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Abstract: Matsutake mushrooms, known for their high value, present challenges due to their seasonal
availability, difficulties in harvesting, and short shelf life, making it crucial to extend their post-harvest
preservation period. In this study, we developed three quality predictive models of Matsutake
mushrooms using three different methods. The quality changes of Matsutake mushrooms were
experimentally analyzed under two cases (case A: Temperature control and sealing measures; case B:
Alteration of gas composition) with various parameters including the hardness, color, odor, pH,
soluble solids content (SSC), and moisture content (MC) collected as indicators of quality changes
throughout the storage period. Prediction models for Matsutake mushroom quality were developed
using three different methods based on the collected data: multiple linear regression (MLR), support
vector regression (SVR), and an artificial neural network (ANN). The comparative results reveal that
the ANN outperforms MLR and SVR as the optimal model for predicting Matsutake mushroom
quality indicators. To further enhance the ANN model’s performance, optimization techniques such as
the Levenberg–Marquardt, Bayesian regularization, and scaled conjugate gradient backpropagation
algorithm techniques were employed. The optimized ANN model achieved impressive results,
with an R-Square value of 0.988 and an MSE of 0.099 under case A, and an R-Square of 0.981 and
an MSE of 0.164 under case B. These findings provide valuable insights for the development of
new preservation methods, contributing to the assurance of a high-quality supply of Matsutake
mushrooms in the market.

Keywords: Matsutake mushroom; cold chain; gas conditioning; food control; quality prediction

1. Introduction

The Matsutake mushroom (Tricholoma Matsutake) is an ectomycorrhizal fungus that
possesses rich nutritional value and has been found to have immunomodulating and antiox-
idant properties, having high medicinal value, making it popular among consumers [1–4].
From January to October 2022, 296.55 tones of Matsutake mushrooms in China were ex-
ported, with an export value of 116 million yuan, and the average export price increased
to 389.6 yuan/kg, which indicates that Matsutake mushrooms are of high commercial
value [5]. However, Matsutake mushrooms have extremely strict requirements for their
growing environment. Any insect damage, vandalism, or unsuitable temperature or light
during growth can cause irreversible damage [6]. The species of Matsutake mushrooms
studied in this paper primarily grow in the forest areas of southwest and northeast China, at
a distance of over 20 km from residential regions [7]. These Matsutake mushrooms exhibit
high biological activity and maintain high metabolic intensity even after harvesting. Failure
to implement appropriate preservation measures can lead to the rapid decomposition of
Matsutake mushrooms during transit, within only 1–2 days [8]. Several quality factors
undergo degradation in the post-harvest stage, including moisture loss, discoloration,
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texture alteration, flavor deterioration, and nutrient value reduction, which contribute
to a decline in the overall value of the Matsutake mushrooms [9,10]. To ensure that the
Matsutake mushrooms retain their highest value, local harvesters have to set off early
in the morning and sell them within two hours of descending the mountain. Given the
labor-intensive, economically inefficient, and wasteful nature of the process, it is imperative
to prioritize the post-harvest preservation of Matsutake mushrooms as a critical step in the
overall Matsutake mushroom supply chain.

Currently, the Matsutake mushroom industry uses three main methods for preserva-
tion: drying, refrigeration, and modified atmosphere packaging. Drying is considered an
effective way of maintaining the stability of food items, but can cause the loss of moisture
and nutrients and a poor taste [11–13]. Refrigeration has become the most widely used
method of preserving Matsutake mushrooms today by mitigating the biological activity of
the food, which effectively extends its shelf life [14]. The use of gas-conditioned packaging
is a new method of preserving Matsutake mushrooms that has appeared in recent years,
which can maximize the freshness and nutritional value of Matsutake mushrooms, but the
price is higher [15,16]. Refrigeration and the use of modified atmosphere packaging have
great potential as effective methods of extending the shelf life in a market that prefers fresh
Matsutake mushrooms.

In the current Matsutake mushroom production areas, only a handful of companies
engage in the timely preservation and packaging of the Matsutake mushroom, and complete
industry standards and systems have not been established. To promote the development of
the Matsutake mushroom industry, one of the crucial elements is the establishment of a
quality standards model to ensure the preserved and packaged Matsutake mushrooms meet
the required quality standards. In the process of establishing a quality standards model,
different models can be built based on experimental data, and the models’ performance
can be compared to derive the best predictive model. It is also necessary to optimize the
predictive model to achieve better results [17–19]. Currently, numerous studies have been
carried out to model food storage processes. Wang et al. modeled changes in the quality
of tilapia during frozen storage to predict the quality at −40 ◦C and −8 ◦C throughout
the storage period [20]. Chong et al. developed a model to investigate the effect of stage
cutting on the gas separation performance of hollow fiber membrane modules to extend
the life of fruits and vegetables during transport and storage [21]. When modeling an
indicator, there are several effective and commonly used methods in various industries
such as the food, agriculture, forestry, resource, and environmental industries, including
multiple linear regression (MLR), support vector regression (SVR), and artificial neural
networks (ANNs), as noted in previous studies [22–24]. MLR is a suitable choice for target
indicators with multiple variable influences, as it allows the weight parameters of the
factors to be varied, although it is prone to overfitting when dealing with high-dimensional
data, which may affect the robustness and accuracy [25]. SVR is a specialized branch
of SVM that obtains the weights of the network by solving a quadratic programming
problem with linear constraints, which can effectively solve non-linear regression models
and has better results for small batches of data [26]. Li et al. established optimal prediction
models for salmon storage times by utilizing support vector regression coupled with
variable selection methods, revealing salmon quality evaluation methods under different
temperature conditions [27]. For non-linear regression problems with multiple inputs
and outputs, the use of an ANN is quite a useful method that can establish relationships
between input and output variables through the learning process itself, without the need
for human definition [28]. Sampaio et al. employed ANN and MLR models to predict rice
quality based on physical grain parameters for qualitative and quantitative analyses [29].
While these methods provide constructive ideas for modelling quality indicators, further
research and the selection of appropriate regression methods are necessary to develop
predictive models for quality indicators during storage of Matsutake mushrooms.

In the recent research on Matsutake mushrooms, the main focus is on internal traits,
growth characteristics, preservation methods, shelf-life prediction, etc. [1,2,10,30]. However,
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there is currently a lack of relevant research on the modeling of quality indicators for post-
harvest storage of Matsutake mushrooms, which forms an urgent gap in the field. Therefore,
the aim of this paper is to investigate the quality changes of Matsutake mushrooms in
different post-harvest storage environments to provide insights into the development of
effective storage strategies for Matsutake mushrooms. MLR, SVR and ANN methods
are utilized to provide accurate prediction and control of quality changes in Matsutake
mushrooms, mitigating the negative economic impact of suboptimal storage conditions.

2. Materials and Methods
2.1. Architecture of the Experiment

The architecture of the entire experiment can be divided into three parts, as depicted
in Figure 1a: preparation of the Matsutake mushroom, obtaining indicators, and predictive
modeling. Matsutake mushrooms are harvested and transported to the laboratory in
Nyingchi for further processing. Figure 1b demonstrates that the laboratory creates two
storage cases (Case A, Case B), each with two variables. Throughout the storage period,
random samples of Matsutake mushrooms are periodically removed for in-process quality
observation. Utilizing a multi-method assessment approach, quality indicators are collected
as datasets for model training. The trained model is able to guide Matsutake mushroom
preservation, which is shown in Figure 1c.

Figure 1. The architecture of the experiment. (a) Procedure for conducting the experiment.
(b) Matsutake mushrooms are treated in two cases. (c) Using the model to guide Matsutake mush-
room preservation.

2.2. Materials and Transport Environment Preparation
2.2.1. The Harvesting of Matsutake Mushrooms

The Matsutake mushrooms used in this paper were harvested from the forest area of
Nyingchi City, Tibet. Fresh Matsutake mushrooms were collected in the morning of the
experiment, cooled to approximately 5 ◦C in a thermostatically controlled refrigeration
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unit (Shanghai Yiheng Technology, Shanghai, China), and transported to the Tibetan
Institute of Agriculture and Animal Husbandry laboratory at 4 ± 1 ◦C within 2 h of
harvest. A soft brush was used to remove debris from their surfaces in the laboratory
to prepare the Matsutake mushrooms for the experiment. Any damaged, deformed, or
diseased Matsutake mushrooms were excluded to ensure that the experimental samples
were 80–90% mature, fresh, and intact. A total of 246 Matsutake mushrooms were used for
this experiment.

2.2.2. Storage Environment Settings

The experiment aimed to investigate the effects of different variables on the quality indi-
cators of Matsutake mushrooms during storage according to previous research [17]. It was di-
vided into two parts, each with its own set of independent variables and experimental settings.

In Case A, the study focused on two independent variables: preservation temperature
and cling film sealing. To facilitate experimentation, the Matsutake mushrooms were
evenly apportioned into six distinct groups, labeled as Ga1 to Ga6, and placed within six
polypropylene (PP) skeleton baskets. Out of the six groups, four were selected at random
to undergo an additional step involving the complete encapsulation of the skeletonized
frames with polyethylene (PE) cling film (Weide New-material Corp., Xuzhou, China). This
subset was categorized as “Sealed by cling film”. Conversely, the remaining two groups
were designated as the “without sealing” group, because of the non-existence of clingfilm.

Within the “Sealed by cling film” group, a diverse range of preservation temperatures
was implemented across four gradient levels: 0 ◦C, 4 ◦C, 10 ◦C, and 20 ◦C. In contrast, the
“without sealing” group was subjected to two distinct temperature gradients: 0 ◦C and
4 ◦C. Comprehensive details pertaining to the environmental conditions employed for each
group can be found in Table 1.

Table 1. Temperature and sealing method settings in Case A.

Group Number Temperature Sealing Method

Ga1 4 ◦C Without sealing
Ga2 10 ◦C Without sealing
Ga3 0 ◦C Sealed by cling film
Ga4 4 ◦C Sealed by cling film
Ga5 10 ◦C Sealed by cling film
Ga6 20 ◦C Sealed by cling film

In Case B, the focal independent variables investigated was related to gas regulation
parameters [31]. To establish a controlled experimental setting, a configuration involving
multiple plastic bags (Weide New-material Corp., Xuzhou, China) was adopted to create
hermetic enclosures for the Matsutake mushrooms. Specifically, each plastic bag accom-
modated two Matsutake mushrooms. The material of the vacuum preservation bags was
polyethylene (PE) with a size of 0.15 × 0.2 m.

After the Matsutake mushrooms were placed, these plastic bags were closed and vacu-
umed using a vacuum packaging machine (Ningbo, China). Subsequently, the bags were
filled with a standardized gas mixture obtained from Chengsui Oxygen Production Com-
pany (Nyingchi, China) through. Comprehensive details regarding the specific parameters
of gas composition can be accessed in Table 2.

Table 2. Gas condition settings in Case B.

Group Number Temperature O2 CO2 N2 Air SO2

Gb1 4 ◦C 1% 21% 78% - -
Gb2 4 ◦C 5% 17% 78% - -
Gb3 4 ◦C 10% 12% 78% - -
Gb4 4 ◦C - - - 100% -
Gb5 4 ◦C - - - Coexist with SO2 10 ppm
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For consistency, each group of bags was maintained within a sealed environment at
a constant temperature of 4 ◦C, with the composition of the enclosed gas serving as the
independent variable. All the sealed bags were stored in a biochemical incubator at a
temperature and relative humidity of 4 ± 1 ◦C and 90% RH.

2.3. Quality Indicators Measurement of Matsutake Mushrooms
2.3.1. Quality Evaluation Indicators

To detect changes in the quality of Matsutake mushrooms during storage, this study
was conducted using sensory and physicochemical indicators. The evaluation of sensory
indicators included hardness (cap and stem), color, and odor of Matsutake mushrooms.
The physicochemical indicators consisted of moisture content (MC), pH, and soluble
solids content (SSC). For the groups where temperature and sealing were the independent
variables, two Matsutake mushrooms were sampled at 24 h intervals for each group. For
the groups where the gas environment was the independent variable, one plastic sealed
bag containing two Matsutake mushrooms was sampled at 48 h intervals for measurement.

To ensure the accuracy and reliability of the measurements, it is necessary to follow
certain protocols. Firstly, rubber gloves should be worn during all measurements to prevent
contamination and ensure safety. Secondly, forceps should be used for sample transfer to
minimize the risk of introducing external factors that may affect the measurement results.
Finally, it is crucial to maintain a dry and clean environment throughout the measurement
process to avoid any interference from external factors that may affect the measurement.

2.3.2. Sensory Indicators

A team of trained evaluators consisting of a local collector, a buyer, a cook, and two
consumers were invited to participate in the sensory evaluation. The evaluators rated the
sensory indicators of Matsutake mushrooms by observing and filling out forms daily and
recorded their scores separately for each criterion. The average value of each evaluator
was calculated and recorded as the final data. This study divided the range of sensory
evaluation scores into four levels, and the specific evaluation criteria are shown in Table 3.

Table 3. Scoring standard of Matsutake sensory indicators.

Level Score Hardness Color Odor

1 4 Good cap elasticity and firm stipe. Fresh cap with whitish color, milky
white stipe, and no browning. Intense mushroom aroma.

2 3 Relatively good cap elasticity and
relatively firm stipe. Normal color, slight browning. Normal, no decay odor.

3 2 The cap and stipe begin to soften. Moderate browning. Slightly decay odor.
4 1 The cap and stipe begin to soften severely. Severe browning, mildew appearing. Foul decay odor.

2.3.3. Physicochemical Indicators

To prepare the Matsutake mushroom samples, each Matsutake mushroom was sliced
into 15–18 pieces with a thickness of approximately 1 mm. The moisture content (MC) was
measured using a moisture meter (Shenzhen Crown and moisture meter technology Co., LTD.,
Shenzhen, China).

A sample of 5 g of the prepared Matsutake mushroom was mixed with 20 mL
of 0.05 mol/L lactic acid buffer solution (pH 6.8) containing 1% polyvinylpyrrolidone
(PVP) and ground uniformly with a mortar and pestle under ice bath conditions. The
resulting homogenate was then filtered through four layers of gauze and centrifuged at
10,000–15,000 rpm for 10 min at 0–4 ◦C. The supernatant was collected to measure pH
and solid soluble content (SSC). The pH value was measured using a pHB-4 pH meter
(INESA.CC, Shanghai, China). The content of SSC was measured using a glycometer
refractometer (LH-B55, Hangzhou, China).

Three independent experiments were conducted on each Matsutake mushroom sample
to determine moisture content (MC), pH, and solid soluble content (SSC). Subsequently,
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the average of the results of these three different experiments was calculated to create the
final datasets.

2.4. Quality Prediction Models

After collecting quality indicators of stored Matsutake mushrooms under different
conditions, there is a need for accurate and efficient methods to model these indicators.
Three different models MLR, SVR, and ANN were selected for this study. Both MLR and
SVR are multiple-input single-output regression models, while ANN is a multiple-input
multiple-output predictive model.

In this study, we created training and test sets for MLR and SVR with a split of 70% for
training and 30% for test. For the ANN model, we employed a more detailed partitioning,
allocating 70% for training, 15% for test, and 15% for validation. Details of the dataset can
be seen in Table 4.

Table 4. Size of the dataset for each model.

Model
Size of Dataset

Total Train Test Validation

MLR Case A 132 92 40 -
Case B 144 100 44 -

SVR Case A 132 92 40 -
Case B 144 100 44 -

ANN Case A 132 92 20 20
Case B 144 100 22 22

2.4.1. Multiple Linear Regression (MLR)

MLR is a useful approach for evaluating target indicators that are impacted by several
variables because it allows for the adjustment of the weight parameters of the factors [25].
Given that the quality of Matsutake mushrooms is influenced by multiple factors, including
storage temperature and gas environment, simple linear regression (SLR) may not be
sufficient to capture the changes in quality indicators since it considers only one predictor
variable to estimate the outcome variable [28]. In contrast, MLR is an appropriate regression
model used to represent a linear relationship between independent and dependent variables
when multiple characteristics are utilized as inputs [32]. The linear form of the model is
shown in Equation (1) [33]. The ith dependent variable predicted by the model, which
includes hardness, color, odor, pH, SSC, and MC. The xi represents the ith independent
variable, which is the storage condition and retention time, respectively. β0 is the intercept,
βi is the linear regression coefficient.

y = β0 + ∑3
i=1 βixi + ε (1)

In this study, interaction (2FI) effects are incorporated using the equation presented in
Equation (2), βij is the interaction regression coefficient [34,35]. By including interaction
terms, this approach accounts for the non-independence of multiple independent variables
and provides a more precise depiction of the relationship between the independent and the
dependent variables [36]. This technique allows for a more accurate description of how the
effects of different independent variables interact with each other.

y = β0 + ∑3
i=1 βixi + ∑3

i=1 ∑3
j=i+1 βijxij + ε (2)

2.4.2. Support Vector Regression (SVR)

SVR applies the principles of Support Vector Machines (SVM) to regression problems,
which obtain the weights of the model by solving a quadratic programming problem with
linear constraints. SVR has a significant advantage in dealing with small batches of data, as
the model parameter estimation is formulated as a quadratic optimization problem with
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the objective of minimizing structural risk [26]. This approach effectively addresses the
issue of overfitting and leads to improved generalization of the model [37].

The algorithm principle of SVR is shown in Figure 2. In this study, by mapping the
input data, including storage conditions and retention time, to a high-dimensional feature
space and constructing a kernel function, the problem is solved with a linear regression
function [38]. SVR incorporates an interval band surrounding the linear function, with a
width of ξ (tolerable bias). This interval band is designed to accommodate the variability
and uncertainty in the prediction. In SVR, the focus is not solely on individual sample
losses that fall within the band, but rather on overall model performance. Therefore, the
prediction of SVR for each dependent variable such as hardness, color, odor, pH, SSC, and
MC is correct when it falls within an interval band of width ξ [39].

Figure 2. Algorithm principle of SVR.

The kernel function selected for SVR plays a pivotal role in determining the mapping
of the training set to high-dimensional space and consequently, the overall performance of
the SVR model. For this study, the Radial Basis Function (RBF) kernel has been opted, which
requires tuning of a unique hyperparameter. The corresponding equation is presented in
Equation (3).

κ
(
xi, xj

)
= e(−

||xi ,xj ||
2

2σ2 ) ∈ (0, 1] (3)

2.4.3. Artificial Neural Network (ANN)

The ANN model is developed through the utilization of the backpropagation tech-
nique in conjunction with a feed-forward neural network structure [40]. This approach
is particularly useful for non-linear regression problems that involve multiple inputs and
outputs. The ANN model comprises a series of connections with unique weights and
biases, which interconnect three distinct layers, including the input, hidden, and output
layers. A theoretical advantage of the ANN is that it can establish relationships between
input and output variables through the learning process itself, without the need for human
definition [28].

This research explores the utilization of an ANN model for evaluating the quality of
Matsutake mushrooms during different preservation environments. The structure proposed
in this study is shown in Figure 3a and consists of an input layer, a hidden layer, and an
output layer. Specifically, the input layer consists of three neurons representing storage
conditions and preservation time. As shown in Figure 3b, the hidden layer consists of four
neurons, all using Sigmoid as the activation function. Figure 3c demonstrates the linear
output neurons. Six linear output neurons make up the output layer, representing hardness,
color, odor, pH, SSC, and MC.
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Figure 3. ANN model. (a) Structure of the ANN model. (b) Neuron in the hidden layer. (c) Neuron
in the output layer.

2.5. Statistical Methods

This study capitalized on specialized software to ensure rigorous analysis and efficient
model development. Microsoft Excel 2019 (Microsoft, Redmond, WA, USA) was employed
for initial data organization and processing. The Neural Net Fitting and Regression Learner
toolboxes in MATLAB 2022a (MathWorks, Natick, MA, USA) facilitated precise model
creation and refinement. Additionally, OriginPro2023 (OriginLab, Northampton, MA, USA)
facilitated regression analysis and visualization, enhancing result interpretation.

The assessment of our model’s performance was achieved through the utilization of
established metrics. The Mean Squared Error (MSE) was employed to gauge predictive
accuracy by measuring the disparities between predicted and actual values. Complement-
ing this, the Root Mean Square Error (RMSE) was utilized to standardize error assessment
through the computation of the square root of the MSE. Furthermore, we integrated the
Mean Absolute Error (MAE) to evaluate the precision of predictions, focusing on the av-
erage magnitude of errors, regardless of their direction. In addition to these metrics, the
Coefficient of Determination (R2) was also incorporated to measure the goodness of fit by
quantifying the linear relationship between variables. Formulas (4)–(7) show the specific
calculation of these established metrics.

MSE =
1
m ∑m

i=1(yi − ŷi)
2 (4)



Foods 2023, 12, 3372 9 of 21

RMSE =

√
1
m ∑m

i=1(yi − ŷi)
2 (5)

MAE =
1
n ∑n

i=1|ŷi − yi| (6)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (7)

Furthermore, K-fold Cross Validation was employed during model training to en-
hance reliability. All statistical assessments, including RMSE, MAE, MSE, and R2, were
executed within MATLAB 2022a, ensuring a comprehensive understanding of the model’s
predictive performance.

3. Results and Discussion
3.1. Relevance Analysis of Matsutake Mushroom Quality Indicators

In order to ensure the correct selection of quality assessment parameters and to
improve the accuracy of the analysis of changes in the quality of Matsutake mushrooms in
different storage environments, this study employed an independent analysis of all samples
to establish a time-quality correlation. The results of the study are visually represented
in a radar chart as shown in Figure 4. In this representation, the correlation coefficients
between time and the respective variables served as coordinates along the radial axes. The
radar plots effectively demonstrated distinct trends in the quality indicators of Matsutake
mushrooms across varying storage conditions. These six quality indicators exhibited strong
correlations with time. Hence, they are deemed suitable as reliable quality indicators for
assessing the overall quality of Matsutake mushrooms.

3.2. Performance Analysis of Established Models under Two Environmental Conditions

In this study, the datasets are divided into two different groups based on the environ-
mental conditions under which the data are collected. The first group, referred to as Case
A, involves the modification of temperature and the use of cling film as factors influencing
the storage environment. In Case A, the correlation coefficients of MC and pH decrease
substantially at 20 ◦C, but the correlation coefficients of all six quality indicators are higher
in general, which can reflect that each quality indicator has a strong correlation with the
storage time. Therefore, the prediction models built from the six quality indicators are
meaningful. For the two single output models, MLR and SVR, the performance of the six
models built for the six quality indicators is analyzed separately to obtain the best model
performance in predicting which quality indicator.

The second group, referred to as Case B, focuses on the effect of the modified atmo-
sphere on storage conditions. In Case B, the whole correlation coefficient between MC
and SSC is lower than 0.5, while the correlation coefficients of the remaining four quality
indicators are higher in general. The correlation of MC and SSC with time is therefore
poor. It indicates that the prediction models established in the four aspects of hardness,
color, odor, and pH are more reliable and meaningful. For MLR and SVR, the focus is on
analyzing the performance of the models built for the four quality indicators to obtain the
best model performance in predicting which quality indicator.

3.2.1. Performance Analysis of MLR

The performance of the built MLR model is presented in Table 5. For the environment
of Case A, the performance of the MLR model built for six quality metrics is analyzed, in
which MLR shows the best performance in SSC, the R-Square reaches 0.760, RMSE reaches
0.248, and MAE reaches 0.188, indicating a high degree of accuracy. Additionally, the
performance of the MLR model built for the four quality indicators with high correlation
coefficients is analyzed in Case B, in which MLR shows the best performance in predicting
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color with an R-Square of 0.42 and an RMSE of 0.669. Overall, the results suggest that the
MLR model is more effective in predicting the quality indicators under Case A.

Figure 4. Radar plot of the correlation between quality indicators and storage time of Matsutake
mushrooms under different preservation environments (MC stands for moisture content and SCC
stands for soluble solids content). (a) Under different preservation temperature. (b) With/without
cling film. (c) Under different oxygen concentrations. (d) With/without SO2 in pure air.

Table 5. Performance of MLR.

Quality Indicators Environment Changes RMSE R-Square MSE MAE

Hardness Case A 0.499 0.390 0.255 0.402
Case B 0.726 0.260 0.527 0.591

Color Case A 0.493 0.540 0.244 0.404
Case B 0.669 0.420 0.447 0.555

Odor Case A 0.549 0.520 0.302 0.432
Case B 0.873 0.290 0.761 0.723

pH Case A 0.065 0.540 0.004 0.045
Case B 0.083 0.250 0.007 0.064

SSC Case A 0.248 0.760 0.062 0.188
Case B 0.198 -0.100 0.039 0.162

MC Case A 0.048 0.720 0.002 0.029
Case B 0.015 0.010 0.000 0.012
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3.2.2. Performance Analysis of SVR

The performance of the built SVR model is presented in Table 6. For the environment of
modified sealing and temperature conditions, we analyze the performance of SVR models
built for six quality indicators, in which SVR performs best in SSC, the R-Square reaches
0.710, RMSE reaches 0.272, and MAE reaches 0.176. For the environment of modified
atmosphere, an analysis of the performance of SVR models built for four quality metrics
with high correlation coefficients is conducted, in which SVR shows the best performance
in color, the R-Square reaches 0.37, RMSE reaches 0.692, and MAE reaches 0.550. The results
suggest that the SVR model is more effective in predicting the quality indicators under
modified sealing and temperature conditions.

Table 6. Performance of SVR.

Quality Indicators Environment Changes RMSE R-Square MSE MAE

Hardness Case A 0.524 0.320 0.274 0.407
Case B 0.696 0.320 0.484 0.526

Color Case A 0.524 0.480 0.274 0.404
Case B 0.692 0.370 0.479 0.550

Odor Case A 0.619 0.390 0.383 0.490
Case B 0.750 0.470 0.563 0.570

pH Case A 0.066 0.600 0.004 0.043
Case B 0.076 0.370 0.006 0.054

SSC Case A 0.272 0.710 0.074 0.176
Case B 0.170 0.190 0.029 0.138

MC Case A 0.059 0.570 0.004 0.032
Case B 0.013 0.250 0.000 0.010

3.2.3. Establishment and Performance Analysis of ANN

The performance parameters of the built ANN model are presented in Table 7. As a
multi-input and multi-output model, the ANN demonstrates an effective predictive capabil-
ity for quality indicators. The R-Square values obtained for the test datasets under modified
sealing and temperature conditions and modified atmosphere are 0.984 and 0.978, respec-
tively, indicating a high degree of accuracy. Additionally, the MSE values obtained are 0.129
and 0.190, respectively. The performance parameters obtained for the training, validation,
and test datasets are all satisfactory. When comparing the performance of the ANN model
under different environmental conditions, it is found that the ANN model shows better re-
sults and smaller errors under modified sealing and temperature conditions. However, the
differences in performance between the two environmental conditions are not significant.
Overall, the results suggest that the ANN model is a promising approach for predicting
quality indicators of Matsutake mushrooms under different environment conditions.

Table 7. Performance of ANN.

Process
Case A Case B

MSE R-Square MSE R-Square

Training 0.097 0.988 0.168 0.981
Validation 0.133 0.984 0.211 0.976

Test 0.129 0.984 0.190 0.978

Figure 5 illustrates the training results obtained under Case A. In Figure 5a, the graph
showcases the gradient descent, changes in Mu (learning rate), and validation checks
conducted throughout the training process. The training concludes when six consecutive
validation checks show no further reduction in error, resulting in the generation of the final
ANN. Figure 5b presents the Mean Squared Error (MSE) loss during training, indicating
that the minimum MSE value is achieved in the 17th round of training, after which the loss
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stabilizes. Figure 5c showcases the ANN’s predictions within the training dataset, while
Figure 5d displays its predictions within the separate test dataset.

Figure 5. The training process of ANN model under Case A. (a) Gradient, Mu, and validation checks
during training process. (b) Changes in MSE during the training process. (c) Predictions of the final
ANN on the training datasets. (d) Predictions of the final ANN on the test datasets.

Similarly, Figure 6 shows the training results obtained under Case B. The training
ceasing and the final ANN network outputting after six consecutive validation checks
display no reduction in error. The MSE loss during training achieves the minimum in the
11th round and stability thereafter. Figure 6c,d present the predictions of the final trained
ANN in the training and test datasets under Case B.

3.3. Comparison of the Three Models
3.3.1. Comparison of the Effectiveness of the Predictive Models

To compare with the ANN model, the MLR and SVR models with the highest R-
squared values for each environmental condition are selected. The residual and predictive
regression plots for the MLR and SVR models are presented in Figures 7 and 8, while the
error distribution histograms and predictive regression plots are shown for the ANN model.
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Figure 6. The training process of the ANN model under Case B. (a) Gradient, Mu, and validation
checks during the training process. (b) Changes in MSE during the training process. (c) Predictions
of the final ANN on the training datasets. (d) Predictions of the final ANN on the test datasets.

Figure 7. Cont.
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Figure 7. Comparison of regressions under Case A between MLR, SVR, and ANN models. (a) Actual-
forecast chart of MLR as a representative graph. (b) Residual plot of MLR as a representative graph.
(c) Actual-forecast chart of SVR as a representative graph. (d) Residual plot of SVR as a representative
graph. (e) Actual-forecast chart of ANN. (f) Error distribution histogram of ANN.

Figure 8. Cont.
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Figure 8. Comparison of regressions under Case B between MLR, SVR, and ANN models. (a) Actual-
forecast chart of MLR as a representative graph. (b) Residual plot of MLR as a representative graph.
(c) Actual-forecast chart of SVR as a representative graph. (d) Residual plot of MLR as a representative
graph. (e) Actual-forecast chart of ANN. (f) Error distribution histogram of ANN.

When comparing the performance of the models in scatter plots and residual plots, it
is found that although the SVR model predicts most distributions closer to the true values
than the MLR, a few points deviate significantly, which may be due to noise in the dataset.
The ANN model exhibits outstanding performance, with its predicted distributions being
the closest to the true values. Additionally, the error distribution histogram indicates that
errors are mainly concentrated in the [−0.2, 0.2] interval. This may be attributed to the
fact that the ANN model is a multiple-input, multiple-output model, which has a larger
training dataset compared to the MLR and SVR models. ANN is able to automatically
capture more features and better predict multiple quality metrics with a larger training
dataset. Furthermore, it is noted that none of the modeling approaches under Case B
exhibited performance as strong as those under Case A. This difference in performance
can be attributed to the subtler effects of altering the gas environment on the Matsutake
mushrooms. The intricate interplay between the gas composition and the quality indicators
of Matsutake mushrooms may pose additional challenges for modeling and prediction.
Overall, the results indicate that the ANN model outperforms MLR and SVR in terms
of prediction accuracy, particularly when multiple quality metrics are considered. The
larger training dataset and the model’s ability to capture complex relationships contribute
to its superior performance. Additionally, the variation in performance between Case A
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and Case B suggests the need for further exploration and understanding of the effects of
different storage environments on Matsutake mushroom quality.

3.3.2. Comparison of the Performance Parameters of the Predictive Models

Figure 9 compares the main performance evaluation parameters of MLR, SVR, and
ANN. Figure 9a compares the MSE and R-Square of each model. The MSE and R-Square of
the MLR and SVR are the mean of the models corresponding to all predictor variables. The
result shows that MLR gives better results in Case A, but SVR gives better results in Case B.
The ANN model exhibits superior performance compared to the MLR and SVR models.
This may be attributed to the increased dimensionality and abundance of information in
the three-input, six-output datasets used for training the ANN model, in contrast to the
lower-dimensional three-input, one-output datasets used for training the MLR and SVR
models. The ability to handle complex and high-dimensional datasets of ANN allows for
the extraction of more meaningful patterns and relationships in the data, resulting in more
accurate predictions of the quality indicators.

Figure 9. Performance parameters comparison. (a) Comparison of MSE and R-Square for MLR, SVR,
and ANN. (b) Comparison of the time consumed by running MLR, SVR and ANN.

To evaluate the real-time performance of the models, we conduct tests on the elapsed
times of each model. The tests are conducted five times on the same PC, and the elapsed
times are measured using the program timer of MATLAB. The average of the five tests is
calculated and used as the final value for each model. The results of the tests are presented
in Figure 9b for comparison. For a single run, the SVR is the fastest, while the ANN is
the slowest, taking 9.1 times longer than the SVR and 4.7 times longer than the MLR.
However, compared to MLR and SVR, the advantage of ANN is its ability to output all six
quality indicators simultaneously, which significantly improves overall efficiency. When
taking overall efficiency into consideration, the performance gap between ANN and SVR
is reduced to 0.1 s and even surpasses the MLR model. Therefore, the quality prediction
model constructed with ANN is the most efficient and accurate in predicting the quality of
Matsutake mushrooms under the two storage conditions.

By employing ANN, the quality of Matsutake mushrooms when transported under
different storage conditions can be efficiently and accurately predicted and suggestions
can be given for proposing new preservation methods. The most appropriate storage
and preservation method can be selected according to the prediction results of the model,
thus reducing the wastage of Matsutake mushrooms during transport and enhancing their
economic value.

To provide a comprehensive understanding of the fitting results achieved by MLR,
SVR, and ANN for Matsutake quality indices, we conducted a comparative analysis of
their R-Square values in relation to prior research findings, as summarized in Table 8. We



Foods 2023, 12, 3372 17 of 21

selected the optimal outcomes obtained from MLR, SVR, and ANN as representatives for
this comparison. Upon reviewing the table, it becomes apparent that the performance
of both MLR and SVR in this study falls short of achieving excellence. Consequently,
their practical utility for predicting Matsutake mushroom quality indicators appears to
be a formidable challenge, a finding consistent with related studies. In contrast, the ANN
model consistently exhibits results that align with previous research, showcasing optimal
performance and holding promise for further exploration and application. It is noteworthy
that, on the whole, both the MLR and SVR models tend to yield lower R-Square values
when compared to ANN. This observation underscores the remarkable efficacy of ANN as
an intelligent model in the prediction of quality indicators.

Table 8. Comparison of model performance.

Model Target R-Square Ref.

MLR Matsutake mushroom 0.760 Our work
MLR Thermal efficiency 0.611 [32]
MLR Bitter Taste of Peptides 0.892 [41]

GA-MLR Stability constants 0.915 [42]
SVR Matsutake mushroom 0.710 Our work

GA-SVR Stability constants 0.926 [42]
SVM Bitter Taste of Peptides 0.899 [41]

BPNN Thermal efficiency 0.905 [32]
ANN Matsutake mushroom 0.984 Our work
ANN Yield of paddy 0.990 [43]
ANN Bitter Taste of Peptides 0.907 [41]

GA-ANN Stability constants 0.982 [42]

3.3.3. Model Optimization

After comparing the predictive effectiveness of three models (MLR, SVR, and ANN)
for assessing the quality of Matsutake mushrooms, it is determined that ANN outperforms
the other models. To achieve optimal training results, this study employs the Levenberg–
Marquardt, Bayesian regularization, and Conjugated Gradient methods for optimizing the
ANN model. The results of the training are presented in Tables 9 and 10, where the training
rounds, R-Square, and MSE are provided as metrics for comparing different training
outcomes, representing the time consumed, fitting ability, and predictive error, respectively.

Table 9. Evaluation indicators with different training algorithms under Case A.

Training Algorithm Rounds
Training Validation Test

R-Square MSE R-Square MSE R-Square MSE

Levenberg–Marquardt 17 0.988 0.0967 0.984 0.133 0.984 0.129
Bayesian Regularization 432 0.987 0.103 - - 0.988 0.099

Scaled Conjugate Gradient Backpropagation 37 0.985 0.125 0.984 0.146 0.986 0.115

Table 10. Evaluation indicators with different training algorithms under Case B.

Training Algorithm Rounds
Training Validation Test

R-Square MSE R-Square MSE R-Square MSE

Levenberg–Marquardt 11 0.981 0.168 0.976 0.211 0.978 0.190
Bayesian Regularization 154 0.980 0.172 - - 0.981 0.164

Scaled Conjugate Gradient Backpropagation 15 0.977 0.194 0.975 0.225 0.975 0.216

In this study, the ANN model is effectively trained for both Case A and Case B. The
results reveal consistent trends in the effects observed across different training methods.
Specifically, the Levenberg–Marquardt optimization demonstrates the fastest training
speed and the fewest training rounds while updating weight and bias values. Bayesian
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regularization, on the other hand, updates the weight and bias values using Levenberg–
Marquardt optimization, minimizing a combination of squared errors and weights to
produce a well-generalizing network. However, this method requires the longest training
time due to its larger number of rounds. Scaled conjugate gradient backpropagation,
which employs gradient calculations instead of Jacobian calculations used by Levenberg–
Marquardt or Bayesian regularization, proved to be more memory efficient and thus more
suitable for large-scale fitting calculations.

Upon comparing the training results of the three methods, it is observed that Bayesian
regularization achieves superior results and demonstrates better generalization ability in
predicting Matsutake mushroom quality indicators. Under Case A, the R-Square and MSE
values in the test datasets reach 0.988 and 0.099, respectively. Similarly, under Case B,
the R-Square and MSE values are determined to be 0.981 and 0.164. Although Bayesian
regularization requires a longer training time, such consumption is considered worthwhile
due to the results achieved. Therefore, Bayesian regularization is recommended as the
preferred method for this study.

The parameters of the ANN model are reported in Tables 11 and 12, which include
the weights and biases of the hidden and output layers. Each neuron is intricately con-
nected to all neurons in the previous layer through a series of weight parameters. These
parameters are iteratively refined during the training process, allowing the model to distil
salient features from the input environmental variables and make accurate predictions of
various quality metrics of Matsutake mushrooms. The model building and optimization
strategies are used to make effective suggestions for quality control during the storage of
Matsutake mushrooms.

Table 11. Optimized ANN network parameters under Case A.

Layer Weight Bias

Hidden Layer


1.306127242 0.192355996 0.794442514
0.818185115 −0.52570183 −1.560114302
−0.088281918 −0.037236378 −3.105044355

0.38934753 −2.095714671 1.404998291



−2.596632578

0.02680374
−3.657694846

5.14378194


Output Layer


0.798809418 0.240278516 1.966531145 2.05055072
−0.646696148 0.499620563 1.530571548 −1.218810374
−1.614900515 0.112634113 1.640862849 1.089443748
0.385523516 0.618507442 0.540555042 0.88399579
−0.52864933 −0.63262364 −0.104428257 −0.654708846
0.696930108 0.502350964 0.257086288 0.527021286




0.202963025
1.449761954
−1.222280155
−0.289881573
−0.169007687

0.73128475


Table 12. Optimized ANN network parameters under Case B.

Layer Weight Bias

Hidden Layer


0.018132334 0.165464774 3.267012824
−3.118422028 −0.57112634 4.843260114
1.562389272 0.804846153 1.26839667
−1.752817151 −1.263968562 −2.330988469




3.107971393
1.443593492
1.837455657
−2.850637052


Output Layer


−0.853548538 0.043897023 0.621332773 0.511832669
−0.84423459 −0.167476408 0.235504664 0.199996017
−0.70350823 −0.209303821 −0.59166696 −0.357556521
−0.356850808 −0.245642955 0.400708931 0.393789284
−0.070346719 0.208253552 −1.194834521 −1.280184584
−0.005448051 −0.167839898 0.928780307 0.954185546




0.478005011
0.306570825
0.525624559
0.268015927
−0.634634887
0.700847775



3.4. Suggestions for Future Research

In this study, predictive modeling analysis of Matsutake mushroom quality indicators
was completed using various models with temperature and sealing conditions and gas
conditions as independent variables. It provides feasible recommendations on how to
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determine the optimal storage conditions for Matsutake mushrooms. However, owing to
the limitations inherent, we believe that future research can explore several directions for
further advancement.

Firstly, exploring the most efficient and economical way to accomplish the preservation
of Matsutake mushrooms is an important issue in the industry, and incorporating quantita-
tive economic data will provide practical insights for industry stakeholders. Additionally,
expanding the scope of the study to include environmental variables such as humidity and
atmospheric pressure will enhance the adaptability of the study. Analyzing the interactions
between these factors and preservation techniques could result in a more comprehensive
approach suitable for different regions and climates. Finally, an important complementary
endeavor would be to assess the ecological impacts of modified air-conditioned packaging
and other strategies. By assessing their environmental impacts and comparing them to
alternatives, this research could guide the industry in making environmentally friendly
preservation choices.

4. Conclusions

In this study, MLR, SVR, and ANN are employed to predict the changes in Matsutake
mushroom quality indicators over time in different storage environments. The results
of the comparison demonstrate that ANN exhibits optimal performance, displaying the
best fit and the smallest error. Consequently, ANN is determined as the most suitable
model. To further enhance the performance of the ANN, the model is optimized us-
ing the Levenberg–Marquardt, Bayesian regularization, and Scaled Conjugate Gradient
Backpropagation algorithms.

The optimized ANN yields remarkable results, achieving an R-Square of 0.988 and
an MSE of 0.099 under Case A, and an R-Square of 0.981 and an MSE of 0.164 under
Case B. These findings suggest that ANN outperforms MLR and SVR in predicting quality
indicators of Matsutake mushrooms. The outcomes of this study have significant implica-
tions for optimizing existing storage methods to maintain optimal Matsutake mushroom
quality and taste during storage. Consequently, this improvement will enhance the market
competitiveness and add value for Matsutake mushrooms. Furthermore, this study can
contribute to the establishment of industry standards and specifications governing the
storage and transportation processes of Matsutake mushrooms. These standards will foster
improved industry management and standardization, benefiting the overall Matsutake
mushroom industry.
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