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Abstract: Inhibition of angiotensin-I converting enzyme (ACE) is an important means of treating
hypertension since it plays an important regulatory function in the renin-angiotensin system. The
aim of this study was to investigate the ACE inhibitory effect of bioactive peptides from green coffee
beans using in silico and in vitro methods. Alcalase and thermolysin were employed to hydrolyze
protein extract from coffee beans. Bioactive peptides were identified by LC-MS/MS analysis coupled
with database searching. The potential bioactivities of peptides were predicted by in silico screening,
among which five novel peptides may have ACE inhibitory activity. In vitro assay was carried
out to determine the ACE inhibitory degree. Two peptides (IIPNEVY, ITPPVMLPP) were obtained
with IC50 values of 57.54 and 40.37 µM, respectively. Furthermore, it was found that two inhibitors
bound to the receptor protein on similar sites near the S1 active pocket of ACE to form stable
enzyme–peptide complexes through molecular docking, and the Lineweaver–Burk plot showed
that IIPNEVY was a noncompetitive inhibitor, and ITPPVMLPP was suggested to be a mixed-type
inhibitor. Our study demonstrated that two peptides isolated from coffee have potential applications
as antihypertensive agents.

Keywords: coffee protein; peptide; ACE inhibitor; LC-MS/MS; molecular docking

1. Introduction

Hypertension or high blood pressure is a major risk factor for several diseases, par-
ticularly stroke, heart disease, and chronic kidney disease [1]. It is the leading cause of
morality globally, affecting more than 1 billion people with the disease, and is currently
experiencing a younger decline. The burden of high blood pressure is disproportionately
high in low- and middle-income countries, where two-thirds of cases are present.

Angiotensin-I converting enzyme (ACE), a zinc metallopeptidase, plays a vital role
in elevating blood pressure converting angiotensin-I into angiotensin-II, a powerful vaso-
constrictor [2]. Due to the evident side effects of synthesized ACE inhibitory medicine
(captopril, enalapril), natural ACE inhibitors have become a hot topic of research interest.
Therefore, bioactive peptides from natural sources such as animal products, plants, marine
resources, microorganisms, and their fermentation products become safe and effective ACE
inhibitors to treat hypertension. Animal products such as eggs and milk are rich in protein
and are important sources of bioactive peptides. Some oligopeptides with ACE inhibitory
activity were found in the egg whites of chicken [3] and ostrich eggs [4]. Protein-rich
plant-derived peptides such as beans, grains, and seeds have also been extensively studied
in recent years [5–7]. Moreover, a variety of bioactive peptides obtained from the protein
of marine organisms including fish [8], mollusks [9,10], seaweed [11,12], and microbial
fermentation products [13,14] have been confirmed to have an ACE inhibitory function.
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With the advance of peptidomics, it has been demonstrated that plant polypeptides
exhibit different functions and may have significant bioactivities like being anti-microbial,
anti-oxidative, anti-inflammatory, and antihypertensive [15]. The inhibitory effect of pep-
tides on ACE depends on the molecular weight of the active peptide and the hydrophobicity
of the three amino acid residues at the C-terminal [16]. Experimental results also suggested
that the more hydrophobic amino acids the ACE inhibitory peptide contains, the easier it
is to enter the hydrophobic region of the enzyme active center, thereby interacting with
the amino acid residues to inhibit its activity [17]. The main method for obtaining plant
peptides is to hydrolyze proteins with different proteases [18]. Alcalase and thermolysin are
two commercialized microbial proteases, which are commonly used to hydrolyze proteins
from food sources to prepare active oligopeptides. In the current study, these two enzymes
were used due to their characteristics of enzymatic cleavage of hydrophobic amino acids
and broad action sites.

Coffee is one of the most valuable traded commercial drinks in the world, especially
Coffea arabica, which occupied over 55% of the world’s coffee production in 2021 [19]. Long-
term research studies have shown that caffeine, chlorogenic acids (CGAs), and trigonelline
are the main compounds with diverse bioactivities [20]. In recent years, a variety of novel
diterpenes have been demonstrated existing in green Arabica coffee beans in addition to
cafestol and kahweol [21,22]. Coffee beans, the “fruits and seeds of plants of the genus
Coffea” ref. [23], containing about 10% protein [24] which plays an important role in the
growing stage, can be considered as a natural source of bioactive peptides. Peptides from
green coffee beans have been studied using simulated gastrointestinal digestion through
in vitro hydrolysis and in silico prediction [25]. Although both computer predictions and
experimental results indicated that green coffee protein hydrolysates may have biological
activities, there was limited information about the identification of peptides. Peptides
isolated from spent coffee grounds (SCGs) have also been studied for their antioxidant and
ACE inhibitory activity using enzymatic hydrolysis [26] and fermentation by bacteria [27].
The Maillard reaction occurs during the roasting step, resulting in denaturation of protein
and generation of melanoidins, which might cause interference during extraction and
in vitro evaluation of activity [26]. So far, there are few studies in the literature describing
the oligopeptides with an ACE inhibitory effect obtained from the protein hydrolysates
of green coffee. As a result, it is of great significance to discover bioactive peptides and
investigate their bioactivity and inhibition mechanism.

This research was to explore active peptides with an ACE inhibitory effect in green
coffee beans using the method of peptidomics. Identification, screening, and characteri-
zation of these active peptides were conducted, and molecular docking was also used to
explore the kinetics and mechanism of inhibition.

2. Materials and Methods
2.1. Chemicals and Samples

The green coffee beans of coffea arabica were purchased from Baoshan, Yunnan Province
of China.

Thermolysin, dithiothreitol (DTT) were purchased from Mreda Technology Inc. Al-
calase, sodium dodecyl sulfate (SDS) were purchased from Shanghai Macklin Biochemical
Co., Ltd., (Shanghai, China). Tris(hydroxymethyl)aminomethane (Tris) was purchased from
Shanghai Acmec Biochemical Co., Ltd. Acetonitrile (ACN) for LC-MS/MS was produced
by oceanpak alexative chemical, Ltd. Angiotensin converting enzyme (ACE), captopril,
2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES), N-[3-(2-furylacryloyl)]-L-
phenyalanyl-glycyl-glycine (FAPGG), trifluoroacetic acid (TFA), and formic acid (FA) were
purchased from Sigma-Aldrich (Shanghai, China). Sodium chloride, potassium phosphate
dibasic, and potassium phosphate monobasic were purchased from Sangon Biotech Co.,
Ltd. (Shanghai, China). Hydrochloric acid and sodium hydroxide were supplied by Damao
Chemical Reagent (Tianjin, China). Distilled water was obtained from a Milli-Q system
from Millipore.
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2.2. Protein Extraction

The protein extraction procedure was similar to that described by Pérez-Míguez
et al. [28] with some minor modifications; 25 g of grounded green coffee beans were
defatted four times with 500 mL petroleum ether; 1 g of flour was extracted with 100 mL
of 100 mM Tris-HCl buffer (pH 7.5) containing 1% SDS and 0.25% DTT under ultrasonic
for 15 min at room temperature. The mixture was centrifuged at 4000 r/min at room
temperature for 15 min and supernatants were collected. Protein in the supernatant was
precipitated with 100 mL of cold acetone at 4 ◦C for 12 h and collected by centrifugation for
20 min at room temperature. The precipitate was dialyzed with distilled water overnight
followed by lyophilization and stored at −20 ◦C.

2.3. Protein Digestions

Protein extracts were dissolved in the 5 mM phosphate buffer (pH 8.0) at the concen-
tration of 2.5 mg/mL and submitted to enzymatic hydrolysis with alcalase (10,000 U/g
substrate) and thermolysin (0.05 g enzyme/g substrate) separately at 50 ◦C for 2 h with
slight stirring, according to the proposed procedure of Esteve et al. [29] The digestions
were stopped by increasing the temperature to 90 ◦C for 20 min, and supernatants were
collected by centrifugation at 10,000 g and 4 ◦C for 10 min.

2.4. LC-MS/MS Identification of Peptides

Solid phase extraction (SPE) was carried out using a C18 SPE Cartridge purchased
from MREDA for removal of salts prior to nano-LC-MS/MS analysis: (i) conditioning
with 2 × 3 mL 100% acetonitrile (ACN); (ii) washing with 3 × 1.5 mL 0.1% trifluoroacetic
acid (TFA); (iii) loading of sample (3 mL, containing 0.1~0.2% TFA); (iv) washing with
3 × 1.5 mL 0.1% TFA; (v) collecting peptides after elution with 1.5 mL 50% ACN followed
by 1.5 mL 80% ACN [30].

Identification of the desalted sample was then conducted by LC-MS/MS using a Triple
TOF 6600+ mass spectrometer in positive ion mode with a OptiFlow Turbo V ion source,
coupled to a NanoLC 400 (Ekspert); 8 µL of hydrolysate was loaded on a trap Nano LC
precolumn at 10 µL/min for 3 min. Thereafter, the sample was loaded at 5 µL/min onto a
Micro LC Column (3 µm, ChromXP C18, 120 Å, 0.3 × 150 mm) at the column temperature
of 40 ◦C for the separation of peptides. Mobile phase A was 2% ACN containing 0.1%
formic acid (v/v), and mobile phase B was 98% ACN containing 0.1% formic acid (v/v).
Elution gradient employed for separation was: 3–22% B in 40 min, 22–35% B in 10 min,
35–80% B in 1 min, 80% B for 3 min, 80–3% B in 1 min, and 3% B for 5 min. The following
settings were applied: nebulizer (gas 1) 25 psi, heater (gas 2) 50 psi, curtain gas 35 psi, and
ionization temperature 150 ◦C. TOF-MS scan range was set at 350 to 1500 m/z, followed by
an MS/MS scan at 100 to 1500 m/z.

The raw data obtained from the LC-MS/MS was processed using the software MaxQuant
(version 2.3.0.0) [31,32] (https://www.maxquant.org/ (accessed on 26 February 2023)), and
the protein database of coffee (Coffea arabica) was searched from NCBI.

2.5. In Silico Prediction and Analysis of Bioactive Peptides

The bioactivities of all identified peptides were evaluated using in silico methods.
The ACE inhibitory capacity of peptides was predicted using the AHTpin platform (https:
//webs.iiitd.edu.in/raghava/ahtpin/ (accessed on 1 March 2023)) in accordance with
the support vector machine (SVM) classification model [33]. Peptides with an SVM score
greater than 0 were regarded as antihypertensive peptide inhibitors. In addition, the
physiochemical properties (hydrophobicity and isoelectric point) of peptides were analyzed
by the PepDraw server (http://pepdraw.com/ (accessed on 28 February 2023)).

2.6. Peptide Synthesis and ACE Inhibitory Activity

The peptides predicted with potential antihypertensive capacity were synthesized
by GenScript. The ACE inhibitory capacity of hydrolysates and selected peptides were

https://www.maxquant.org/
https://webs.iiitd.edu.in/raghava/ahtpin/
https://webs.iiitd.edu.in/raghava/ahtpin/
http://pepdraw.com/
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measured as previously described with minor modifications [34]; 400 µL of samples (hy-
drolysates, synthesized peptides dissolved in the HEPES-NaCl buffer at a concentration of
1.25 mg/mL, 125 µM separately) were mixed with 100 µL of ACE (0.2 U/mL). After incu-
bation of the mixture at 37 ◦C for 10 min, 500 µL of FAPGG was added and the absorbance
value at 340 nm was detected instantly by a FlexStation 3 and recorded as A0 min. After
being kept at 37 ◦C for 30 min, the absorbance value at 340 nm was detected again and
recorded:

ACE inhibitory rate(%) =
∆Acontrol − ∆Asample

∆Acontrol
× 100%

where A0 min is the initial absorbance at 340 nm; A30 min is the absorbance at 340 nm after
keeping at 37 ◦C for 30 min, and ∆A is the reduction in the absorbance: A0 min–A30 min.

Referring to the methods in the literature, and combined with the above in vitro
activity assay results, the design of the inhibition pattern test is as follows: various concen-
trations (0, 0.2, 0.4 mM) of ACE inhibitory peptides were added to each reaction system;
meanwhile, the concentration of FAPGG were set as 0.25, 0.5, 1, 2 mM. According to the
Michaelis–Menten kinetic equation, the Michaelis–Menten constant (Km) and the maxi-
mum reaction rate (Vmax) were calculated from the Lineweaver–Burk plot to determine the
inhibition pattern of peptides. All evaluations were performed in triplicate.

2.7. Gastrointestinal Digestion Simulation Study

In vitro gastrointestinal digestion simulation was performed according to the method
described by Fan et al. [3] with minor modifications. Two peptides (CP2, CP3) were
dissolved in ultrapure water at 1.0 mg/mL, respectively. The solutions were adjusted to
pH 2.0 with 0.1 HCl. Then, pepsin (1% E/S, w/w) was added to peptide solutions and
the mixtures were incubated at 37 ◦C for 2 h. Half of the two digests were terminated in
digestion by increasing the temperature to 90 ◦C. After the other half were adjusted to pH
7.5 with 0.1 NaOH, pancreatin (1% E/S, w/w) was added and the systems were digested at
37 ◦C for 2 h. The reactions were then stopped by boiling for 10 min. Subsequently, solvents
were centrifuged at 10,000 rpm for 10 min. The supernatants were lyophilized to collect
and analyzed using Agilent 6545 series Q-TOF mass spectrometer (Agilent, Waldbronn,
Germany). The ACE inhibitory activity of the digested peptide solutions was determined
under the same conditions.

2.8. Molecular Docking

Molecular docking was conducted using Autodock Vina software (version 1.5.7) to
further study the mechanism of interaction between ACE (receptor) and peptides (lig-
ands) according to methods previously reported with slight modification [35]. The crystal
structure of ACE was obtained from the RSCB protein data bank (https://www.rcsb.org/
(accessed on 13 March 2023)) with the PDB code of 1O86. The structures of selected peptides
were generated by ChemDraw. The number of points in the X-, Y-, and Z-dimensions were
set as 75, 75, and 75, and spacing was set as 1Å. PyMol software (version 2.5.4) was used to
visualize the pose of ligand from the docked complex.

3. Results
3.1. Peptide Identification

The hydrolysates were identified with MaxQuant software (version 2.3.0.0) for each
mass spectral data generated by LC-MS/MS. The results showed that 55 and 22 peptides
were identified from alcalase and thermolysin hydrolysates, respectively. The identified
peptides ranged in length from 7 to 15 amino acids and had molecular masses ranging from
600 to 1400 m/z. Tables S1 and S2 summarized the peptides after digestion, along with
their experimental data. Figure 1 shows, as examples, the MS/MS spectra obtained for two
of the identified peptides: GLPSGGAPSGY (Gly-Leu-Pro-Ser-Gly-Gly-Ala-Pro-Ser-Gly-Tyr)
in the alcalase hydrolysate and ITPPVMLPP (Ile-Thr-Pro-Pro-Val-Met-Leu-Pro-Pro) in the

https://www.rcsb.org/
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thermolysin hydrolysate. It is worth noting that no common peptide fragments were found
in the coffee protein hydrolysate after enzymatic hydrolysis by two proteases.
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It has been reported that alcalase has a wide range of applications in food production
and processing due to broad selectivity and specificity of the cleavage site of alcalase [36].
The results have shown that among the products hydrolyzed by alcalase, the C-terminal
amino acid residues of peptides were mostly Gln, Tyr, Met, Lys, and Leu. In addition, it was
also found that in a certain proportion of peptide fragments, the hydrophobic amino acid
was close to the N-terminal, which is very common in bioactive peptides [37]. In contrast,
thermolysin hydrolysate presented a smaller number of peptides, only 22 peptides were
identified, and mostly produced large fragments under this hydrolysis condition. The
results in Table S2 showed that a great number of peptides have Leu, Phe, Ile, and Val
at the N-terminal position, which was consistent with literature [38], and the presence of
large bulky amino acids in these peptide sequences suggested potential antihypertensive
capacity.
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3.2. In Silico Screening

Peptides with a score greater than 60 indicating the degree of matching between the
secondary mass spectrum and their databases, were submitted to analyze hydrophobicity
and isoelectric point and predict potential bioactivity using the in silico method. The
physiochemical properties analyzed by PepDraw server and ACE inhibition prediction
score of peptides hydrolyzed by alcalase are shown in Table 1, and those of peptides
hydrolyzed by thermolysin are shown in Table 2.

Table 1. Physiochemical properties and SVM score of identified peptides from the alcalase hy-
drolysates.

No. Peptide Sequence Score Hydrophobicity
(kcal/mol)

Isoelectric
Point SVM Score

1. SENIGLPQ 189.5 12.53 3.12 0.00
2. ILLPGFTQ 187.6 4.88 5.44 −0.75
3. VVINPGNPTGQ 186.4 11.16 5.44 −0.38
4. GLPSGGAPSGY 185.1 12.24 5.45 1.47
5. TNDNAMINPL 166.5 11.94 3.12 −0.94
6. FEDNAGVIVNPK 157.7 17.71 4.00 −0.05
7. SPVAPLAPVTL 155.9 6.61 5.50 0.18
8. GESFWGGQ 152.4 12.41 3.12 0.58
9. EGDGGVGTIKL 150.6 19.99 4.01 −1.57
10. GIESVPAALIGL 138.8 10.23 3.20 −1.14
11. RAIPEEVL 134.7 14.78 4.09 0.07
12. SAERGFLY 133.6 11.78 6.58 −0.43
13. AFNVDLK 129.4 12.27 6.76 −1.15
14. GLPASPGAAVGQ 128.4 12.65 5.44 0.80
15. VADPDKLPTIPGQ 126.0 18.24 3.92 0.47
16. NLGSIPTQ 125.8 9.15 5.25 −0.43
17. ADLSRIDL 125.5 14.33 3.93 −0.46
18. SAFRAIPE 124.1 12.11 6.61 −1.15
19. ALDPGLTY 122.2 10.37 3.05 0.49
20. IQIIFPE 120.9 7.37 3.09 −0.53
21. APIAVGDVIPDGTL 120.9 14.60 2.94 −1.23
22. GQLIIVPQ 119.3 6.78 5.44 −1.04
23. ILMIGTQ 117.6 5.91 5.44 −1.80
24. GVKSVEIL 116.5 12.65 6.83 −0.27
25. TNEILIGK 114.5 13.09 6.55 −1.30
26. APILDEVAVSL 113.5 12.23 2.98 −0.31
27. ALRALPE 111.3 11.98 6.98 −0.41
28. ADSLDLRL 107.4 14.20 3.93 0.10
29. AKDPVRVL 105.1 14.62 10.20 0.20
30. KNPNIPDPNTL 105.0 15.19 6.44 0.72
31. SDVGLERQ 103.8 17.65 4.00 −1.13
32. AGPGGWNDPDML 103.8 16.25 2.94 0.12
33. TVDKRLL 103.0 13.44 9.82 −0.75
34. KNPNIPDPNTLM 102.1 14.52 6.44 0.17
35. SALRAIPE 101.5 12.57 6.61 −1.11
36. GYIPGIIY 100.9 5.56 5.43 −0.53
37. RVDSIPIL 100.1 10.00 6.42 −1.47
38. GDAPRVL 98.4 13.43 6.76 −0.27
39. VASGNVL 98.0 8.69 5.58 −0.93
40. VIEGDLL 97.6 12.24 2.98 −1.55
41. ALATPLL 96.3 5.54 5.59 −0.30
42. AITPPVMLPPL 94.7 4.46 5.59 0.51
43. LILGPDSPAVQ 93.3 10.62 3.04 0.60
44. IPLDLNY 71.4 8.20 3.05 0.31
45. DIIEFIQ 70.0 10.87 2.91 −1.40
46. IIPNEVY 67.0 9.11 3.14 1.04
47. GGKADVL 67.0 15.43 6.73 −0.79
48. VGHTDTARMLL 63.6 14.20 7.89 −1.26
49. METSNSVPSIL 62.0 10.65 3.20 −0.54
50. AATLPLM 61.3 6.12 5.41 −1.60

Light, dark shades correspond to peptides with SVM score higher than 0.0, 1.0, respectively.
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Table 2. Physiochemical properties and SVM score of identified peptides from the thermolysin
hydrolysates.

No. Peptide Sequence Score Hydrophobicity
(kcal/mol)

Isoelectric
Point SVM Score

1. LITMEPNSL 176.0 8.94 3.20 −0.80
2. IFDPFPSD 164.0 11.38 2.78 0.33
3. ITPPVMLPP 163.3 5.21 5.23 1.33
4. VLETPDGPL 148.2 13.89 2.98 1.42
5. FVDPDGWKT 141.5 15.26 3.92 0.29
6. FWDSNNPE 141.0 13.67 2.87 −0.74
7. FLPEYSEQ 128.6 12.86 2.96 −0.26
8. LFPSPSPPPP 128.6 6.70 5.23 0.21
9. IGLPQEAD 128.2 15.36 2.82 0.51
10. AVNHPNFPST 117.9 11.25 7.95 −0.34
11. VMKNRPISEE 107.0 18.97 6.98 0.28
12. VKNPNPIPIP 104.4 10.26 10.14 2.31
13. VVGDPLDPNSHHGPQ 99.8 22.47 4.98 0.86
14. LLERGPTPEP 98.2 16.29 4.08 0.75
15. IDWKETPEAHV 90.1 21.15 4.32 0.35
16. YSPDGEEGFPGNL 88.1 20.17 2.90 0.97
17. FHPPGSDRVD 81.3 19.04 5.14 −0.27
18. VMDDTSESKPQHPSR 80.5 27.30 5.27 0.38
19. IDWKETPEAH 78.9 21.61 4.31 0.43
20. FDDEVKQGQL 72.6 20.88 3.69 −1.29
21. FRFPSEAG 67.0 12.17 6.65 0.28

Light, dark shades correspond to peptides with SVM score higher than 0.0, 1.0, respectively.

The AHTpin platform was used to screen antihypertensive peptides in accordance
with the SVM classification models. With the existence of the AHTpin platform, the
computational prediction of potential antihypertensive peptides from the hundreds of
thousands of peptide sequences can be performed in a short time. The 71 identified
peptides were entered to predict probability in ACE inhibition; 16, 15 peptides were
authenticated as antihypertensive peptides because their SVM scores were higher than 0 in
alcalase, thermolysin hydrolysates, respectively [33]. The higher the score, the higher the
ACE inhibitory activity of peptides; when the SVM score is > 1, the peptide may have a
relatively higher potential with ACE inhibitory activity [39]. According to the result, five
coffee bean peptide sequences with an SVM score of > 1.0 were chosen. The five selected
sequences GLPSGGAPSGY, IIPNEVY, ITPPVMLPP, VLETPDGPL, and VKNPNPIPIP were
named CP1, CP2, CP3, CP4, and CP5.

3.3. In Vitro Evaluation of ACE Inhibitory Capacity

The selected monomer peptides were synthesized by the solid-phase synthesis method
with a purity of ≥95%. The ACE inhibitory capacity of five synthesized peptides predicted
by AHTpin with potential antihypertensive activity were determined. The inhibition rate
(%) of two enzyme hydrolysates and five peptides separately are shown in Figure 2.

Thermolysin was the enzyme yielding peptides with the higher ACE inhibitory capac-
ity, and the hydrolysate of alcalase also had considerable ACE inhibitory activity, according
to results. Generally, the antihypertensive peptides contained between 2 and 12 amino
acids, and presented a certain amount of hydrophobic residues [40,41]. Compared with
captopril, the ACE inhibition rate of thermolysin hydrolysate reached 73.3%, indicating
that there are very promising inhibitors among them, and these inhibitors are completely
safe without any side effects.
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Figure 2. ACE inhibitory capacities of the green coffee bean protein isolate digested with alcalase,
thermolysin at the concentration of 500 µg/mL, five screened peptides identified from protein
hydrolysates at the concentration of 50 µM, and captopril at the concentration of 0.1 µM.

The ACE inhibitory capacity of CP 1–5 was tested at a concentration of 50 µM. The
results showed that five peptides exhibited various degrees of inhibitory capacity from 6.0
to 53.3%. The inhibition rates of the two peptides of CP2 (IIPNEVY) and CP3 (ITPPVMLPP)
were significantly higher than those of the other three peptides, which were 49.3% and
53.3%, respectively. Their IC50 values were 57.54 ± 7.78 µM and 40.37 ± 5.56 µM, respec-
tively. Among them, the inhibition rate of CP4 (VLETPDGPL) was the lowest, only 6.0%.
Five peptides obtained by computational screening all showed certain activities, suggesting
that the prediction results have reference value.

3.4. Inhibition Kinetics of Bioactive Peptides

The inhibition models of ACE inhibitory peptides mainly include competitive in-
hibitors, noncompetitive inhibitors, and mixed-type inhibitors and their inhibition mech-
anisms are different. To determine the inhibitory kinetic pattern of the ACE inhibitory
peptides obtained from green coffee protein, Lineweaver–Burk plots were constructed, and
the results are shown in Figure 3. As the concentration of IIPNEVY (CP2) increased, the
Michaelis–Menten constant (Km) remained unchanged, while the Vmax decreased, which is
characteristic of the noncompetitive inhibition pattern indicating that this peptide bound
to essential sites outside the active part of enzyme. The reported noncompetitive inhibitors
include VFDGVLRPGQ from rice bran protein [34], QLDL from the mycelia of Ganoderma
Lucidum [42], and VGLPPNSR and QAGLSPVR from tilapia skin gelatin [43], etc. As for
the peptide ITPPVMLPP (CP3), Figure 3B showed that the fitted curve did not intersect
the x-axis at the same point and the Km values of control and various inhibitory peptide
concentration were not the same, suggesting that the inhibition of CP3 at different con-
centrations presented a mixed-type inhibition pattern. The Vmax values decreased as the
peptide concentration increased and the Km increased with the addition of an inhibitory
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peptide. The result was similar to the ACEI peptides YGIKVGYAIP from palm kernel cake
protein hydrolysates [44].
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3.5. Molecular Docking Studies

To further explain the inhibitory mechanism between the identified peptides and ACE,
the docking study between CP2 or CP3 and ACE was performed. Prior research have
suggested that the binding pockets related to the activity of ACE are mainly distributed
in S1(Ala354, Tyr523, and Glu384), S2(Gln281, Lys511, His353, Tyr520, and His513), and
S1’(Glu162) [45]. However, the docking results showed that CP2 or CP3 did not form
any interactions with amino acid residues of ACE active pockets. As shown in Figure 4,
two peptides bound to the receptor protein in the same cavity at the upper end of ACE
close to active pocket S1 and tended to combine with the similar amino acid residues. Both
peptides produced an H-bond very close to the critical residue Ala354 in an ACE active
pocket. Moreover, CP3 bound with Arg522 in pocket S1 exhibiting a higher inhibition rate
according to the in vitro assay. We hypothesized that the ability of CP2 was to generate
interactions with nonactive sites, resulting in a distortion of the catalytic configuration,
which is consistent with the inhibition kinetic pattern of bioactive peptides as ACE non-
competitive inhibitors. When CP3 bound to the receptor protein, it formed more complex
interactions with the amino acid residues near the active sites (Ser355, Arg522), suggesting
it may be a potent mixed-type inhibitor.

3.6. In Vitro Gastrointestinal Digestion Stability

As ACE inhibitory peptides exert physiological regulatory functions after oral adminis-
tration, there is a risk of being degraded by proteases in the gastrointestinal tract. Therefore,
the stability of the two inhibitory peptides against gastrointestinal digestion was analyzed
using LC-MS characterization and variations in the ACE inhibition rate. The MS results of
CP2 after pepsin hydrolysis were consistent with that of control (Figure 5A,B). After succes-
sive hydrolysis by pepsin and pancreatin, new peptide sequences were detected (Figure 5C).
Compared with before digestion, the ACE inhibition rate of CP2 decreased after being
digested by pepsin, and then after digestion by pancreatin, its inhibition rate decreased
significantly (Table 3). The result was consistent with the LC-MS analysis, indicating that
the CP2 is well resistant in gastric digestion, but may be affected by pancreatin. Among
the products from in vitro digestion (pepsin, pepsin-pancreatin) of CP3, new peptides
were determined. Only a small amount of CP3 was degraded in the digestion by pepsin
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(Figure 5E), and the result of the ACE inhibition assay also suggested that CP3 was partially
degraded during pepsin hydrolysis as the inhibition rate did not change significantly. Great
changes in the MS analysis and ACE inhibitory activity occurred after incubation with
pepsin-pancreatin. Thus, pancreatin may be hydrolyzing the CP3 and its pepsin digestion
product into smaller peptide fragments with a higher ACE inhibitory effect. The result
of this simulation has suggested that CP3 may be a pro-drug peptide which could be
converted to true inhibitors by gastrointestinal proteases, resulting in increased activity [46].
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Table 3. ACE inhibition rate of the peptides following digestion by gastrointestinal proteases.

Enzyme
ACE Inhibition Rate (%)

CP2 (IIPNEVY) CP3 (ITPPVMLPP)

Control a 49.3 53.3
Pepsin 36.6 54.9

Pepsin-Pancreatin 9.8 69.6
a Peptides without any treatment.
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4. Conclusions

In the current study, traditional methods coupled with emergent peptidomics meth-
ods were employed to discover potential antihypertensive peptides in green coffee. Five
peptides derived from green coffee that may have ACE inhibitory activity were predicted
through in silico screening. However, subsequent in vitro activity tests showed that the
experimental results were slightly different from the prediction results. The hydrolysates
obtained when using proteases both showed considerable ACE inhibitory capacity. Com-
bined with the identification of peptides, it was considered that thermolysin and alcalase
cleave peptide bonds near hydrophobic amino acid residues, resulting in peptides contain-
ing favorable amino acid residues for antihypertensive activity at the C-terminal. Based
on the analysis of the above results, the peptide with the highest experimental inhibition
rate was not the one with the highest score, indicating that the result predicted by the
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webserver AHTpin may be inaccurate. Additionally, some peptides with equivalent or
stronger activities were missing, leading to limitations in finding active peptides effectively.
In the screening results, two novel oligopeptides, IIPNEVY and ITPPVMLPP, exhibited
excellent ACE inhibitory activity with IC50 values of 57.54 and 40.37 µM. Lineweaver–Burk
plots showed that the former peptide was a noncompetitive inhibitor and the latter might
act in a mixed-mode type of inhibition. It was found that CP2 bound to the nonactive sites
in ACE through molecular docking study, thereby destroying the natural conformation
of ACE and affecting its activity. CP3 bound to the receptor protein in the same cavity
to cause inhibition of ACE. However, future research should focus on active peptides
that may be missed because of the high inhibition rate of coffee protein hydrolysate, and
other potential peptides in coffee hydrolysate are worthy of further exploration. Moreover,
in vitro gastrointestinal digestion simulation has been conducted to investigate biostability,
and the CP3 can be considered to be a so-called pro-drug peptide, while the CP2 requires
further experiments to explore its delivery method. In summary, peptides derived from
the hydrolysates of Coffea arabica are a promising source for the treatment of high blood
pressure.
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