywords: fresh tea leaves; price; near-infrared spectroscopy; synergy interval partial least squares;
back propagation-artificial neural network; transfer function

1. Introduction

Enshi Yulu is a famous historical tea produced in Enshi City, Hubei Province. It is
the only steamed green tea and is a national geographical indication protection product
in China [1]. Its brand reputation is well-known at home and abroad, and is often used to
entertain foreign guests in state events. Enshi Yulu Nature Reserve is located in the range
of 450–850 m above sea level. The climate is warm and humid all year round, and the
clouds and mists around the day and night produce more diffuse light and short-wave
ultraviolet light, making the fresh tea buds and leaves tenderer, and the contents of protein,
amino acid and alkaloid are very rich, which lays a solid material foundation for forming
the excellent quality of Enshi Yulu.
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As is known to all, the quality of fresh tea leaves is the basis of the tea quality [2]. For
example, before Enshi Yulu is processed, there are clear regulations on the quality of fresh
tea leaves [3]; for example, the special grade one Enshi Yulu requires fresh tea leaves of a
single bud to exceed 95% so that the raw materials are fresh and uniform, without red bud
leaves, purple bud leaves, disease and insect bud leaves, and rain leaves. Due to the high
requirements on the quality of fresh tea leaves, the purchase price of Enshi Yulu fresh tea
leaves is higher than that of ordinary fresh tea leaves.

Generally speaking, tea gardens are usually planted and managed by tea farmers,
and tea processing factories are responsible for purchasing and processing fresh tea leaves.
When purchasing, the purchasing personnel usually determine the quality grade of fresh
tea leaves based on their own sense organs, such as smell, vision, and touch, and personal
experience, and then give the corresponding purchase price. For example, Zhang Jun [4]
has established a relationship between the quality and price of jasmine tea. However,
the sensitivity of human sense organs is easily affected by their own work experience,
physiological conditions at that time, and external conditions (such as the surrounding
environment, weather, temperature, and humidity), and has greater subjectivity, so most
of the time the purchaser and the tea farmer could not reach an agreement on the deter-
mination of the purchase price of fresh tea leaves, resulting in many conflicts. To create
an effective method to weaken the limitations of sensory quality analysis and compensate
for the shortcomings (e.g., subjectivity, unpredictability, and inconsistency) of sensory
evaluation, researchers have been devoted to developing various instrumental analytical
techniques to evaluate the quality of fresh tea leaves based on their physical and chemical
profiles, such as liquid chromatography-mass spectrometry [5], gas chromatography–mass
spectrometry [6], and high-performance liquid chromatography [7]. Then, the quality
index (QI) of fresh tea leaves was computed by selecting proprietary ingredients [8] in
order to evaluate the purchase price based on quality. Although the chemical method has
high detection accuracy, the process is extremely cumbersome and requires many chemical
reagents. In addition, the detection process is time-consuming and laborious, and cannot
have timeliness. It is still unable to achieve the rapid evaluation of the purchase price of
fresh tea leaves. Therefore, in order to effectively alleviate the distrust between tea factories
and tea farmers and increase their mutual trust between each other, it is urgent to establish
an objective, fair, and rapid method for digitally evaluating the purchase price of Enshi
Yulu fresh tea leaves.

Near-infrared spectroscopy (NIRS), an electromagnetic wave with a wavelength in
the range of 780–2526 nm, mainly reflecting the X–H chemical bond, has the advantages of
rapid and non-destructive analysis, and now has been widely used in agriculture [9–11],
the petrochemical industry, the textile industry, and the pharmaceutical industry [12,13].
NIRS combined with CARS-PLS and si-PLS methods, has been broadly used to predict the
amounts of polyphenols, caffeine [14], and other components in tea [15], assess the quality
of fresh tea leaves using QI values [16], and discriminate the tea varieties [17]. However, at
present, there are few reports on the application of near-infrared spectroscopy technology
to evaluate the purchase price of fresh tea leaves, and further research is needed.

In this paper, fresh tea leaves of the Entaizao tea varieties in the Enshi Yulu Nature
Reserve were used as the research objects, the quality index (QI) of different quality
grades (QG) were calculated, and the corresponding relationship between QI, QG, and the
purchase price was clarified. Then, NIRS were obtained, and the spectral noise information
was removed by various pre-processing methods. The characteristic spectral data was
extracted by using the synergy interval partial least squares (si-PLS) method and genetic
algorithm (GA), then the principal component analysis (PCA) method was applied to
compress and extract the above characteristic spectral information, and finally, the back-
propagation artificial neural network (BP-ANN) method combined with three transfer
functions was used to establish a NIRS digital model of the purchase price. The actual
application effect of the model was tested using external samples. This study can provide a
convenient new method for the rapid, non-destructive, objective, and digital evaluation of
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the purchase price of Enshi Yulu fresh tea leaves, striving to overcome subjective factors and
laying a solid scientific foundation for the next step of developing a portable near-infrared
spectrometer for the purchase price of fresh tea leaves.

2. Materials and Methods
2.1. Samples and Classification of Fresh Tea Leaves

Samples of Entaizao tea variety fresh tea leaves were picked from March to May 2022.
The sample standard was one bud, one bud and the first leaf, one bud and the first two leaves,
and one bud and the first three leaves. Then, seven quality grades of fresh tea processing
samples were mixed with the above fresh tea leaves [3] (Table 1), (grade 1 samples have the
best quality, while grade 7 samples have the worst quality). Each grade had 8 samples and
each sample were approximately 100 g. In order to ensure the fairness of fresh leaf prices,
in this study the price was set by a team of three people, including one fresh leaf purchaser,
one tea expert, and one tea farmer. The prices of fresh leaf tea are set based on the quality
of fresh leaves. The quality of fresh leaves is closely related to their tenderness, integrity,
uniformity, and purity. The better the tenderness of fresh leaves, the fresher they are, which
is beneficial for kneading and shaping during processing. The integrity of fresh leaves
is good, indicating that the buds and leaves of fresh leaves are not separated, and the
finished tea has less broken tea. The high uniformity of fresh leaves indicates that the
picking standards for fresh leaves are consistent, making it easy to use the same processing
parameters and improving the utilization rate of fresh leaves. The purity of fresh leaves is
good, indicating that there are fewer impurities in the fresh leaves, such as grass leaves
and other leaves. Therefore, the better the quality of fresh leaves, the higher the price of the
fresh leaves. In addition, considering the market demand factor and local price levels when
purchasing fresh leaves, the average purchase price of fresh leaves from grade 1 to grade 7
ranges from 30 RMB/kg to 220 RMB/kg in this research. According to the different quality
grades, of the 56 samples, 42 were selected for the calibration set model and 14 were used
for validation, with a ratio of 3:1. Additionally, 14 samples purchased from the local market
were used to test the effectiveness of the price calibration model.

Table 1. Composition of seven grades fresh tea leaves samples (fresh weight ratio/%).

Tenderness Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7

Bud 100 0 0 0 0 0 0
One bud and first leaf 0 100 85 75 25 0 0

One bud and two leaves 0 0 15 25 75 75 25
One bud and three leaves 0 0 0 0 0 25 75

2.2. Spectral Collection

Near-infrared spectroscopy (NIRS) data were acquired using a Thermo Antaris II
Fourier transform (FT) NIR spectrometer (Thermofisher Scientific, Waltham, MA, USA) in
reflectance mode, equipped with an InGaAs detector and an integrating sphere accessory.
To obtain the spectral data, 10 g of the fresh tea samples were placed in a sample cup that
rotated 360◦ during scanning. The spectral range was between 10,000 cm−1 and 4000 cm−1,
with 3.857 cm−1 intervals. Each sample was scanned three times, and the average spectrum
of the three scans was used for subsequent analysis (Figure 1).
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2.3. Spectral Data Analysis

Due to the distance between adjacent spectral data points being 3.857 cm−1, the near-
infrared spectrum of each sample contains 1557 pairs (x, y) of data points (x as spectral data
points, y as absorbance) analyzed by TQ Analyst 9.4.45 software (Thermofisher Scientific,
Waltham, MA, USA). The data point pairs were saved in Excel sheets. Then, the PLS model
was built to select the best pretreatment method by using OPUS 7.0 software (Bruker Optik
GmbH., Saarbrucken, Germany). The feature spectral intervals were selected to build price
NIRS models by using the synergy interval partial least squares (si-PLS) method on the
Matlab 2012a software platform (MathWorks, Natick, MA, USA).

Before modeling, in order to effectively eliminate extraneous background and noise
information and enhance model performance, various spectral preprocessing techniques
were employed, including spectral free preprocessing (none), standard normal variable
(SNV), first derivative (FD), second derivative (SD), multiple scatter correction (MSC), and
their combined methods, to remove noise from the original spectra [18]. After comparing
the results, the optimal preprocessing method was determined.

2.4. Modeling Methods
2.4.1. Synergy Interval Partial Least Squares (si-PLS) Method

The si-PLS method can divide the whole spectral data set into a number of intervals
(10–25), and all possible PLS models combinations for two, three, or four intervals are
calculated [19]. The spectral regions most relevant to the price are selected according to
the root mean square error of cross-validation (RMSECV) in the calibration set. When the
si-PLS model has the lowest RMSECV, the modelled spectral intervals are the selected
feature spectral intervals, which contain the NIR information specific to the price of fresh
tea samples.

The RMSECV was calculated as follows:

RMSECV =

√
∑n

i=1
(
y′i − yi

)2

n
(1)

where n is the number of samples in the calibration set, yi is the true value for sample i, and
y′i is the theoretical value for sample i predicted from the calibration set.
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2.4.2. Genetic Algorithm (GA)

The GA refers to natural selection and genetic mechanism in the biological world [20].
It uses operators such as selection, exchange, and mutation. With continuous genetic
iteration, the variables with better objective function values are retained, and the poor
variables are eliminated, and lastly, the optimal results are achieved. In this paper, the GA
is applied to obtain the optimal NIRS data points, when RMSECV is at its minimum.

2.4.3. Principal Component Analysis (PCA) and Backpropagation Artificial Neural
Network Method (BP-ANN)

PCA [21] was performed on the best spectral intervals and data points obtained by
the si-PLS method and GA method, respectively. It is the compression and extraction of
spectral information to obtain the contribution rates of each principal component, which is
used to establish a BP-ANN model.

The BP-ANN [22] has emerged as a research hotspot in the field of artificial intelligence
in recent years. It abstracts the neural network of the human brain from the perspective of
information processing, forms different networks according to different connection modes,
and is composed of a large number of neurons connected with each other. Each node
represents a specific transfer function. By establishing the connection between input data
and output data, a prediction model can be established. The results were evaluated based
on the coefficient of determination of cross-validation (Rc2), coefficient of determination
of prediction (Rp2), root mean square error of cross-validation (RMSECV), and root mean
square error of prediction (RMSEP). A higher R2 and a lower RMSEP indicate better
prediction performance. The equations used to calculate RMSEP and R2 are provided.

The RMSEP was calculated as follows:

RMSEP =

√
∑n

i=1
(
yi − y′i

)2

n
(2)

where n is the number of samples in the prediction set, yi is the true value of sample i and
y′i is the predicted value of sample i in the prediction set.

The R2 was calculated as follows:

R2 = 1− ∑n
i=1 (y

′
i − yi)

2

∑n
i=1 (y

i
i − y)2 (3)

where yi and y′i are the true value and predicted value of sample i, respectively, and y is
the average true value of all samples.

3. Results and Discussion
3.1. The Relationships between Quality Grade, Quality Index, and Purchase Price of Fresh
Tea Samples

According to the formula for calculating the quality index (QI) (QI = (humidity con-
tent × total nitrogen content) ÷ crude fiber content) [23], the QI values of seven quality
grades of fresh tea samples were obtained and a paired t-test was conducted. The results
are shown in Table 2.

Table 2 shows that the value of t (1v2) was the smallest at 3.25, but it was still greater
than the critical value of 2.365 (t0.05 (7) = 2.365). Therefore, there was significant statistical
significance (p < 0.05) between the first and second QG of fresh tea samples. The t-values
among the other QG were all greater than the critical value of 3.499 (t0.01 (7) = 3.499), so
there was extremely significant statistical significance (p < 0.01) among the other QG of
fresh tea samples. Therefore, Table 2 confirms the correctness of the classification of fresh
tea samples, laying a foundation for the next research on the purchase prices of fresh tea
samples of different quality grades.

Figure 2 shows that as the quality of fresh tea samples gradually decreased from grade
1 to grade 7, their QI values also showed a gradual downward trend. The QI of grade 1
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fresh tea leaves was the highest at 0.552, while the QI of grade 7 fresh tea leaves was the
lowest at 0.383. From grade 1 to grade 7, the QI values decrease by 30.6%, indicating that
the quality of the mixed fresh tea samples was very reasonable, and there was a good linear
relationship between the quality grades and the quality index, with an excellent correlation,
an R2 of 0.9974.

Table 2. The t values between QI of seven quality grades fresh tea samples.

Grades 1 2 3 4 5 6 7

1 - 3.25 4.23 6.33 9.12 9.31 11.76
2 3.25 - 3.98 5.85 8.82 8.87 11.65
3 4.23 3.98 - 5.20 8.16 8.05 10.63
4 6.33 5.85 5.20 - 7.52 7.48 9.35
5 9.12 8.82 8.16 7.52 - 6.68 8.26
6 9.31 8.87 8.05 7.48 6.68 - 5.21
7 11.76 11.65 10.63 9.35 8.26 5.21 -

Note: t0.05(7) = 2.365; t0.01(7) = 3.499 [24].
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Figure 2 also shows that as the quality of fresh tea samples gradually decreased,
their average purchase prices decreased rapidly from the highest 220 RMB/kg for grade
1 to 30 RMB/kg for grade 7. By fitting the relationship between the quality grade and the
purchase price of fresh tea samples, the correlation was excellent, and the R2 was as high as
0.9954. Therefore, there was a good linear relationship between the quality grade and the
purchase price of fresh tea samples.

Figure 3 shows that by fitting the linear relationship between the average QI values
and their corresponding average purchase prices of seven grades of fresh tea samples, it
was found that there was also an excellent linear relationship between the two factors, with
an R2 as high as 0.9973. Therefore, based on the quality of fresh tea samples, it will be a
completely feasible and convenient method to quickly and non-destructively predict the
purchase price of fresh tea leaves by using NIRS technology.
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3.2. Comparison of Pre-Processing Methods for Spectral Data

Figure 1 shows that the spectra exhibit multiple absorption peaks in the long wave
band (4000–7000 cm−1), primarily due to the presence of water −OH [25] and various
components of varying quality in the NIRS absorption information of fresh tea samples.
Prior to model building, nine spectral preprocessing methods were employed to pretreat
the NIR spectra of fresh tea samples with varying quality prices. Subsequently, PLS was
utilized to construct NIRS models. The performance of the models was evaluated using
RMSECV and Rc2, with a higher Rc2 and lower RMSECV indicating better pretreatment
methods. The results of all the pre-treatment models are presented in Figure 4.
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In Figure 4, among the nine models, the NIRS models built with the original spectra
yielded the worst results (Rc2 = 0.526, RMSECV = 32.501 RMB/kg). The models with
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a single preprocessing method, specifically the MSC pretreatment method, showed bet-
ter results (Rc2 = 0.685, RMSECV = 25.742 RMB/kg), but the prediction results were
still inferior to those obtained with combined pre-treatment methods. The NIRS model
built using the (SNV+SD) combined method produced the best results (Rc2 = 0.732,
RMSECV = 24.817 RMB/kg), representing a 39.16% increase in Rc2 and a 23.64% de-
crease in RMSECV compared to the original spectra NIR model. Therefore, it is crucial to
pretreat the original spectra before building NIRS models, which is consistent with previous
findings [26]. In this study, the best spectral pretreatment method was the combination of
(SNV + SD), and the Rc2 and RMSECV of the best calibration model built using the
PLS method were 0.732 and 24.817 RMB/kg, respectively. This is because the SNV pre-
processing method is used to correct spectral errors caused by scattering between samples;
moreover, each spectrum is individually corrected separately. Its correction ability is supe-
rior to the MSC method. A derivative pre-treatment method can eliminate spectral baseline
drift, enhance spectral band characteristics, and overcome spectral band overlap. Because
there is less information directly reflecting the purchase price in NIRS, the application of
a second derivative spectral pre-treatment method can highlight the NIRS information
reflecting the purchase price. Therefore, the best spectral pre-treatment method obtained in
this experiment was the combined method of (SNV + SD) [27]. However, the performance
was still unsatisfactory, and there is still ample room for improvement in the results.

3.3. Results of si-PLS Model

As seen from Table 3, all spectra were divided into 10–25 spectral sub-intervals. Along
with the numbers of the spectral intervals gradually increasing, the RMSECV of the si-PLS
models showed a trend of gradually decreasing and then slowly increasing, but the PLS
factors changed were not significant, with a range from 7 to 10. When the number of sub-
regions was 16, and the factor number was 8, the results of the calibration model had the
best performances, meaning the RMSECV value was the least, 15.340 RMB/kg. The selected
spectral regions were the four regions of [2 3 7 10], and the corresponding spectral wavelengths
were 4377.62 cm−1–4751.74 cm−1, 4755.63 cm−1–5129.75 cm−1, 6262.70 cm−1–6633.93 cm−1,
and 7386 cm−1–7756.32 cm−1, respectively. The Rc

2 of the calibration model was 0.783. When
the prediction samples were used to test the NIRS calibration model, the Rp

2 and RMSEP were
0.746 and 17.252 RMB/kg, respectively. Although the data information of the characteristic
spectral range accounted for 25% of the all-spectral data information, the si-PLS prediction
results were better than that PLS model. But, in practical applications, the accuracy of the
si-PLS model still needs to improve further. Therefore, nonlinear methods were applied to
establish a prediction model for the purchase prices of fresh tea leaves.

Table 3. Results of si-PLS calibration model selected different spectral regions.

Number of Intervals PLS Factors Selected Intervals RMSECV (RMB/kg)

10 9 [1 4] 27.656
11 10 [1 3 7 12] 27.143
12 10 [5 8 10 12] 25.632
13 8 [6 7 10 11] 22.512
14 9 [1 8 10 12] 19.647
15 9 [1 4 7 10] 17.251
16 8 [2 3 7 10] 15.340
17 9 [1 7 12 14] 15.785
18 9 [2 9 10 14] 16.431
19 9 [4 6 8 12] 16.876
20 7 [3 7 11 13] 17.122
21 10 [3 5 7 14] 17.524
22 9 [10 12 15 18] 17.936
23 9 [1 4 7 8] 18.451
24 9 [1 4 8 11] 18.624
25 9 [4 8 11 19] 18.875
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3.4. Results of BP-ANN Model
3.4.1. Accurately Screening of Characteristic Spectral Data Points Using GA

In order to further improve the NIRS model prediction accuracy of purchase prices,
the GA was applied to accurately extract spectral data points that reflect the purchase prices
from whole denoised spectral data (DSD) and the four characteristic spectral intervals data
(FSD) selected by si-PLS method, respectively. The RMSECV and the corresponding filtered
feature spectral data points are shown in Figures 5 and 6.
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Figures 5 and 6 show that, in the process of applying GA to extract feature spectral
data points further accurately, whether for the DSD and FSD, as the feature spectral data
points gradually increased, the RMSECV value showed a trend of rapidly decreasing to the
minimum values and then gradually increasing. Among them, when the minimum RMSECV
obtained 24.602 RMB/kg, 70 optimal spectral data points were extracted for DSD. Also, when
the minimum RMSECV obtained 15.106 RMB/kg, 33 optimal data points were extracted for
FSD. Comparing the results of Figure 4, the proportion of spectral data points (70 data points)
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extracted using the GA method to all spectral data points (1557 data points) was only 4.62%,
but the RMSECV value was lower than the full wavelength PLS model (24.817 RMB/kg),
indicating a slight improvement in prediction accuracy. Similarly, comparing the results
of Figure 6 and Table 3, a total of 390 spectral data points were found in the four selected
feature spectral intervals in Table 3. After further extraction, a total of 33 feature spectral data
points were obtained, accounting for only 8.21% of the FSD. However, the RMSECV value
(15.106 RMB/kg) was lower than the si-PLS model (RMSECV = 15.340 RMB/kg), indicating
a slight improvement in the model’s prediction accuracy. From the above results, it can be
further concluded that the GA had better spectral information extraction ability, which not
only has eliminated noise information unrelated to purchase prices, but has also reduced the
amount of data input to the model, which was very conducive to improving the prediction
ability [28]. The extracted feature spectral data points are shown in Table 4.

Table 4. Feature spectral data points extracted by GA.

Spectral Information Feature Spectral Data Points (cm−1)

DSD (70)

4269.63, 4393.05, 4477.90, 4524.18, 4720.89, 4801.88, 4805.74, 4859.74, 4863.59, 4894.45, 4956.16,
4994.73, 5095.01, 5376.57, 5399.71, 5411.28, 5430.56, 5434.42, 5442.13, 5457.56, 5472.99, 5507.70,
5515.42, 5650.41, 5661.98, 5665.84, 5669.69, 5673.55, 5719.83, 5766.12, 5773.83, 5881.82, 6032.24,
6086.24, 6194.24, 6201.95, 6545.22, 6857.63, 6984.91, 7108.33, 7131.47, 7208.61, 7231.75, 7289.60,
7308.89, 7328.17, 7339.74, 7343.60, 7347.46, 7374.46, 7382.17, 7432.31, 7532.59, 7567.30, 7636.73,
7667.58, 7729.29, 7760.15, 7837.29, 7891.29, 7899.00, 8022.42, 8296.26, 8697.39, 8701.24, 8708.96,
8751.38, 9044.51, 9414.77, 9569.05.

FSD (33)
4474.04, 477.90, 4481.76, 4574.32, 4605.18, 4612.89, 4778.74, 4782.60, 4786.45, 4805.74, 4809.60,
4821.17, 4879.02, 4882.88, 4936.88, 4940.73, 4987.02, 5079.58, 5083.44, 5087.30, 5106.58, 5110.44,
5114.29, 6286.80, 6313.80, 6506.65, 6541.36, 6545.22, 6603.07, 6317.66, 6321.51, 6549.07, 7706.15.

From Table 4, it can be concluded that the characteristic spectral data points of DSD had a
distribution within the full wavelength range, indicating that the data points can better represent
the DSD information. Among the feature spectral data points extracted from FSD, a total of
23 feature spectral data points were extracted in the range of 4377.62 cm−1–5129.75 cm−1,
9 feature spectral data points were extracted in the range of 6262.70 cm−1–6633.93 cm−1, while
only 1 feature spectral data point was extracted in the range of 7386 cm−1–7756.32 cm−1. This
was because the near-infrared spectral information of fresh tea leaves was mainly reflected in
the long wavelength range, which contained more spectral information reflecting the price of
fresh tea leaves, and the established model results will also be better [29].

3.4.2. Principal Component Analysis (PCA)

PCA was applied to extract feature spectral data points and compress the spectral
information. The results of the PCA were as follows.

From Table 5, it can be concluded that the contribution rates of PC1 for the DSD 70 data
points and FSD 33 data points were both higher, reaching 94.828% and 93.101%, respectively.
As the increasing of PC2 in the FSD data points has exceeded the increasing of PC2 in
the DSD data points (net increase of 2.506%), PC (1–2) was higher than the cumulative
contribution rate of the DSD data points. However, the cumulative contribution rates of
the first three PCs were very close, at 99.856% and 99.852%, respectively, and so extremely
close to 100%. According to the PCA principle [30], the first three PCs can fully represent
the extracted spectral data point information, further proving the powerful information
extraction ability of the genetic algorithm. From Figure 7, it can be concluded that within
the same spatial range, the vast majority of the samples in Figure 7a were distributed
within the ranges of −1.0 < score1 < 1.5 and −0.3 < score2 < 0.2, while the vast majority
of the samples in Figure 7b were distributed within the ranges of −1.0 < score1 < 1.0 and
−0.25 < score2 < 0.2. The distribution space of the samples in Figure 7b was smaller, and the
clustering effect was more prominent. This will lay a good foundation for the establishment
of the BP-ANN model in the next step.
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Table 5. Cumulative contribution rate of the first six principal components.

PCs PC1 PC (1–2) PC (1–3) PC (1–4) PC (1–5) PC (1–6)

Cumulative contribution rate of DSD
70 data points/% 94.828 98.558 99.856 99.934 99.968 99.981

Cumulative contribution rate of FSD
33 data points/% 93.101 99.338 99.852 99.957 99.986 99.992

Foods 2023, 12, x FOR PEER REVIEW 12 of 16 
 

 

Figure 7b was smaller, and the clustering effect was more prominent. This will lay a good 
foundation for the establishment of the BP-ANN model in the next step. 

Table 5. Cumulative contribution rate of the first six principal components. 

PCs PC1 PC (1–2) PC (1–3) PC (1–4) PC (1–5) PC (1–6) 
Cumulative 

contribution rate of 
DSD 70 data points/% 

94.828 98.558 99.856 99.934 99.968 99.981 

Cumulative 
contribution rate of 

FSD 33 data points/% 
93.101 99.338 99.852 99.957 99.986 99.992 

 
Figure 7. PC1 vs PC2 distribution of different price fresh tea samples. Note: (a) was PC1 vs PC2 
distribution of DSD 70 data points; (b) was PC1 vs PC2 distribution of FSD 33 data points. 

3.4.3. BP-ANN Model 
According to the PCA results, the first three PCs were as input values and the prices 

were as output values, while the BP-ANN method was used to establish the NIRS models 
using DSD data points and FSD data points, respectively. During the process of 
establishing the model, the number of hidden layers was continuously adjusted to obtain 
the best prediction model. After repeated adjustments, a three-layer BP-ANN prediction 

Figure 7. PC1 vs PC2 distribution of different price fresh tea samples. Note: (a) was PC1 vs PC2
distribution of DSD 70 data points; (b) was PC1 vs PC2 distribution of FSD 33 data points.

3.4.3. BP-ANN Model

According to the PCA results, the first three PCs were as input values and the prices
were as output values, while the BP-ANN method was used to establish the NIRS models
using DSD data points and FSD data points, respectively. During the process of estab-
lishing the model, the number of hidden layers was continuously adjusted to obtain the
best prediction model. After repeated adjustments, a three-layer BP-ANN prediction
model with a 3-5-1 structure was finally obtained using three different transfer func-
tions. This study compared the price NIRS models of three transfer functions, namely the
linear [−1, 1] function, logistic function, and tanh function, and the results of the BP-ANN
models were as follows.

Table 6 shows that the Rc
2 and RMSECV of the calibration price NIRS model estab-

lished by the linear [−1, 1] transfer function were 0.845 and 11.164 RMB/kg, respectively.
When 14 prediction samples were used to verify the robustness, Rp

2 and RMSEP were
0.812 and 14.014 RMB/kg, respectively. The Rc2 and RMSECV of the calibration price NIRS
model established by the tanh transfer function were 0.883 and 10.135 RMB/kg, respectively.
When the robustness was verified by 14 prediction samples, the Rp

2 and RMSEP were 0.857
and 10.875 RMB/kg, respectively. The Rc2 and RMSECV of the calibration price NIRS
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model established by logistic transfer function were 0.912 and 8.436 RMB/kg, respectively.
When the robustness was verified by 14 prediction samples, the Rp

2 and RMSEP were 0.873
and 10.364 RMB/kg, respectively.

Table 6. The results of BP-ANN model established by DSD data points.

Transfer
Functions

Calibration Set Prediction Set

Rc
2 RMSECV

(RMB/kg) Rp
2 RMSEP

(RMB/kg)

linear [−1, 1] 0.845 11.164 0.812 14.014
tanh 0.883 10.135 0.857 10.875

logistic 0.912 8.436 0.873 10.364

Table 7 shows that the Rc
2 and RMSECV of the calibration price NIRS model estab-

lished by the linear [−1, 1] transfer function were 0.877 and 10.863 RMB/kg, respectively.
When 14 prediction samples were used to verify the robustness, the Rp

2 and RMSEP were
0.852 and 10.463 RMB/kg, respectively. The Rc2 and RMSECV of the calibration price NIRS
model established by the tanh transfer function were 0.925 and 7.912 RMB/kg, respectively.
When the robustness was verified by 14 prediction samples, the Rp

2 and RMSEP were 0.905
and 7.923 RMB/kg, respectively. The Rc2 and RMSECV of the calibration price NIRS model
established by logistic transfer function were 0.989 and 5.825 RMB/kg, respectively. When
the robustness was verified by 14 prediction samples, the Rp

2 and RMSEP were 0.985 and
6.732 RMB/kg, respectively.

Table 7. The results of BP-ANN model established by FSD data points.

Transfer
Functions

Calibration Set Prediction Set

Rc
2 RMSECV

(RMB/kg) Rp
2 RMSEP

(RMB/kg)

linear [−1, 1] 0.877 10.863 0.852 10.463
tanh 0.925 7.912 0.905 7.923

logistic 0.989 5.825 0.985 6.732

From the BP-ANN model results of the three different transfer functions, the model
built by linear [−1, 1] transfer function had the worst results, meaning the smallest R2

and the largest error. This may be because fresh tea leaves are the site of photosynthesis
in tea trees, which produces a large number of chemical substances inside, resulting in
extremely rich and complex NIRS information. Moreover, the main substance inside fresh
tea leaves is water, accounting for approximately 75% of the fresh weight of the leaves
and occupying two very large absorption peaks (5100 cm−1 and 6900 cm−1) in the NIRS.
Therefore, this NIRS information will be squeezed, covering spectral information related to
the purchase price of fresh tea leaves, a simple linear relationship is no longer sufficient
to establish a satisfactory NIRS price prediction model. Therefore, the BP-ANN model
established using the linear transfer function in this study had the worst results. The
tanh transfer function is a hyperbolic tangent and nonlinear transfer function with wide
applicability [31], and is a widely used transfer function. Therefore, the modeling results of
the tanh transfer functions with nonlinearity were slightly better than those of the linear
models. The logistic function is an S-shaped nonlinear function [32], a monotone rising
function, with good continuity, and the established model is relatively stable. Therefore,
among the BP-ANN models established by the three transfer functions, the model results
obtained by the logistic function were the best. The results of the calibration model and the
prediction model were relatively close, indicating that the model was relatively stable, and
there was no overfitting phenomenon.

From the comparison of the results in Tables 6 and 7, it can also be found that using the
same samples, methods, and transfer functions, the results of the model were different due
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to the different input data point information. The model results of using 33 spectral data
points extracted from FSD were better than those using 70 spectral data points extracted
from DSD, proving the superiority of the GA in extracting spectral data points most closely
related to fresh tea price. It was also proved the superiority of the BP-ANN algorithm. In
this study, the results established by the BP-ANN method were better than those obtained
by the linear si-PLS method. For samples with very complex internal material compo-
nents, such as fresh tea leaves, the nonlinear method was a better method for establishing
the purchase price model compared to the si-PLS method. The predicted results of the
14 external samples are shown in Table 8 (R2 = 0.987, RMSEP = 6.670 RMB/kg).

Table 8. Prediction results of 14 external samples (RMB/kg).

No. True Values Predicted
Values No. True Values Predicted

Values

1 32.5 25.65 8 125 132.2
2 34 40.1 9 146 154.2
3 65 60.5 10 150 142.65
4 73 79.25 11 180 186.3
5 85 80.25 12 186 180.6
6 93 87.62 13 210 200.4
7 118 110.4 14 213 219.0

4. Conclusions

In this study, NIRS technology combined with the si-PLS, GA, PCA, and BP-ANN
methods was used to successfully establish a robust NIRS digital prediction model for the
purchase price of fresh tea leaves. The main conclusions were as follows.

(1) The QI, seven quality grades, and purchase price of fresh tea samples have shown a
linear relationship in pairs, with the R2 being greater than 0.99. The QI of the seven
grades fresh tea samples all had statistical significance (p < 0.05).

(2) The best preprocessing method for the original spectra was the combination method of
(SNV+SD); four spectral intervals closely related to fresh tea prices were screened out
using the si-PLS method, namely 4377.62 cm−1–4751.74 cm−1, 4755.63 cm−1–5129.75 cm−1,
6262.70 cm−1–6633.93 cm−1, and 7386 cm−1–7756.32 cm−1.

(3) The GA was applied to accurately extract 70 feature spectral data points and 33 feature
spectral data points from DSD and FSD, respectively. The cumulative contribution
rates of the first three PCs were 99.856% and 99.852%, respectively; However, the
spatial distance of the samples extracted from FSD was smaller, and the clustering
effect was more pronounced.

(4) The BP-ANN model of price was constructed with the 3-5-1 structure, and the best results
were obtained using the logistic transfer function (Rp

2 = 0.985, RMSEP = 6.732 RMB/kg).
The model results established by 33 feature spectral data points were slightly better than
those of 70 feature spectral data points.

In the process of applying this model in the future, it is necessary to expand the range
of fresh tea samples at different prices, add samples at different seasons, and establish a
more comprehensive and robust prediction model. Then, the price model will be firstly
applied to the Enshi Yulu Nature Reserve, providing technological support for the quality
of fresh leaves of Enshi Yulu, in order to accumulate application experience.

In addition to continuously improving the prediction accuracy of the model, the
consideration of factors such as local fresh tea leaf varieties is also needed to gradually
obtain a more refined prediction model. On this basis, the application of the model will
be gradually expanded to the whole Hubei province or even to all tea producing areas in
China, providing favorable technological support for improving tea quality and promoting
high-quality development in the tea industry.
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