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Abstract: Emulsions form a large group of food materials. Many foods are either partly or wholly
emulsions or are in the form of emulsion at some stage of the production process. A good under-
standing of the rheological properties of emulsions, especially their shear viscosity, is essential in
the design, formulation, and processing of food emulsions. The texture and mouthfeel of food
emulsions are also largely influenced by emulsion viscosity. Therefore, it is of practical importance
to be able to correlate and predict emulsion viscosity as a function of droplet concentration and
other relevant variables. In this article, the recent developments made in the viscosity modeling of
concentrated emulsions are reviewed. The viscosity models for concentrated emulsions published in
the twenty-first century are discussed, compared, and evaluated using a large body of experimental
viscosity data available on emulsions. The effects of droplet size distribution and capillary number
on the viscosity of concentrated emulsions are also discussed in detail. A new generalized viscosity
model is developed for concentrated emulsions that includes the effect of capillary number and is
accurate with small average percent relative error (within 3%).

Keywords: rheology; viscosity; relative viscosity; viscosity models; capillary number; emulsion;
dispersion; droplets; oil-in-water; water-in-oil

1. Introduction

Emulsions are heterogeneous mixtures of immiscible oil and aqueous phases. Oil-
in-water (abbreviated O/W) emulsions consist of oil droplets distributed in a continuum
of aqueous phase. Water-in-oil (abbreviated W/O) emulsions consist of water droplets
distributed in a continuum of oil phase [1]. Emulsions are very important in food applica-
tions [1–8]. Many delicious foods are either partly or wholly emulsions or are in emulsion
form at some stage of the production process. For example, mayonnaise is an O/W emul-
sion consisting of vegetable oil droplets suspended in an aqueous phase containing egg
yolks, lemon juice or vinegar, and mustard. The fat (oil droplets) content of mayonnaise
ranges from about 70 to 80 percent. Other examples of food emulsions are butter, cream,
cake batters, coffee whitener, desserts, fruit beverages, ice cream, margarine, milk, soups,
sausages, sauces, and salad dressings. Many food emulsions are complex fluids consisting
of additives such as sugar, salts, vitamins, minerals, food-grade surfactants, proteins, gums,
colors, and flavors, in addition to oil and water. However, the most important components
of food emulsions from a rheological point of view are their oil and water content. Table 1
gives examples of the composition of some emulsion-based food products.

An understanding of the rheology of emulsions is essential in the design and for-
mulation of emulsion-type foods with desired sensory, nutritional, and physicochemical
properties [2]. The design and operation of equipment required to mix, process, trans-
port, store, and pump emulsion-based foods also require a thorough understanding of the
rheology of emulsions.
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Table 1. Examples of emulsion-type foods.

Food Type Emulsion Type Inclusions Suspending Medium Volume Percent of Inclusions

Milk O/W Oil globules Aqueous phase 3 to 4

Butter W/O Water globules Oil and fat crystals About 15

Margarine W/O Water globules Oil and fat crystals 15 to 50

Coffee whiteners O/W Oil globules Aqueous phase 10 to 15

Salad dressings O/W Oil globules Aqueous phase Larger than 30

The rheology of food emulsions can be complex depending upon the composition of
the food. In general, food emulsions exhibit the following rheological properties: shear
viscosity, elastic modulus, and yield stress. However, the most important rheological
property of food emulsions is their shear viscosity. The shear viscosity (simply viscosity)
of food emulsions is a function of factors such as the viscosity of the matrix phase, the
ratio of droplet viscosity to matrix viscosity, the concentration of the dispersed phase
(droplets), droplet size distribution, and shear rate. Food manufacturers are interested
in the measurement, prediction, control, and manipulation of shear viscosity of food
emulsions as viscosity affects the appearance, texture, mouthfeel, and processability of
emulsion-based foods.

The focus of this article is the shear viscosity of emulsions. The recent developments
in the modeling of the viscosity of concentrated emulsions are discussed. The viscosity
models for concentrated emulsions published in the twenty-first century are reviewed,
compared, and evaluated using a large body of experimental viscosity data available on
concentrated emulsions.

2. Theoretical Background
2.1. Infinitely Dilute Emulsions of Identical Droplets

For an infinitely dilute emulsion consisting of identical droplets (same size, shape, and
material), the rheological equation of state can be written as [1]:

=
σ =

=
σo +

(
3ϕ

4πR3

)
=
S o (1)

where
=
σ is the stress tensor in an emulsion,

=
σo is the stress tensor in the suspending medium

(matrix) at the same rate of strain tensor as that imposed on an emulsion,
=
S o is the dipole

strength of a spherical droplet, ϕ is the volume fraction of droplets, and R is the radius
of droplets.

The dipole strength of a spherical droplet is given as [1]:

=
S o =

4
3

πR3ηm

(
2 + 5λ

1 + λ

)
=
E (2)

where ηm is the matrix fluid viscosity, λ is the ratio of droplet viscosity to matrix fluid

viscosity, and
=
E is the imposed rate of strain tensor. Note that this expression of dipole

strength is valid at a low capillary number (Ca) where Ca is defined as:

Ca =
ηmR

.
γ

γ
(3)

γ is the interfacial tension between the two liquids (oil and water) and
.
γ is the imposed

shear rate. Equation (2) is valid in the limit Ca→ 0 where the droplet is spherical in shape.
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Assuming the matrix fluid to be incompressible Newtonian, the stress tensor in the
suspending medium or matrix fluid can be expressed as:

=
σo = −P

=
δ + 2ηm

=
E (4)

where P is pressure. From Equations (1), (2) and (4), it can be readily shown that:

=
σ = −P

=
δ + 2ηm

=
E
[

1 +
(

2 + 5λ

2 + 2λ

)
ϕ

]
(5)

This is the rheological constitutive equation for an infinitely dilute emulsion valid
at low capillary numbers ( Ca→ 0). From Equation (5), it follows that the viscosity of an
infinitely dilute emulsion of spherical droplets is:

η = ηm

[
1 +

(
2 + 5λ

2 + 2λ

)
ϕ

]
(6)

where η is emulsion viscosity. Equation (6) is the celebrated Taylor equation [9] for the
viscosity of an infinitely dilute emulsion of spherical droplets. The Taylor equation was
published in 1934.

Frankel and Acrivos [10] extended the Taylor relationship, Equation (6), to non-zero
capillary numbers by considering the first-order deformation of droplets in the shear field.
They derived the following expression for the relative viscosity of infinitely dilute emulsions:

ηr =
η

ηm
=

1

1 + (hCa)2

[
1 +

(
2 + 5λ

2 + 2λ

)
ϕ + (hCa)2

{
1 +

(
2 + 5λ

2 + 2λ

)
ϕ− 19λ + 16

(2λ + 2)(2λ + 3)
ϕ

}]
(7)

where ηr is the relative viscosity defined as the ratio of emulsion viscosity η to matrix fluid
viscosity ηm and h is given as follows:

h =
(19λ + 16)(2λ + 3)

40(λ + 1)
(8)

Note that in the limit Ca→ 0 , the Frankel and Acrivos equation, Equation (7), reduces
to the Taylor equation, Equation (6).

According to the Frankel and Acrivos model, emulsions exhibit a shear-thinning
behavior in that the emulsion viscosity decreases with the increase in shear rate or capillary
number. The shear-thinning in emulsions is due to the orientation and elongation of
droplets in the direction of flow with the increase in Ca.

2.2. Non-Dilute Emulsions of Identical Droplets

The Taylor model (Equation (6)) and the Frankel and Acrivos model (Equation (7))
were developed on the basis of a single-droplet mechanics. Hence, they are applicable
to infinitely dilute emulsions. They do not take into consideration any interactions be-
tween the neighboring droplets. At a finite concentration of droplets, the hydrodynamic
interactions between the droplets become important. Consequently, the viscosity of non-
dilute emulsions is much higher than the values predicted by the Taylor or Frankel and
Acrivos models.

Oldroyd [11] developed a model for the zero-shear ( Ca→ 0) viscosity of non-dilute
emulsions using an effective medium approach. The Oldroyd model is given as:

ηr =
1 + 3

2

[
5λ+2
5λ+5

]
ϕ

1− ϕ
[

5λ+2
5λ+5

] (9)
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Upon expansion, the Oldroyd model can be re-written as:

ηr = 1 +
(

2 + 5λ

2 + 2λ

)
ϕ +

(2 + 5λ)2

10(1 + λ)2 ϕ2 + . . . (10)

In the limit ϕ→ 0 , the Oldroyd model reduces to the Taylor equation. The Oldroyd
model is an improvement over the Taylor model. However, it underpredicts the relative
viscosities of emulsions when ϕ > 0.10.

Yaron and Gal-Or [12] and Choi and Schowalter [13] utilized the cell model approach
to develop the viscosity equations for non-dilute emulsions. In the limit of low capillary
numbers ( Ca→ 0), their equations are given as follows:

Yaron and Gal-Or:

ηr = 1 + ϕ

 5.5
{

4ϕ7/3 + 10− (84/11)ϕ2/3 + (4/λ)
(

1− ϕ7/3
)}

10
(
1− ϕ10/3

)
− 25ϕ

(
1− ϕ4/3

)
+ (10/λ)(1− ϕ)

(
1− ϕ7/3

)
 (11)

Choi and Schowalter:

ηr = 1 + ϕ

 2
{
(5λ + 2)− 5(λ− 1)ϕ7/3

}
4(λ + 1)− 5(5λ + 2)ϕ + 42λϕ5/3 − 5(5λ− 2)ϕ7/3 + 4(λ− 1)ϕ10/3

 (12)

In the limit ϕ→ 0 , the Yaron and Gal-Or model reduces to:

ηr = 1 + 2.2
(

2 + 5λ

2 + 2λ

)
ϕ (13)

Thus, the Yaron and Gal-Or model does not reduce to the Taylor equation in the limit
ϕ→ 0 . However, the Choi and Schowalter model reduces to the Taylor equation in the
limit ϕ→ 0 .

The major drawback of the emulsion viscosity equations derived based on the cell
model approach is that the equations derived are dependent on the size, shape, and
boundary conditions of the chosen cell. The boundary conditions used in the derivations
of Yaron and Gal-Or model and Choi and Schowalter model are different. Consequently,
they give different predictions of the relative viscosity of emulsions.

3. Recent Developments in the Viscosity Modeling of Concentrated Emulsions

In this section, the viscosity models for concentrated monodisperse emulsions devel-
oped in the twenty-first century are reviewed, compared, and evaluated using a large body
of experimental data available on the viscosity of concentrated monomodal emulsions.

Pal [14] used the effective medium theory to develop the following differential equa-
tion for concentrated monodisperse emulsions:

dη

dϕ
=

Koη

1− Ko ϕ

[
η + 2.5ηd

η + ηd

]
(14)

where ηd is the droplet viscosity and Ko = 1/ϕm (ϕm is the maximum packing volume
fraction of droplets). Upon the integration of Equation (14) with the boundary condition
η = ηm at ϕ = 0, the following equation for the viscosity of concentrated monodisperse
emulsions is obtained:

ηr

[
2ηr + 5λ

2 + 5λ

]3/2
=

(
1− φ

φm

)−2.5
(15)

This equation is referred to as model P1 in the remainder of this article.
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Starting from the Taylor emulsion viscosity equation, Equation (6), and utilizing the
effective medium approach along with the “crowding effect” of droplets, Pal [15] derived
the following differential for concentrated monodisperse emulsions:

dη = 2.5η

[
0.4η + ηd

η + ηd

]
d

 ϕ

1− φ
φm

 (16)

Upon the integration of this equation with the boundary condition η = ηm at ϕ = 0, the
following equation for the viscosity of concentrated monodisperse emulsions is obtained:

ηr

[
2ηr + 5λ

2 + 5λ

]3/2
= exp

 2.5

1− φ
φm

 (17)

This equation is referred to as model P2 in the remainder of this article.
Pal [15] further contended that the differential equation, Equation (16), overcorrects

for the crowding effect of droplets and, therefore, modified the differential equation,
Equation (16), as follows:

dη = 2.5η

[
0.4η + ηd

η + ηd

]
dϕ(

1− φ
φm

) (18)

Upon integration and using the boundary condition η = ηm at ϕ = 0, this equa-
tion gives:

ηr

[
2ηr + 5λ

2 + 5λ

]3/2
=

(
1− φ

φm

)−2.5ϕm

(19)

This equation is referred to as model P3 in the remainder of this article.
Pal [16] observed that the relative viscosity equations for suspensions of solid particles

can be transformed into the relative viscosity equations for emulsions of liquid droplets by
replacing ηr with ηr[(2ηr + 5λ)/(2 + 5λ)]3/2. For example, the relative viscosity equation
for a suspension of solid particles is given as:

ηr = H(ϕ, ϕm) (20)

where H(ϕ, ϕm) is a relative viscosity function of suspension. This suspension equation
can be transformed into emulsion viscosity equation as follows:

ηr

[
2ηr + 5λ

2 + 5λ

]3/2
= H(ϕ, ϕm) (21)

Using this reasoning as the basis, Pal [16] proposed the following series of emulsion
viscosity equations:

ηr

[
2ηr + 5λ

2 + 5λ

]3/2
=

(
1 +

1.25ϕ

1− ϕ
ϕm

)2

(22)

ηr

[
2ηr + 5λ

2 + 5λ

]3/2
=

(
1− ϕ

ϕm

)−2
(23)

ηr

[
2ηr + 5λ

2 + 5λ

]3/2
=

(
1 +

0.75(ϕ/ϕm)

1− ϕ
ϕm

)2

(24)

ηr

[
2ηr + 5λ

2 + 5λ

]3/2
=

9
8

[
(ϕ/ϕm)

1/3

1− (ϕ/ϕm)
1/3

]
(ϕ ≥ 0.1042ϕm) (25)
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Equation (22) is referred to as model P4, Equation (23) as model P5, Equation (24) as
model P6, and Equation (25) as model P7 in the remainder of this article.

Mendoza and Santamaria-Holek [17] utilized Pal’s approach to generalize their sus-
pension viscosity model to emulsions as given below:

ηr

[
2ηr + 5λ

2 + 5λ

]3/2
=

(
1− ϕ

1− cϕ

)−2.5
where c =

1− ϕm

ϕm
(26)

Equation (26) is referred to as model MS in the remainder of this article.
Faroughi and Huber [18] modified the Brouwers viscosity model for suspensions [19]

to make it an emulsion viscosity model by replacing the Einstein coefficient of 2.5 in the
exponent of the model by N as defined below:

ηr =

[
ϕm − ϕ

ϕm(1− ϕ)

]−Nϕm/(1−ϕm)

where N =

(
2 + 5λ

2 + 2λ

)
(27)

This equation is referred to as model FH in the remainder of this article.
The emulsion viscosity models discussed thus far are not explicit in relative viscosity

ηr. Pal [20,21] modified the Einstein equation and developed the following models explicit
in ηr for concentrated monodisperse emulsions in the limit of Ca→ 0 :

ηr = 1 +
5
2

 ϕe f f

(
2+5λ
5+5λ

)
1− ϕe f f

(
2+5λ
5+5λ

)
 (28)

where:

ϕe f f =

1 +
(

1− ϕm

ϕm

)√1−
(

ϕm − ϕ

ϕm

)2
ϕ (29)

ηr = 1 +
5
2

(
ϕe f f

1− ϕe f f

)
(30)

where:

ϕe f f =

1 +
(

1− ϕm

ϕm

)√1−
(

ϕm − ϕ*

ϕm

)2
ϕ* (31)

ϕ∗ =

(
2 + 5λ

5 + 5λ

)
ϕ (32)

The clustering of droplets at non-dilute concentrations was taken into consideration
through the effective volume fraction ϕe f f . The expression for ϕe f f was derived considering
the following characteristics of emulsions: (a) ϕe f f = ϕ when ϕ→ 0 ; (b) ϕe f f = 1 when

ϕ→ ϕm ; (c) ∂
(

ϕe f f /ϕ
)

/∂ϕ ≥ 0; and (d) ∂
(

ϕe f f /ϕ
)

/∂ϕ = 0 when ϕ→ ϕm . Equation
(28) in conjunction with Equation (29) is referred to as P8 model in the remainder of this
article. Equation (30) in conjunction with Equations (31) and (32) is referred to as P9 model
in the remainder of this article.

Pal [22] recently developed another viscosity model for concentrated monodisperse
emulsions using the effective medium approach and taking into consideration the clustering
of droplets in a shear field:

ηr

[
2ηr + 5λ

2 + 5λ

]3/2
=
(

1− ϕe f f

)−2.5
(33)
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where:

ϕe f f =

{
1 +

[
1− ϕm

ϕ2
m

]
ϕ

}
ϕ (34)

This equation is referred to as model P10 in the remainder of this article. Note that the
effective concentration expression given in Equation (34) is much simpler than that given
in Equations (29) or (31).

Using the reasoning that the relative viscosity function of suspension H(ϕ, ϕm) is ap-
plicable to emulsions, the following new models for the viscosity of concentrated emulsions
are proposed for the first time:

ηr

[
2ηr + 5λ

2 + 5λ

]3/2
= 1 + 2.5ϕ + 10.05ϕ2 + 0.00273exp(16.6ϕ) (35)

ηr

[
2ηr + 5λ

2 + 5λ

]3/2
= 1+

5
2

ϕ+
9
4

 1

ψ
(

1 + ψ
2

)
(1 + ψ)2

whereψ = 2

[
1− (ϕ/ϕm)

1/3

(ϕ/ϕm)
1/3

]
(36)

ηr

[
2ηr + 5λ

2 + 5λ

]3/2
=
(

1− ϕe f f

)−2.5
where ϕe f f =

1 +
(

1− ϕm

ϕm

)√1−
(

ϕm − ϕ

ϕm

)2
ϕ (37)

ηr

[
2ηr + 5λ

2 + 5λ

]3/2
=

(
1− ϕ

1− ϕ
ϕm

)2.5ϕm/(1−ϕm)

(38)

Equation (35) is referred to as model P11, Equation (36) as model P12, Equation (37)
as model P13, and Equation (38) as model P14 in the remainder of this article. Note that
in the limit λ→ ∞ , models P11–P14 reduce to the corresponding models for suspensions:
P11 reduces to the Thomas model [23], model P12 reduces to the Graham model [24], P13
reduces to the Pal model [25], and P14 reduces to the Brouwers model [19].

Table 2 gives a summary of all the emulsion viscosity models discussed in this section.

Table 2. Summary of the various emulsion viscosity models.

Model Symbol Equation Number Model Description Reference and
Year Published

P1 Equation (15) ηr

[
2ηr+5λ
2+5λ

]3/2
=
(

1− ϕ
ϕm

)−2.5 Pal, 2000 [14]

P2 Equation (17) ηr

[
2ηr+5λ
2+5λ

]3/2
= exp

(
2.5ϕ

1−ϕ/ϕm

)
Pal, 2001 [15]

P3 Equation (19) ηr

[
2ηr+5λ
2+5λ

]3/2
=
(

1− ϕ
ϕm

)−2.5ϕm Pal, 2001 [15]

P4 Equation (22) ηr

[
2ηr+5λ
2+5λ

]3/2
=

(
1 + 1.25ϕ

1− ϕ
ϕm

)2
Pal, 2001 [16]

P5 Equation (23) ηr

[
2ηr+5λ
2+5λ

]3/2
=
(

1− ϕ
ϕm

)−2 Pal, 2001 [16]

P6 Equation (24) ηr

[
2ηr+5λ
2+5λ

]3/2
=

(
1 + 0.75(ϕ/ϕm)

1− ϕ
ϕm

)2
Pal, 2001 [16]

P7 Equation (25)
ηr

[
2ηr+5λ
2+5λ

]3/2
= 9

8

[
(ϕ/ϕm)

1/3

1−(ϕ/ϕm)
1/3

]
(ϕ ≥ 0.1042ϕm)

Pal, 2001 [16]
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Table 2. Cont.

Model Symbol Equation Number Model Description Reference and
Year Published

MS Equation (26)
ηr

[
2ηr+5λ
2+5λ

]3/2
=
(

1− ϕ
1−cϕ

)−2.5

where c = 1−ϕm
ϕm

Mendoza and
Santamaria-Holek, 2010 [17]

FH Equation (27) ηr =
[

ϕm−ϕ
ϕm(1−ϕ)

]−Nϕm/(1−ϕm)
where N =

(
2+5λ
2+2λ

)
Faroughi and Huber, 2015 [18]

P8 Equation (28)

ηr = 1 + 5
2

[
ϕe f f ( 2+5λ

5+5λ )
1−ϕe f f ( 2+5λ

5+5λ )

]
where: ϕe f f =

[
1 +

(
1−ϕm

ϕm

)(√
1−

(
ϕm−ϕ

ϕm

)2
)]

ϕ
Pal, 2016 [20]

P9 Equation (30)

ηr = 1 + 5
2

(
ϕe f f

1−ϕe f f

)
where:

ϕe f f =

[
1 +

(
1−ϕm

ϕm

)(√
1−

(
ϕm−ϕ∗

ϕm

)2
)]

ϕ∗

ϕ∗ =
(

2+5λ
5+5λ

)
ϕ

Pal, 2017 [21]

P10 Equation (33)
ηr

[
2ηr+5λ
2+5λ

]3/2
=
(

1− ϕe f f

)−2.5

where ϕe f f =
{

1 +
[

1−ϕm
ϕ2

m

]
ϕ
}

ϕ
Pal, 2020 [22]

P11 Equation (35) ηr

[
2ηr+5λ
2+5λ

]3/2
=

1 + 2.5ϕ + 10.05ϕ2 + 0.00273exp(16.6ϕ)
This study

P12 Equation (36)
ηr

[
2ηr+5λ
2+5λ

]3/2
= 1 + 5

2 ϕ + 9
4

[
1

ψ(1+ ψ
2 )(1+ψ)2

]
where

ψ = 2
[

1−(ϕ/ϕm)
1/3

(ϕ/ϕm)
1/3

] This study

P13 Equation (37)
ηr

[
2ηr+5λ
2+5λ

]3/2
=
(

1− ϕe f f

)−2.5

where: ϕe f f =

[
1 +

(
1−ϕm

ϕm

)(√
1−

(
ϕm−ϕ

ϕm

)2
)]

ϕ
This study

P14 Equation (38) ηr

[
2ηr+5λ
2+5λ

]3/2
=

(
1−ϕ

1− ϕ
ϕm

)2.5ϕm/(1−ϕm)
This study

4. Comparisons of Model Predictions

Figures 1 and 2 compare the predictions of the models for two extreme values of
viscosity ratio λ: λ = 0 in Figure 1 and λ = ∞ in Figure 2. The maximum packing volume
fraction of droplets ( ϕm) is taken to be 0.74048, corresponding to hexagonal close packing
of uniform hard spheres. The comparisons reveal the following interesting information:

• When λ = 0, all models other than the models P8, P9, and P11 diverge at ϕ→ ϕm .
When λ = ∞, only the model P11 does not diverge at ϕ→ ϕm . All other models
diverge at the maximum packing volume fraction of particles.

• Models P3, P4, and P5 predict values very close to each other. The differences are
slight, and the order is as follows: P5 > P4 > P3.

• Model P10 predictions fall slightly above those of model MS.
• Model P13 overlaps with model P1.
• Model P14 overlaps with model FH.
• Model P2 predicts the highest values of relative viscosity.
• Models P14 and FH predict the second highest values of relative viscosity.
• Models P8 and P9 give the lowest values of relative viscosity.
• Model P7 gives unrealistic values of relative viscosity at low values of ϕ ( ϕ < 0.12).
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• At high values of concentration ( ϕ > 0.45), the order of predictions of models is generally as
follows: P2 > P14 (=FH) > P1 (=P13) > P10 > MS > P5 > P4 > P3 > P6 > P7 > P12 > P8 > P9.
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5. Comparisons of Model Predictions with Experimental Data
5.1. Experimental Data

Twenty-five sets of experimental data on the viscosity of stable emulsions were con-
sidered to evaluate the models. Table 3 summarizes the various experimental emulsion
systems considered. The capillary number was small so that the deformation of droplets
could be neglected. Both Newtonian and non-Newtonian emulsions were considered. The
low-shear-rate viscosity was used for non-Newtonian emulsions. In some cases where the
emulsions followed the power law behavior, the consistency index (equivalent to viscosity
at a shear rate of 1 s−1) was used. Except for the nanoemulsions (sets 16–19), the emulsions
consisted of non-Brownian droplets with droplet diameters in the micron range. The
emulsions were monomodal in droplet size. Also, the nonhydrodynamic effects (other than
Brownian motion) were negligible.

Table 3. Details of experimental emulsion systems used in the evaluation of the viscosity models (25 sets).

Set No Emulsion Type Range of φ
Viscosity Ratio

(λ) Description Source

1 Oil-in-water 0–0.60 4.15 × 10−3 Emulsions thickened by polymer; odourless kerosine
as the oil phase

Pal [26]
2 Oil-in-water 0–0.60 1.12 × 10−2 Emulsions thickened by polymer; odourless kerosine

as the oil phase

3 Oil-in-water 0–0.60 5.82 × 10−2 Emulsions thickened by polymer; petroleum oil (EDM)
as the oil phase Pal [27]

4 Water-in-oil 0–0.65 1.65 × 10−1 Emulsions prepared from white mineral oil (Bayol-35) Hsieh [28]

5 Oil-in-water 0–0.596 2.574 Emulsions prepared from white mineral oil (Bayol-35) Pal [29]

6A Oil-in-water 0–0.516

5.52
The droplet sizes of these emulsions were different, but

they were prepared from the same oil and aqueous
phase; petroleum oil (EDM) as the oil phase

Pal [30]
6B Oil-in-water 0–0.494

6C Oil-in-water 0–0.553

6D Oil-in-water 0–0.543

7A Oil-in-water 0–0.343 5.573

These were emulsions of milk fat. The suspending
mediums of emulsions were skim milk, dilute and

concentrated skim milk

Leviton and
Leighton [31]

7B Oil-in-water 0–0.230 12.35

7C Oil-in-water 0–0.397 21.74

7D Oil-in-water 0–0.218 29.41

8 Oil-in-water 0–0.635 1.17 × 103 These were emulsions of heavy oils Pal [15]

9 Oil-in-water 0–0.551 2.67 Emulsions prepared from white mineral oil (Bayol-35) Pal [29]

10 Oil-in-water 0–0.60 23.7 Emulsions prepared from food-grade white mineral oil
(Purity FG W/O-15) Bains [32]

11 Oil-in-water 0–0.549 2.91 Emulsions prepared from white mineral oil (Bayol-35) Buhidma [33]

12 Oil-in-water 0–0.55 Droplets treated
as solid particles

Pickering emulsions: droplets coated with a layer of
solid nanoparticles; oil phase as a mixture of equal

volumes of isopropyl myristate and dodecane
Wolf et al. [34]

13 Oil-in-water 0–0.687 28.26 Emulsions prepared from food-grade white mineral oil
(Purity FG W/O-15) Pal and Pal [35]

14 Oil-in-water 0–0.599 Droplets treated
as solid particles

Pickering emulsions: droplets coated with starch
nanoparticles; food-grade white mineral oil (Purity FG

W/O-15) as the oil phase
Bains and Pal [36]

15 Oil-in-water 0–0.689 Droplets treated
as solid particles

Pickering emulsions: droplets coated with cellulose
nanocrystals; food-grade white mineral oil (Purity FG

W/O-15) as the oil phase
Kinra and Pal [37]

16 Oil-in-water 0–0.353

39

These were nanoemulsions consisting of solvated
droplets prepared using different concentrations of
emulsifier. The oil was medicinal oil. The droplet
diameters were as follows: Set 16 (205 nm), Set 17

(102 nm), Set 18 (58.5 nm), and Set 19 (27.5 nm)

Van der Waarden
[38]

17 Oil-in-water 0–0.404

18 Oil-in-water 0–0.499

19 Oil-in-water 0–0.631
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Figure 3 shows the experimental relative viscosity versus volume fraction of the
droplet data for all the sets considered. One can clearly see that the relative viscosity of
different emulsion systems is different at any given volume fraction of droplets. The main
reason of relative viscosity variation from one emulsion system to another is the viscosity
ratio λ. The viscosity ratio λ is not the same for the different emulsion systems considered.
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5.2. Maximum Packing Concentration of Droplets

The maximum packing concentration of droplets is estimated from the experimental
relative viscosity versus volume fraction data at high values of ϕ (ϕ > 0.30). When the data

are plotted as η−0.40
r

[
2ηr+5λ
2+5λ

]−0.6
versus ϕ, a linear relationship is observed. To estimate

ϕm, this linear relationship is extended to η−0.40
r

[
2ηr+5λ
2+5λ

]−0.6
= 0. Several authors [39,40]

have used this approach to estimate ϕm for suspensions.

Figure 4 shows the plot of η−0.40
r

[
2ηr+5λ
2+5λ

]−0.6
versus ϕ data for emulsions. The exper-

imental data for all sets of emulsions are plotted at high concentration (ϕ > 0.30). The
estimated value of ϕm is 0.708. Note that ϕm = 0.637 for the random packing of uniform
spheres and ϕm = 0.74048 for hexagonal packing of uniform spheres. Thus, the ϕm value
for the monomodal emulsions under consideration falls in between the random packing
and hexagonal packing values.
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5.3. Comparisons of Model Predictions with Experimental Data

Figures 5–10 show comparisons of model predictions with the experimental relative
viscosity data for twenty-five sets of monomodal emulsions. The comparisons are shown
for a majority of the models discussed in Section 3. The ϕm value used in model predictions
is the estimated value of 0.708, as shown in Figure 4. It is interesting to note that the data
for all different sets of emulsions fall on a single curve, confirming the validity of scaling

the relative viscosity as ηr

[
2ηr+5λ
2+5λ

]3/2
versus ϕ basis, as predicted by the models. However,

some models, such as P2 and P14, overpredict the relative viscosities, whereas the majority
of the models (for example, P3–P7, MS, P10, and P12) underpredict the relative viscosities.
Some models such as P1 and P13 describe the experimental data remarkably well.

The average percent relative error (APRE) is calculated for each model as follows:

APRE =
1
n

i=n

∑
i=1

(
yexp

)
i − (ymod)i(
yexp

)
i

× 100 (39)

where n is the total number of data points and y = ηr

[
2ηr+5λ
2+5λ

]3/2
. The subscript “exp”

indicates experimental value and the subscript “mod” indicates value predicted by the
model. The APRE values of different models are summarized in Table 4. The models are
listed in order of increasing APRE. Model P13 has the lowest APRE (3%) and hence it is the
best model. Model P2 has the highest APRE (3.9 × 1024%) and, hence, it is the worst model
in terms of predictability of the relative viscosity of emulsion. Model FH is equally bad in
terms of predictability. It has an APRE of 1.3 × 108%.
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Table 4. APRE values of different models.

Model Symbol, Equation
Number, and Reference

Average Percent Relative
Error (APRE) Model Description Comments

P13, Equation (37), new
model, this study 3%

ηr

[
2ηr+5λ
2+5λ

]3/2
=
(
1− ϕe f f

)−2.5

where:

ϕe f f =

[
1 +

(
1−ϕm

ϕm

)(√
1−

(
ϕm−ϕ

ϕm

)2
)]

ϕ

Best model. Model
underpredicts only slightly

P1, Equation (15), Pal [14] −10.43% ηr

[
2ηr+5λ
2+5λ

]3/2
=
(

1− ϕ
ϕm

)−2.5 Model overpredicts
moderately

P11, Equation (35), new
model, this study 12.28% ηr

[
2ηr+5λ
2+5λ

]3/2
= 1 + 2.5ϕ + 10.05ϕ2 +

0.00273exp(16.6ϕ)

Model underpredicts
substantially

P10, Equation (33), Pal [22] 16.42%
ηr

[
2ηr+5λ
2+5λ

]3/2
=
(
1− ϕe f f

)−2.5

where ϕe f f =
{

1 +
[

1−ϕm
ϕ2

m

]
ϕ
}

ϕ

Model underpredicts
substantially

P5, Equation (23), Pal [16] 19.81% ηr

[
2ηr+5λ
2+5λ

]3/2
=
(

1− ϕ
ϕm

)−2 Model underpredicts
substantially

MS, Equation (26), Mendoza
and Santamaria-Holek [17] 20.24%

ηr

[
2ηr+5λ
2+5λ

]3/2
=
(

1− ϕ
1−cϕ

)−2.5

where c = 1−ϕm
ϕm

Model underpredicts
substantially

P7, Equation (25), Pal [16] 25.21%
ηr

[
2ηr+5λ
2+5λ

]3/2
= 9

8

[
(ϕ/ϕm)1/3

1−(ϕ/ϕm)1/3

]
(ϕ ≥ 0.1042ϕm)

Model underpredicts
substantially

P4, Equation (22), Pal [16] 26.35% ηr

[
2ηr+5λ
2+5λ

]3/2
=

(
1 + 1.25ϕ

1− ϕ
ϕm

)2 Model underpredicts
substantially

P3, Equation (19), Pal [15] 29.09% ηr

[
2ηr+5λ
2+5λ

]3/2
=
(

1− ϕ
ϕm

)−2.5ϕm Model underpredicts
substantially

P12, Equation (36), new
model, this study 31.08%

ηr

[
2ηr+5λ
2+5λ

]3/2
= 1 + 5

2 ϕ + 9
4

[
1

ψ
(

1+ ψ
2

)
(1+ψ)2

]
where ψ = 2

[
1−(ϕ/ϕm)1/3

(ϕ/ϕm)1/3

] Model underpredicts severely

P8, Equation (28), Pal [20] 31.2%

ηr = 1 + 5
2

[
ϕe f f ( 2+5λ

5+5λ )
1−ϕe f f ( 2+5λ

5+5λ )

]
where:

ϕe f f =

[
1 +

(
1−ϕm

ϕm

)(√
1−

(
ϕm−ϕ

ϕm

)2
)]

ϕ

Model underpredicts severely

P9, Equation (30), Pal [21] 32%

ηr = 1 + 5
2

(
ϕe f f

1−ϕe f f

)
where:

ϕe f f =

[
1 +

(
1−ϕm

ϕm

)(√
1−

(
ϕm−ϕ∗

ϕm

)2
)]

ϕ∗

Note that: ϕ∗ =
(

2+5λ
5+5λ

)
ϕ

Model underpredicts severely

P6, Equation (24), Pal [16] 33.5% ηr

[
2ηr+5λ
2+5λ

]3/2
=

(
1 + 0.75(ϕ/φm)

1− ϕ
ϕm

)2
Model underpredicts severely

P14, Equation (38), new
model, this study −381.75% ηr

[
2ηr+5λ
2+5λ

]3/2
=

(
1−ϕ

1− ϕ
ϕm

)2.5ϕm/(1−ϕm)
Model overpredicts extremely

FH, Equation (27), Faroughi
and Huber [18] −1.30× 108%

ηr =
[

ϕm−ϕ
ϕm(1−ϕ)

]−Nϕm/(1−ϕm)

where N =
(

2+5λ
2+2λ

) Model overpredicts extremely

P2, Equation (17), Pal [15] −3.9× 1024% ηr

[
2ηr+5λ
2+5λ

]3/2
= exp

(
2.5ϕ

1−ϕ/ϕm

)
Model overpredicts extremely

The deviations of model predictions are grouped into five different categories depend-
ing upon the absolute value of APRE. The categories are described below:

Absolute value of APRE ≤ 5%: Deviation is slight.
5% < Absolute value of APRE ≤ 10%: Deviation is moderate.
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10% < Absolute value of APRE ≤ 30%: Deviation is substantial.
30% < Absolute value of APRE ≤ 100%: Deviation is severe.
Absolute value of APRE > %: Deviation is extreme.

Model P13 underpredicts the values only slightly (APRE = 3%); model P1 overpredicts
moderately (APRE = −10.43%); model P11 underpredicts substantially (APRE = 12.28%);
model P10 underpredicts substantially (APRE = 16.42%); model P5 underpredicts substan-
tially (APRE = 19.81%); model MS underpredicts substantially (APRE = 20.24%); model
P7 underpredicts substantially (APRE = 25.21%); model P4 underpredicts substantially
(APRE = 26.35%); model P3 underpredicts substantially (APRE = 29.09%); model P12 under-
predicts severely (APRE = 31.08%); model P8 underpredicts severely (APRE = 31.2%); model
P9 underpredicts severely (APRE = 32%); model P6 underpredicts severely (APRE = 33.5%);
model P14 overpredicts extremely (APRE = −381.75%); model FH overpredicts extremely
(APRE = −1.3 × 108%); and model P2 overpredicts extremely (APRE = −3.9 × 1024%).

6. The Effect of Modality of Droplet Size Distribution on Emulsion Viscosity

In the preceding sections, the discussion was related to the viscosity of concentrated
monomodal or monodisperse emulsions. It is important from both practical and funda-
mental points of view to explore the influence of droplet size distribution on the viscosity
of concentrated emulsions. As the concentration of dispersed phase (droplets) of emulsion
is increased, the viscosity of the emulsion shoots up (see Figure 3). From a practical point
of view, it is important to be able to formulate food emulsions with high concentration of
dispersed phase but keeping the emulsion viscosity reasonable. One way to prevent the
viscosity of a food emulsion from reaching unacceptable levels is to increase the modality of
the emulsion droplet size distribution. Thus, it is important to explore the effect of modality
of emulsion droplet size distribution on the viscosity of concentrated emulsions.

For the sake of simplicity, emulsions with a viscosity ratio of zero, that is, λ = 0, were
considered. As model P13 is the best model in terms of predictability of emulsion viscosity,
this model was utilized to simulate the effect of modality of droplet size distribution on
emulsion viscosity. In the limit λ→ 0 , the model P13 reduces to the following expression:

ηr =

1−

1 +
(

1− ϕm

ϕm

)√1−
(

ϕm − ϕ

ϕm

)2
ϕ

−1

(40)

Consider a bimodal emulsion of two different size droplets: a coarse fraction of
droplets with large uniform-size droplets and a fine fraction of droplets with small uniform-
size droplets (see Figure 11). Let the volume fraction of fine droplets excluding the large
droplets be ϕ1, the volume fraction of large droplets in the emulsion be ϕ2, and the overall
concentration of all droplets be ϕT . Thus,

ϕ1 =
V1

VL + V1
; ϕ2 =

V2

VL + V1 + V2
; ϕT =

V1 + V2

VL + V1 + V2
(41)

where VL, V1, and V2 are the volumes of the suspending medium (matrix liquid), fine
droplets, and large droplets, respectively.

As the fine droplets are very small compared with the large droplets, the fine-droplet
emulsion (fine droplets together with suspending medium) can be treated as an effective
homogeneous medium with respect to large droplets. Consequently,

ηoverall−emulsion
η f ine−emulsion

= H(ϕ2) (42)

η f ine−emulsion

ηm
= H(ϕ1) (43)
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where ηoverall−emulsion is the viscosity of the whole emulsion, η f ine−emulsion is the viscosity
of the fine emulsion (fine droplets together with suspending medium), ηm is the matrix
liquid viscosity, and H(ϕ) is the relative viscosity function of the monomodal emulsion
given by Equation (40). From Equations (42) and (43), it follows that the relative viscosity
of the whole emulsion is:

ηr =
ηoverall−emulsion

ηm
=

ηoverall−emulsion
η f ine−emulsion

×
η f ine−emulsion

ηm
= H(ϕ1)H(ϕ2) (44)

Combining Equations (40) and (44), we obtain the following expression for the relative
viscosity of a bimodal emulsion:

ηr =

1−

1 +
(

1− ϕm

ϕm

)√1−
(

ϕm − ϕ1
ϕm

)2
ϕ1

−11−

1 +
(

1− ϕm

ϕm

)√1−
(

ϕm − ϕ2
ϕm

)2
ϕ2

−1

(45)

Given the overall concentration of all droplets ϕT and fraction fc of coarse droplets in
a mixture of coarse and fine droplets, it can be readily shown that:

ϕ2 = fc ϕT (46)

ϕ1 =
ϕT − ϕ2

1− ϕ2
(47)

Note that:
fc =

V2

V1 + V2
(48)

Thus, the relative viscosity of a bimodal emulsion can be estimated from Equation (45)
for any given overall concentration of droplets ϕT and fraction of coarse droplets fc in a
mixture of fine and coarse droplets.
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Figure 11. Bimodal emulsion of large and small droplets.

Figure 12 shows the relative viscosities of bimodal emulsions for various values of
overall droplet concentration ϕT . The data are plotted as relative viscosity versus fraction
of coarse droplets in a mixture of fine and coarse droplets. The plots were generated from
Equation (45). The maximum packing volume fraction of monomodal emulsion (ϕm) was
taken to be 0.74048 corresponding to hexagonal close packing of uniform spheres.



Foods 2023, 12, 3483 19 of 25

Foods 2023, 12, x FOR PEER REVIEW 19 of 26 
 

 

Given the overall concentration of all droplets 𝜑் and fraction 𝑓௖ of coarse droplets 
in a mixture of coarse and fine droplets, it can be readily shown that: 𝜑ଶ = 𝑓௖𝜑் (46)

𝜑ଵ = 𝜑் − 𝜑ଶ1 − 𝜑ଶ  (47)

Note that: 𝑓௖ = ௏మ௏భା௏మ  (48)

Thus, the relative viscosity of a bimodal emulsion can be estimated from Equation 
(45) for any given overall concentration of droplets 𝜑் and fraction of coarse droplets 𝑓௖ 
in a mixture of fine and coarse droplets.  

Figure 12 shows the relative viscosities of bimodal emulsions for various values of 
overall droplet concentration 𝜑். The data are plotted as relative viscosity versus fraction 
of coarse droplets in a mixture of fine and coarse droplets. The plots were generated from 
Equation (45). The maximum packing volume fraction of monomodal emulsion (𝜑௠) was 
taken to be 0.74048 corresponding to hexagonal close packing of uniform spheres. 

 
Figure 12. Relative viscosity of bimodal emulsions as a function of fraction of coarse droplets for 
different overall droplet volume fractions. 

As can be seen in Figure 12, a large drop in the relative viscosity of the emulsion 
occurs when a monomodal emulsion is replaced by a bimodal emulsion at the same over-
all droplet concentration 𝜑். The effect of droplet size modality is especially large when 𝜑் ≥ 0.75. It should also be noted that the relative viscosity of a bimodal emulsion exhibits 
a minimum at some fraction of coarse droplets 𝑓௖. 

The minimum viscosity of concentrated bimodal emulsion was confirmed through 
experiments. For example, Figure 13 shows the experimental data of Pal [41] for a bimodal 

Figure 12. Relative viscosity of bimodal emulsions as a function of fraction of coarse droplets for
different overall droplet volume fractions.

As can be seen in Figure 12, a large drop in the relative viscosity of the emulsion occurs
when a monomodal emulsion is replaced by a bimodal emulsion at the same overall droplet
concentration ϕT . The effect of droplet size modality is especially large when ϕT ≥ 0.75. It
should also be noted that the relative viscosity of a bimodal emulsion exhibits a minimum
at some fraction of coarse droplets fc.

The minimum viscosity of concentrated bimodal emulsion was confirmed through
experiments. For example, Figure 13 shows the experimental data of Pal [41] for a bimodal
oil-in-water emulsion. A minimum in low-shear viscosity occurs at a coarse droplet fraction
of around 0.65.
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7. The Effect of Capillary Number on the Viscosity of Concentrated Emulsions

In the processing and pumping of food emulsions, the capillary number is not zero.
Thus, it is important to investigate the influence of capillary number on the viscosity of
emulsions. As demonstrated by Frankel and Acrivos [10] in their equation, Equation (7),
the relative viscosity of emulsions is a function of Ca. The emulsions exhibit shear-thinning
behavior with the increase in Ca due to the orientation and elongation of droplets in the
direction of flow. However, the Frankel and Acrivos equation, Equation (7), is valid for
infinitely dilute emulsions ( ϕ→ 0).

Only a few analytical studies have been published exploring the influence of cap-
illary number on the viscosity of concentrated emulsions. Using the analogy between
shear modulus and shear viscosity and applying the differential effective medium scheme,
Pal [42] developed three relative viscosity models for concentrated monodisperse emulsions
applicable at any capillary number. The Pal models are as follows:

ηr

[
M− P + 32ηr

M− P + 32

]R−1.25[ M + P− 32
M + P− 32ηr

]R+1.25
= (1− ϕ)−2.5 (49)

ηr

[
M− P + 32ηr

M− P + 32

]R−1.25[ M + P− 32
M + P− 32ηr

]R+1.25
= exp

(
2.5ϕ

1− ϕ
ϕm

)
(50)

ηr

[
M− P + 32ηr

M− P + 32

]R−1.25[ M + P− 32
M + P− 32ηr

]R+1.25
=

(
1− ϕ

ϕm

)−2.5ϕm

(51)

where

M =

√(
64/Ca2

)
+ 1225λ2 + 1232(λ/Ca) (52)

P = (8/Ca)− 3λ (53)

R =
(22/Ca) + 43.75λ√(

64/Ca2
)
+ 1225λ2 + 1232(λ/Ca)

(54)

Faroughi and Huber [18] also investigated the effect of capillary number on the relative
viscosity of concentrated monodisperse emulsions. Their model is given as:

ηr

[
N + WkCa2η2

r

N + WkCa2

]0.5( N
W−1)

=

[
ϕm − ϕ

ϕm(1− ϕ)

]−Nϕm/(1−ϕm)

(55)

where

W =
140
(
λ3 + λ2 − λ− 1

)
28(2λ + 3)(λ + 1)2 ; k =

[
(2λ + 3)(19λ + 16)

40(λ + 1)

]2
; N =

(
2 + 5λ

2 + 2λ

)
(56)

Faroughi and Huber [18] applied the differential effective medium scheme incorrectly
to derive their model (Equation (55)). They assumed that the viscosity ratio is constant
during the integration process. This is an invalid assumption as viscosity ratio varies during
successive additions of differential amounts of dispersed phase (droplets) to the emulsion
in the process of developing the equation for concentrated emulsion. Pal [15,42] applied
the differential effective scheme correctly in the derivation of his equations for concentrated
emulsions. Thus, the Faroughi and Huber model, Equation (55), is of questionable validity.

The models expressed in Equations (49)–(51) can be re-written in a general form as:

ηr

[
M− P + 32ηr

M− P + 32

]R−1.25[ M + P− 32
M + P− 32ηr

]R+1.25
= f (ϕ, ϕm) (57)
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In the limit Ca→ 0 , Equation (57) reduces to the form of the models discussed in
Section 3 (see Table 2) as:

ηr

[
2ηr + 5λ

2 + 5λ

]3/2
= f (ϕ, ϕm) (58)

Thus, the models valid for Ca→ 0 (discussed in Section 3) can be generalized to non-
zero capillary numbers by replacing the left-hand side of Equation (58) with the left-hand
side of Equation (57).

As the best model valid in the limit Ca→ 0 is found to be model P13 (Equation (37)),
the following generalized version of P13 is proposed as a new model for concentrated
emulsions applicable at any Ca:

ηr

[
M− P + 32ηr

M− P + 32

]R−1.25[ M + P− 32
M + P− 32ηr

]R+1.25
=

1−

1 +
(

1− ϕm

ϕm

)√1−
(

ϕm − ϕ

ϕm

)2
ϕ

−2.5

(59)

Figure 14 shows the relative viscosity versus capillary number plots for concentrated
emulsions at two different values of viscosity ratio (λ) generated from the proposed model
Equation (59). The value of ϕm used in the model calculations is 0.74048, corresponding to
hexagonal close packing of uniform spheres. As expected, emulsions exhibit shear-thinning
non-Newtonian behavior. The decrease in viscosity with the increase in capillary number
is due to the orientation and elongation of droplets in the direction of flow. At a high value
of viscosity ratio (λ = 5), the relative viscosity of the emulsion is always greater than unity
regardless of the capillary number. However, at a small value of viscosity ratio (λ = 0.1),
the relative viscosity becomes less than unity at high values of capillary number.
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Only a limited amount of experimental data are available on the effect of capillary
number on the relative viscosity of emulsions. The available experimental data for the
most part are restricted to emulsions with λ = 0. Figures 15 and 16 show comparisons of
the model (Equation (59)) predictions with the available experimental data. The model
predictions with ϕm = 0.74048 show good agreement with the experimental data.
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8. Conclusions

Herein, the models describing relative viscosity versus the volume fraction of droplets
for concentrated monodisperse emulsions published in the twenty-first century were
reviewed, compared, and evaluated using a large body of experimental viscosity data
available on emulsions. Based on the average percent relative error (APRE), the models
were rated. The worst performer was model P2 (Equation (17)) with an extremely large
APRE (|APRE| = 3.9× 1024%). The best perfomer was model P13 (Equation (37)) with a
negligible APRE (|APRE| ≤ 3 %). The best model identified on the basis of APRE, that is,
model P13, was used to simulate the effect of droplet size distribution on emulsion viscosity.
A large drop in the relative viscosity of the emulsion occurred when a monomodal emulsion
was replaced by a bimodal emulsion at the same droplet concentration. The effect of droplet
size modality on emulsion viscosity increased with the increase in droplet concentration.

Finally, the influence of capillary number on the viscosity of concentrated emulsions
was discussed. A new generalized version of model P13 (identified as the best model,
Equation (37)) was proposed and evaluated for the influence of capillary number on
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emulsion viscosity. The models discussed and developed in this article could be used as a
tool to design efficient food processing operations and to formulate food emulsions with
the desired rheological properties.
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