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Abstract: The development of packaging technology has become a crucial part of the food industry in
today’s modern societies, which are characterized by technological advancements, industrialization,
densely populated cities, and scientific advancements that have increased food production over the
past 50 years despite the lack of agricultural land. Various types of food-packaging materials are
utilized, with plastic being the most versatile. However, there are certain concerns with regards
to the usage of plastic packaging because of unreacted monomers’ potential migration from the
polymer packaging to the food. The magnitude of monomer migration depends on numerous aspects,
including the monomer chemistry, type of plastic packaging, physical–chemical parameters such
as the temperature and pH, and food chemistry. The major concern for the presence of packaging
monomers in food is that some monomers are endocrine-disrupting compounds (EDCs) with a
capability to interfere with the functioning of vital hormonal systems in the human body. For
this reason, different countries have resolved to enforce guidelines and regulations for packaging
monomers in food. Additionally, many countries have introduced migration testing procedures and
safe limits for packaging monomer migration into food. However, to date, several research studies
have reported levels of monomer migration above the set migration limits due to leaching from
the food-packaging materials into the food. This raises concerns regarding possible health effects
on consumers. This paper provides a critical review on plastic food-contact materials’ monomer
migration, including that from biodegradable plastic packaging, the monomer migration mechanisms,
the monomer migration chemistry, the key factors that affect the migration process, and the associated
potential EDC human health risks linked to monomers’ presence in food. The aim is to contribute to
the existing knowledge and understanding of plastic food-packaging monomer migration.

Keywords: food-packaging material (FPM); monomer migration; endocrine-disrupting compounds (EDCs)

1. Introduction

In the past century, humans have mainly been sustained by locally grown seasonal
foods that could meet their food demand within the food shelf life [1]. However, with
the current technological advancements coupled with high levels of industrialization
and better standards of living, which have catalysed the formation of large cities that
are highly populated, there is virtually no space to grow food crop [1]. The scientific
advancements in the last fifty years have nevertheless contributed to an increase in and
variety in world food production [2], but demand remains high! Globally, these and
other factors have resulted in the need to transport and store a variety of foods over long
distances to consumers and for long times, respectively, taking a longer time beyond the
storage life of the foods as a result. Due to the fact that the chemicals within food may
be subjected to various environmental conditions, including oxygen (O2), water vapour
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(H2O), and light, during transportation and storage, which possibly leads to microbial
contamination or a loss of valuable properties, such as nutrition, colour, texture, and
edibility [3], modern society households mainly depend on food refrigeration for various
plastic food-packaging types as a method of food preservation. Industries also rely on
numerous modern preservation techniques (high-pressure technology, irradiation, and
hurdle technology) [3,4] and traditional preservation techniques, including packaging to
meet the current demands of economic preservation and keeping food stable and safe to
maintain the food quality [5] for consumer satisfaction. Therefore, in the food industry,
food packaging serves as an indispensable multifunctional element and a sector currently
representing a dynamic part of most economies, which currently contributes significantly to
the Gross National Domestic Product (GDP) [6–9]. Research reports further speculate that,
due to population expansion, the world’s food supply will need to expand by 50% by 2050,
which will consequently trigger a significant demand for food-contact materials [10,11].
In the developed world, the key driving factors, such as the increased plastic recycling
infrastructure, the global population growth, a rise in feeding with processed and take-
away foods due to consumers’ busy lifestyles, and numerous other factors, increase the
demand for convenience foods, which contributes positively towards the growth of the food
industry [9]. In countries with emerging economies, South Africa, for instance, is a giant
polymer producer of different food-packaging types. For the projected period of 2017–2027,
the South African packaging market is anticipated to convert to an extraordinary growth
region with a compound annual growth rate (CAGR) of 7.8% [12]. Plastic consumption per
capita is particularly being projected to increase due to urbanization, urban–rural migration,
and an increase in middle-income households [13]. As in the rest of the world, their modern
food packaging makes use of ceramics, glass, metal, paper, paperboard, wood, and plastic
material types to package a variety of retail and domestic food products [14–17]. Plastic
dominates the packaging industry because it has numerous food-packaging advantages
compared to its disadvantages, which have enormously contributed to its preference as
a food-contact material to package various food items (Table 1). As such, it accounts for
about 52% of most local markets [18]. Polypropylene (PP), polyethylene (PE), polyvinyl
chloride (PVC), polystyrene (PS), polyethylene terephthalate (PET), and polyurethane (PU)
are the polymer types globally dominating the plastic food-packaging industry [15,19,20].
The word ‘plastic’ is normally utilized to describe materials synthesized through the
addition, condensation, or cross-linking polymerization of monomer units [21,22]. Plastics
are present in various rigid and flexible forms to which, in addition to monomers, additives,
for instance, plasticizers, adhesives, coatings and solvents, antioxidants, thermal and light
protectants, and graphic information, are added [23] to ensure the characteristics needed
for their function [16,24,25]. Heat and pressure is then applied to mould the polymers and
to obtain the required final products and shapes, such as films, trays, and bottles [26].
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Table 1. Applications, pros, and cons of various food-packaging materials.

Type of
Packaging Applications (Types of Foods) Advantages Disadvantages References

Plastics

Fast foods
Solid products, such as pasta,
rice, biscuits, bread, and sugar
Liquid products, such as
concentrate juices, oils, and
methylated spirits

- Inexpensive materials
- Thermosealability and microwaveability functional advantages
- Optical properties
- Unlimited sizes and shapes
- Recyclable
- Light weight
- Strong
- Oil and chemical resistance
- Excellent barrier properties against gas and water vapour
- Thermal stability and electrical insulation properties
- Easily reused

- Residual monomer and chemical migration
- Variable permeability to gases and light [27]
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However, despite the significant different roles that plastic food-packaging materials
fulfil both domestically and within the food industry sector, in their natural state, plastic
food-contact materials are limited in their ability to provide the required mechanical and
barrier properties. This is because, without additives, for instance, plastic food packag-
ing is limited in its food-packaging role. Additionally, most importantly, the scientific
research evidence reveals that the chemical substances utilized during polymer synthesis,
including the main building blocks (monomers), leach throughout the plastic product’s
life cycle [28–30]. More concerning is that, compared to other packaging material types,
research confirms that chemical migration is more likely to occur in plastic packaging [31].
Migration describes the mass transfer of chemical substances from a higher-concentration
region (the food-contact side) to a lower-concentration region (usually the food) until
equilibrium is reached [32]. Monomers have been implicated as endocrine-disrupting
compounds (EDCs) linked to serious human health problems that compromise consumer
health, especially the safety of pregnant mothers and children, who make up the vulnerable
group in the population [11,33–44]. Up to 906 chemicals have been linked with plastic food
packaging of which 63 are classified as human health hazards; 68 are classified as environ-
mental hazards; 7 are classified as persistent, bioaccumulative, and toxic; 15 are classified
as endocrine-disrupting compounds (EDCs); and 34 are classified as potential EDCs [23].
However, these known values of the different chemical categories in plastic food packag-
ing are but an insignificant proportion given that about 10,000 chemicals show potential
capabilities of migration from plastics into food when subjected to various physicochem-
ical conditions [23,32,45,46] during processing, transport, storage, and food preparation.
However, to date, more than 2000 substances lack toxicological and detailed descriptions
of their scope of use [23] due to numerous reasons, including the prevailing limitations in
structure elucidation as a result of the lengthy modern analytical procedures used for the
detection of monomers [47]. Additionally, the research contributions, which are mostly
from the developed world, are biased on a few commonly known hazardous substances
occurring in plastic food packaging, such as Bisphenol A and styrene (monomers) and
phthalates (plasticizer additives) [48]. This is primarily due to the fact that it is difficult to
find comprehensive information on these chemicals, including plastic monomers, in the
public [20,28]. It is important that all the chemicals, including monomers, in food packag-
ing are well accounted for so that their potential harm to humans is well understood and
reduced. This is especially true because consumers interact with plastic packaging daily.
The low amount of accounted data hence suggests that humans are susceptible to unknown
harmful food-packaging chemicals daily. Additionally, there is scanty information on the
treatability and level of the human health and environmental toxicity of the numerous
known and unknown plastic food-contact chemicals, including monomers. Due to the fact
that most of these substances have hardly been studied, about 1327 substances are, as a
result, insufficiently governed across the world. Consequently, 901 substances are accepted
for utilization in plastic food-packaging materials [49], but they have unknown impacts
on human health. There is, therefore, an outcry for widespread research to ensure that
food packaging, especially plastic packaging, maintains its main role of protecting food.
A sustainable circular plastic economy which reduces and, even better, prevents the use
of hazardous chemicals as well as increases information accessibility is therefore essential.
Although research studies on plastic food-packaging chemical compounds’ migration into
food products are widely reported [24,26,50–52], previous review works mostly focus on
the migration of additives, challenges in additive analyses in the food and biological matri-
ces [53], and impacts on human health [54,55]. To add to the literature, this work provides a
critical review on monomer migration, including the monomer migration mechanisms and
chemistry in versatile plastic food packaging. Furthermore, monomer endocrine-disrupting
effects are currently speculated to be one of the major reasons for most of the current global
chronic illnesses. The aim is to shift the focus of the relevant authorities, especially in
emerging-economy countries, from only addressing the environmental pollution of plastic
packaging to also urgently addressing and regulating its health impacts due to migrating
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monomers. This is because existing plastic packaging legislative authority regulations,
for instance, those in South Africa, are biased towards environmental pollution. This is
evidenced by the numerous legislative authority regulations, such as the National Environ-
mental Management Waste Act, Act 59 of 2018, and the National Water Amendment Act,
Act 27 of 2014 [56,57], and yet policies, education, and awareness that address the human
health plastic toxicity effects are lacking!

2. Food-Contact Chemicals in Plastic Food-Packaging Types

Plastic food-packaging materials (FPMs) comprise different contact chemicals and a
variety of synthetic materials made from different chemical compounds and their com-
binations thereof (Table 2) and are used to keep food safe during the transportation of
diverse food products [58]. Table 2, for instance, illustrates the composition of a plastic
yoghurt container.

Table 2. Composition of a plastic food-packaging material utilized to package yoghurt.

Packaging
Material

Synthetic
Materials Present Food-Contact Chemicals References

Intentionally Added
Substances (IASs)

Nonintentionally Added
Substances (NIASs)

Plastic packaging
material

Aluminium
Coatings
Adhesives
Printing inks

Monomers
Oligomers
Additives
Pigments
Metals

Impurities
By-products of reactions
Breakdown products
Recycling-product contaminants
Starting-material impurities
Unwanted side products

[59–62]

A detailed analysis of the food-contact chemicals (FCCs) worldwide reveals that
there are about 12,285 intentionally added substances (IASs) [63], some of which are the
building blocks (monomers) of plastic packaging materials. Much more, although difficult
to predict, there are nonintentionally added substances (NIASs) from numerous other
possible reactions and transformations [23]. Additionally, there are various contaminants
from the recycling processes in the synthesis of food-contact materials [64]. However,
the global challenges related to food safety suggest that the current scientific knowledge
demonstrates a limited detailed understanding of all the possible materials in a packaging
type. This is more than important especially because, during the last few decades, plastic
food-packaging materials have transformed significantly, with new materials, designs, and
technologies such as microwaveability, evolving to enable packaging to respond to the
increased demands of the modern consumer lifestyles [35]. As such, the current standards
of manufacturing compliance may not sufficiently account for the possible migration
implications of the packaging material. Tables 3 and 4 show the monomers and some
additives added to common plastic food-packaging types. Interesting to note is that
some additives, Bisphenol A, for instance, are also monomers in some plastic food-contact
material types.

Table 3. Chemical structures of monomers commonly used in common plastic food-packaging types.

Plastic Type Recycling Code
and Symbol Monomer Name Monomer Structure References

Polyethylene
terephthalate
(PET)
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Table 3. Cont.

Plastic Type Recycling Code
and Symbol Monomer Name Monomer Structure References

High-density
polyethylene
(HDPE)
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Additives are added to a polymer for various functions (Table 4), such as to improve
the overall characteristics of the polymer in accordance with its suitability for its end
use [20]. However, they bind reversibly to the polymer system, and, as a result, monomers
also easily leach into the food [20,70].

Table 4. Some additives present in plastic food-packaging materials.

Additive
Name Function Structure Reference

Plasticizers
Increase the workability

and flexibility of final
product
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Table 4. Cont.

Additive
Name Function Structure Reference

Antioxidants

Scavenge free radicals,
reducing the oxidation

process that exposure to
light causes in polymers

Butylated hydroxyanisole (BHA)
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Biopolymer Monomers References 
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(CPLA) 
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Polyglycolide (PGA) Glycolic acid [74]  
Polybutylene succinate (PBS) Glycols + aliphatic polyesters [74]  

PBAT 
1,4 butanediol + terephthalic acid + 
adipic acid [74]  

However, despite the seemingly acceptable organoleptic, mechanical, and chemical 
properties of biodegradable food packaging [77], its commercial application to date has 
been limited for numerous reasons, including the non-systematic knowledge on the mi-
gration of chemicals, including monomers [78]. This is because the utilized monomers 
have a low average molecular weight with the potential to diffuse through the polymeric 
matrix when utilized in food packaging. Strategies to improve biodegradable packaging 
performance involve the addition of a variety of substances, such as nano fillers and plas-
ticizers, which also adds to the concerns of their migration into the food [79–82] The in-
creased addition of additives leads to undesirable interactions and the consequent migra-
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Recently, due to environmental concerns as a result of the non-biodegradability of
plastics [74,75], there has been a drive towards the development of nontoxic eco-friendly
biodegradable plastics [74]. Generally, three types currently exist based on their source
of origin and method of production amongst which are various biopolymers produced
through the chemical synthesis of renewable bio based monomers (Table 5).

Table 5. Monomers for some common biodegradable packaging.

Biopolymer Monomers References

Polylactic acid (PLA) Lactic acid [74,76]

Polylactide aliphatic copolymer (CPLA) Lactide + aliphatic polyesters [74,76]

Polyglycolide (PGA) Glycolic acid [74]

Polybutylene succinate (PBS) Glycols + aliphatic polyesters [74]

PBAT 1,4 butanediol + terephthalic acid + adipic acid [74]

However, despite the seemingly acceptable organoleptic, mechanical, and chemical
properties of biodegradable food packaging [77], its commercial application to date has been
limited for numerous reasons, including the non-systematic knowledge on the migration
of chemicals, including monomers [78]. This is because the utilized monomers have a low
average molecular weight with the potential to diffuse through the polymeric matrix when
utilized in food packaging. Strategies to improve biodegradable packaging performance
involve the addition of a variety of substances, such as nano fillers and plasticizers, which
also adds to the concerns of their migration into the food [79–82] The increased addition
of additives leads to undesirable interactions and the consequent migration of substances
that may be more or less relevant for one than for the other [79]. Furthermore, the current
research is centred on food simulants rather than real food products [78] and is concentrated
on a few biopolymers, such as PLA [78]. The toxicological effects on animals are also lacking.
Moreover, most countries of emerging economies do not have nanoparticle (NP)-specific
regulations for aquatic systems, including wastewater treatment plants, where egested
food with NP contaminants is finally deposited, which presents accurate, scientifically
proven, and confirmed detection difficulties for the safe migration limit in food-packaging
films in the respective countries [83]. Conclusively, more research on the migration of both
components is essential to draw results on the safe utilization of biodegradable packaging
with regards to chemical migration.

3. Packaging Monomers as Sources of Endocrine-Disrupting Compounds (EDCs)
in Foods

The human body comprises tissues that interact with each other by means of hor-
mones that control, for instance, reproduction, the early developmental processes, and the
tissue and organ functions throughout adulthood [84]. Exogenous (non-natural) substances
known as endocrine-disrupting compounds (EDCs) imitate the effects of natural hormones,
preventing their production, release, transport, metabolism, binding, and elimination,
which are essential for maintaining homeostasis, reproduction, and the developmental and
behavioural processes in the human body, consequently causing adverse health effects [84].
Endocrine-disrupting compounds, such as monomers, in plastic food packaging thus dis-
rupt the coordination and, consequently, the efficient functioning of the endocrine system,
which is responsible for the regulation of various body processes [85–88]. Monomers
are amongst the hundreds of EDCs globally utilized within the plastic food-packaging
industry [89], such as additives (plasticizers, oxidants, and preservatives). Their EDC
effect presents adverse human health problems across all consumers, with more health
impacts on the younger generation, which poses a great challenge for future generations.
Information on the types of EDCs present in the various plastic packaging materials is
presented in Table 6.
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Table 6. Uses of plastic food-packaging materials and EDCs contained in them.

Packaging Material Structure EDCs Identified in Such
Compounds Uses of Packaging Ref.

Polypropylene
(PP)
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Table 6. Cont.

Packaging Material Structure EDCs Identified in Such
Compounds Uses of Packaging Ref.
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4. Monomer Migration into Food in Food Packaging

Since plastic packaging is produced through a polymerization process where monomers
or building blocks are linked together, monomer residues are always present in plastics,
although they are present at generally low concentrations of 0–2%. This is because not
all added reactants will complete the reaction [30]. Furthermore, the majority of low-
molecular-weight substances, like LDPE, are not covalently attached to the polymer chain.
Instead, they take the form of branching chain structures, which prohibit the monomer
units in the polymer chain structure from being packed closely together. As a result, these
and residual monomers are able to diffuse all over the polymer matrix [32]. However,
although monomers are generally stable and nontoxic when bound by the polymer matrix,
interactions with food make them harmful and cause them to affect human health when
they are later consumed with the food, and their concentrations increase in the body [39,99].
The migration process, which is influenced by numerous parameters, is divided into the
following four primary steps. These are chemical compound diffusion through the poly-
mers, diffused molecule desorption from the polymer surface, compound sorption at the
plastic–food interface, and compound desorption throughout the food [20] (Figure 1).
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Figure 1. Monomer migration process.

Due to the fact that migration may introduce unwanted and dangerous chemical
substances, which deteriorate the nutritional value, safety, and organoleptic qualities of
packaged foods, the process is thus undesirable. Nonetheless, some transfer is unavoidable
because food must be packaged before being purchased by the consumer [100]. To date,
evidence from numerous researchers reveals monomer migration results from polystyrene,
polyamides, polycarbonates, polyvinyl chloride, and polyurethanes plastic types into dif-
ferent foods and food simulants [101]. However, food simulants are commonly utilized
in laboratory investigations to counteract the complexity of the physical structure of food,
to understand migration more clearly, and for regulatory compliance reasons [102]. Com-
monly utilized food simulants include water for aqueous environments, 3% acetic acid
for acidic food simulants, 10% ethanol for alcoholic food simulants, and refined olive oil
for fatty food simulants as guided by the European Union [103] for migration tests on
plastic food-contact materials. To verify the overall safety of the plastic contact material,
the European Food Safety Authority (EFSA), for instance, indicates that the maximum
limit of overall migration (the total of all the substances together) into a packaged food
sample should be 60 mg kg−1 of the food or 10 mg dm−2 of the packaging material [20].
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However, there are various complications with migration tests, including that the tests
have long experimental workflows. Additionally, based on different cultures, which trans-
late to how food is prepared in different nations, perhaps accurate and reliable research
on monomer migration should focus on using real foods rather than food simulants to
incorporate the different food preparation methods and spices that could otherwise affect
chemical migration. The resultant OM and SM is, therefore, likely to be complicated and
not comprehensively explained by food simulants. As such, simulants in comparison to
real food samples risk omitting other possible interactions between food and the food’s
packaging. Furthermore, some materials, for instance, absorbent packaging materials,
pose problems for accurate OM and SM testing. Migration tests also need to determine
the temperature and humidity conditions to imitate the stress generation conditions that
facilitate investigating the behaviour of the packaging material [32], which poses a huge
challenge in the evaluation of OM for different food-packaging materials and, therefore, in
that of the possible health and environmental effects.

4.1. Migration Mechanism Processes in the Migration of Monomers into Food

Migration occurs in a number of different ways, including contact, penetration, gas-
phase, condensation, and set-off migration [104]

Contact migration
A direct substance transfer from the packing material’s food-contact surface into the

packed food is referred to as contact migration. Examples of contact transfers include the
migration of materials from a plastic tub tray or wrapping into food and from a cardboard
pizza box to the underside of the pizza (Figure 2) [104].
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Figure 2. Contact migration mechanism in a pizza box.

Condensation/distillation migration
Condensation migration involves the leaching of chemical substances, particularly

volatile components from food-packaging materials to food during heating stages, such
as sterilization or boiling [104]. However, several migration studies’ findings reveal dis-
tillation migration even before the above heating stages. As such, condensation leaching
examples include microwave heating to cooking in cartons, trays, or plastic food containers
(Figure 3) [104].
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Gas-phase migration
Gas-phase migration relates to the permeation of volatile chemicals from the packaging

coating on the outer layer through the airspaces within the plastic packaging and between
the packaging material and food into the food through diffusion (Figure 4). Examples
include the diffusion of mineral oil into meals through a plastic inner pouch (depending on
the material’s barrier qualities), an airspace within paper packaging, or a second airspace
between the packaging and food [105].
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Penetration migration
The penetration type of migration is the diffusion of chemical substances from the

packaging non-food-contact surface (often a coated or printed surface) through the substrate
and onto the packaging’s food-contact surface (the inner layer) (Figure 5). Once the
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migrating chemicals are on the food-contact surface, they then leach into the food through
gas-phase or contact migration, contaminating the food [104].
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Set-off migration
Set-off migration describes chemical substance diffusion from the coatings, varnishes,

or printed ink present on the outer printed non-food-contact side of the package material
through the substrate towards the inner food-contact side due to the stacking of the printed
items (Figure 6).
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The set-off kind of migration can be either obvious or invisible. Once chemical
compounds are on the food-contact surface, they are subsequently transferred throughout
the food through gas-phase or contact migration, contaminating the food [104].

Due to the various chemicals present in plastic food packaging, small molecules,
including monomer residues, oligomers, additives, reaction by-products, and adhesive
components (a) as well as printing inks (b) from the outer layer of the packaging or
from others in a stacked pile, diffuse and leach from the plastic material into the food
(Figure 7) [62].
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Several studies agree that, through the influence of several factors, migration either fol-
lows a set-off, contact, gas-phase, or penetration migration mechanism process depending
on the present situation [105], and they further illustrate that in recycled plastic food pack-
aging, environmental toxins, like pesticides, detergents, and persistent organic pollutants
(c), are absorbed into the plastic packaging and are subsequently released again.

Some of the identified leaching monomers from plastic food-packaging materials
that are particularly labelled as problematic include Bisphenol A, styrene, Bisphenol A
diglyceride ether (BADGE), and caprolactam.

Bisphenol A (BPA) added as an antioxidant to polymers, for instance, can potentially
migrate from PC or plastic resins commonly used in cans [106]. Its migration into different
foods, including water and 10% and 50% ethanol, in PC and various plastic containers,
such as PC baby bottles, baby bottle liners, non-PC baby bottles, and recyclable PC drink-
ing bottles, has been recorded from the environment and from the can linings and PC
bottles through investigations of several factors [107], and BPA’s migration in evaporated
milk, carrots in brine, minced beef in gravy, spring vegetable soup, and a food simulant
(10% ethanol) has also been studied. The amount of migrated BPA was significantly
higher in 10% ethanol (68.3 ± 9.0 µg kg−1) compared to the following foods: minced beef
(53.8 ± 7.6 µg kg−1), milk (49.8 ± 10.9 µg kg−1), carrots (47.2 ± 5.1 µg kg−1), and soup
(45.7 ± 5.0 µg kg−1). Bisphenol A diglyceride ether (BADGE) is also an epoxy resin polymer
monomer utilized in internal food can linings. In a separate study [108], the amount of
BADGE and BPA that leached into distilled water from two different can types that pack-
aged tuna fish and jalapeño peppers was examined. The conclusions based on the study
results are that both monomers migrate, although there are different factors influencing
their overall migration.

Styrene monomers are always present in PS, acrylonitrile-butadiene-styrene, and
polyamide packaging materials [109], which are widely utilized to package a range of
dairy products, such as ice cream and yoghurt; bakery products; juices; meat; and fresh
produce [110]. However, research reveals that residual styrene monomer levels vary in
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similar packaging materials utilized to package similar products within different countries
(Table 7) [111]. Furthermore, migration studies reveal that styrene monomer migration is
dependent on several factors. In [112], studies on styrene migration from various PS food-
contact packaging materials, including egg cartons, meat trays, plates, and cups, into oil
showed that migration increased within days. With the exception of drink cups, migration
was also proportional to the square root of the time increase. In a separate study with hot
drinks, the migration of styrene strongly depended on the temperature and amount of
fat in the hot drinks [113]. The styrene monomer migration level results in µg/L varied
from 0.61 to 8.15 for hot tea, 0.65 to 8.30 for hot milk, and 0.71 to 8.65 for hot cocoa milk
in GPPS (general-purpose polystyrene) cups and from 0.48 to 6.85 for hot tea, 0.61 to 7.65
for hot milk, and 0.72 to 7.78 for hot cocoa milk in HIPS (high-performance polystyrene)
cups at different temperatures and times [114]. The findings showed that hot cocoa milk
had the highest degree of styrene leaching [114]. Further studies on styrene migration
in aqueous and oily foods also revealed less styrene migration because the monomer is
hydrophobic [115]. However, a recent study reveals that the effect of the fat content on the
migration of styrene is insignificant in relation to the variability of other parameters [111].

Table 7. Residual styrene levels in PS packaging with similar products.

Country Food Description Residual Styrene Monomer Levels (µg/g) Reference

Italy Stirred yogurt, 3.2% fat 266 ± 1

[111]
Germany Stirred yogurt, 3.5% fat 275 ± 2–351 ± 23

Germany Set yogurt, 3.5% fat 278 ± 12–308 ± 6

Germany Stirred sour cream with 10% fat 260 ± 8–292 ± 20

Ref. [116] studies on caprolactam monomer migration from nylon 6 and nylon
6/66 polymers to oil when cooked in an oven showed that the nylon 6/66 oligomers
that migrated due to the above made up nearly 43% of the existing oligomers in the uti-
lized packaging material. In addition, Ref. [117] investigated how caprolactam moved
from nylon 6 packaging to 95% ethanol. The samples analysed also included poultry
breasts, ham, pate, turkey blanquettes, and bologna sausages. The findings showed that
the migration of caprolactam was above the set EU standard of 15 mg kg−1 in 35% of the
packaging for bologna sausage, 33% of the turkey blanquette packaging, 100% of the pate
packaging, and 100% of the packaging for poultry breast [118]. Based on the continuous
evidence of monomer leaching from plastic food packaging into the food, it is therefore
important that, globally, industrial policies speak and implement enforcement measures
that will ensure the compulsory synthesis of plastic packaging materials with efficient
polymerization processes.

The concept of pyrolysis, which involves the thermal breakdown of organic molecules
at a moderate temperature and in the absence of oxygen [119], can be used to inform
on the bond dissociation energies (BDEs) of the monomers of different plastic polymers.
The bond dissociation energy is a crucial thermodynamic quantity that represents the
minimum energy required to break chemical bonds, in this instance, the monomer bonds
from the polymer structure, so that they leach into the food. In addition, it also exemplifies
the chemical activities of the free-radical reactions [120] in the plastic polymers, which
are important in the chemical migration phenomenon and, thereafter, in food safety and
quality. The larger the BDE, the stronger the chemical bond is, and the less likely the
bond is to break. The bond dissociation energies of four common plastic packaging
polymers calculated using two-density functional theory methods (DFTs) (B3P86/6 with the
−31 G (d,p) basis set and M062X/6 with the −31 G (d) and −31++G (d,p) basis sets) are
shown in Table 8.
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Table 8. Bond dissociation energies for some plastic polymers utilized in food packaging.

Different Methods’ Chemical Bond Average Values (kJ mol−1) Ref.

Plastic
type Bond types

C-C bonds C-CH3 bonds C-C aromatic bonds C–Cl bonds

M06-
2X/6

B3P86/6-
31 G (d,p)

M062X/6
−31 G (d)

B3P86/6-
31 G (d,p)

M062X/6
31 G (d)

B3P86/6
−31 G (d,p)

M062X/6-
31 G (d)

B3P86/6
−31 G (d,p)

PE 364.3 350.9 - - - - - -

[121,122]

0.003 0.003

PP 357.1 329.5 361.9 342.6 - - - -

0.003 0.003 0.003 0.003

PS 331.5 291.7 - - 424.1 395.9 - -

0.003 0.003 0.003 0.003

PVC 373.8 345.8 - - - - 355.6 343.7

0.003 0.003 0.003 0.003

The BDE findings show that the main chain C-C bonds for PP (329.5) and PS (291.7)
are generally weak. A comparison of the four polymers therefore suggests that the thermal
stabilities of the four polymers are in the order of PE > PP > PS > PVC. Based on the bond
dissociation energy equation indicated in Equation (1), the bond association constants
of the monomers of the respective polymers calculated using Equation (2) are shown in
Table 9 (coloured):

[P] + [L]
Ka


KD

[PL] (1)

where [P] is the protein concentration/polymer, [L] is the ligand concentration/monomer/any
molecule that the polymer binds, Ka is the association constant, KD is the dissociation
constant, and [PL] is the concentration of the protein ligand complex.

Ka =
1

Kd
(2)
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process within the polymer network [123]. However, the migration chemistry mecha-
nisms for different migrants, including monomers, are not the same. This is because, ac-
cording to [124], simulating the migration process of each migrant from, for example, plas-
tic packaging materials to food is difficult. The migration mechanism chemistries of two 
commonly researched monomers, for instance, are shown below:  
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Two different processes explain the leaching of Bisphenol A from polycarbonate pol-
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occurs over time at the polymer surface (Figure 8), and the diffusion-controlled release of 
the leftover BPA monomers from the polymer [125]. 
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4.2. Migration Mechanisms Involving Different Chemistries of Monomers

Throughout the previous twenty years, scientific research studies demonstrated that
leaching from packaging materials into food simulants and food is a predictable diffusion
process within the polymer network [123]. However, the migration chemistry mechanisms
for different migrants, including monomers, are not the same. This is because, according
to [124], simulating the migration process of each migrant from, for example, plastic
packaging materials to food is difficult. The migration mechanism chemistries of two
commonly researched monomers, for instance, are shown below:

Bisphenol A
Two different processes explain the leaching of Bisphenol A from polycarbonate

polymeric materials. These processes are pH-dependent hydrolysis/decomposition, which
occurs over time at the polymer surface (Figure 8), and the diffusion-controlled release of
the leftover BPA monomers from the polymer [125].
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In the presence of elements influencing migration, the styrene monomer diffuses from
a higher-concentration zone (the polystyrene food packaging) to a lower-concentration zone,
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which is the food, as result of weakened monomer/polymer interactions and increased
solubility [126].

4.3. Factors Influencing the Migration of Food-Packaging Monomers into Food

Several factors govern the rate (kinetics) and general migration process from a food-
packaging material into food [104,105]. The factors include aspects relating to the properties
of the polymer material in interaction with the food (permeability, thickness, size, type,
and format) and the properties of the migrant (polarity, molecular size, structure, and
vapour pressure) as well as the state/properties and composition of the food materials,
the starting migrant concentration in the packaging, the polymer matrix state, and the
migrant components in contact with the food packaging [115,127]. The storage time,
temperature, packaging size, period of contact, food surface area in relation to its volume
such as with pasta, and packaging surface area ratio to the food product volume also affect
chemical migration [105]. However, the primary factors affecting the migration process are
as follows:

4.3.1. Nature of Foods

The food simulants and different foods utilized so far to show the impact of the
nature of food on packaging substance leaching depict that foods with excess fat have
significant migration rates [128]. The Bisphenol A migration studies, for instance, during
the storage and can denting of PC containers with carrots in brine (0% fat), evaporated
milk (8% fat), minced beef in gravy (20% fat), and spring vegetable soup (0.3% fat), dis-
played significantly higher BPA migration into 10% ethanol in fatty foods than in other
foods. The detailed BPA migration results were 47.2 ± 5.1 µg kg−1, 49.8 ± 10.9 µg kg−1,
53.8 ± 7.6 µg kg−1, and 45.7 ± 5.0 µg kg−1, respectively [129]. The styrene migration
studies also showed a migration increase with the fat content [110]. The above informa-
tion is attributed to the lipophilic nature of the chemicals contained in the packaging
materials. In a separate investigation, higher styrene migration levels were recorded in
ethanol-containing solutions than those recorded in isooctane solutions. However, styrene
did not migrate in aqueous food solutions [130]. A similar behaviour was also observed
and noted for E-caprolactam migration in the nylon 6 packaging. The samples analysed
included poultry breasts, ham, turkey blanquettes, and bologna packages kept at 72–100 ◦C
for 1–4 h. E-caprolactam migration exceeded the EU set limit of 15 mg kg−1 in 35% of the
bologna sausage packaging, 33% of the turkey blanquette packaging, and 100% of both the
pate and poultry breast packaging [117]. However, due to the numerous benefits of spices,
food is usually cooked with a single spice or a mixture of spices. Seeds such as cumin,
which are also utilized to produce spices, contain volatile oils. Perhaps it is important to
further conduct experiments that show the contribution of spices in terms of influencing
the leaching of monomers into food from packaging.

4.3.2. Nature of Contact

Research studies indicate that there is a relationship between migration rates and
the nature of contact (direct or indirect) between food and the respective contact material.
The mass transfer of the chemicals from the packaging to the food increases when there is
direct contact between the food and the packaging material. Compared to direct contact,
in an indirect medium, the gas medium between the packaging and food causes slower
migration [131].

4.3.3. Period of Contact

Chemical migration largely depends on the duration of contact between the packaging
and food [99]. Ref. [132], for instance, conducted research on the potential for PET oligomers
to migrate from plastic packaging to different beverages and foods in ovens and microwaves
at various temperatures with a focus on the temperature and exposure duration. Compared
to oven heating, microwave heating showed less migration because of the shortened
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exposure time (maximum of 15 min for MW and 80 min for oven heating). Ref. [104] also
highlights that, depending on the nature of the food, for instance, solid or liquid, oily or
aqueous, and a moisture or fat content, the food-packaging material compatible at the
beginning of the shelf life may become incompatible at the end of the shelf life. With
time, for instance, foods that contain water are likely to draw polar immigrants, while
fatty foods attract nonpolar immigrants. The conclusions based on the research studies
therefore indicate that the square root of the contact time of the food and packing material
determines how much of the mass of the migrant substance is transferred [133].

4.3.4. Temperature during Contact

The temperature of the food directly influences the migration rate from the packaging
into the food. In [128], it was discovered that migration rates rise as the temperature
rises. Ref. [134] investigated styrene migration from various PS food-contact packaging
materials, including egg cartons and meat trays, by exposing the materials to 8% ethanol
and oil at 210 ◦C for 10 days, 490 ◦C for 4 days, and 65.5 ◦C for 1 day. The migration
process exhibited a Fickian diffusion model. Migration increased from the first day to the
tenth day and, for all materials with the exception of drink cups, was proportionate to
the square root of the increase in time [112]. In a separate study on brand new PC baby
bottles exposed to a temperature of 40–100 ◦C, the results showed a similar pattern, with
the concentration of the BPA migrated into the food ranging from 0.03 ppb to 0.13 ppb at
40 ◦C to 95 ◦C, respectively [135]. Ref. [107] also used PC (baby bottles) and various other
plastic containers (non-PC baby bottles) to study BPA migration into water and 10% and
50% ethanol. After 240 h at 40 ◦C, the average residual BPA content was higher in the 50%
ethanol (2, 39 g L−1) than in the water (1.88 g L−1). The results showed that the higher the
temperature and the longer the treatment periods are, the greater the BPA migration rate
is [129]. Ref. [136] similarly came to the conclusion that the temperature has an inverse
relationship with the log of the length of the equilibrium of a migratory material.

4.3.5. Packaging Material Characteristics

The composition of a food-packaging material significantly impacts substance migra-
tion. The migration of monomer additives, for instance, is dependent on the packaging
material’s thickness and plasticization. Thinner packaging allows for greater migration,
and thicker packaging slows migration [21]. However, currently, research has not yet
established any discernible relationship between the utilization of recycled components
and the rate of migration [136].

4.3.6. Migrant Characteristics

The nature of the migratory substance affects the rate and amount of migration. For
instance, highly volatile materials migrate at a faster rate, and lower migration rates are
shown for substances with significantly higher molecular weights [24]. However, some
monomers, such as vinyl chloride and ethylene, migrate quickly even at ambient temper-
atures [28]. Migration is also affected differently depending on whether the migratory
substance is spherical or branched. For instance, experimental findings demonstrate that
branched molecules display slower migration rates [128]. Ref. [108] also explored the
possibility of BADGE and BPA leaching into distilled water from two different can types:
one used for jalapeno peppers and the other used for tuna fish. The findings showed an
increase in migration with time during storage for the jalapeno pepper cans. Bisphenol A
migration from the tuna cans was, however, independent of the storage time, while BADGE
migration during storage decreased over time due to its instability and ability to hydrolyse
in an aqueous medium. Overall, the BPA and BADGE migration levels ranged from 0.25 to
4.3 g kg−1 and from 0.6 to 83.4 g kg−1 [108].
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4.3.7. Migrant Concentration within the Packaging Material

Higher amounts of the migratory substances in the food matrix after a certain period
of time in storage suggest that a mass transfer from the packaging into the food occurred at
a higher rate as a result of a higher migratory compound concentration in the packaging
material [137]. A study, for instance, conducted to investigate BPA migration under different
factors, firstly involved processing the PC cans at 121 ◦C for 90 min and then storing them
at 5 ◦C and 20 ◦C. Longer periods of storage were simulated by storing cans for up to
10 days–3 months. From the overall can coating BPA amount, the results showed 80% to
100% migration during processing. No BPA migration was observed in the simulants after
processing. Therefore, the results suggested that there was a high migratory substance
(BPA) concentration in the packaging material before processing [129].

4.3.8. State of Polymer Matrix

This phenomenon refers to whether the polymer matrix exists at the storage tempera-
ture in a rubbery or glassy form. Migration in glassy polymers, such as PE, is substantially
slower compared to that in rubbery polymers [32]. Due to the fact that migration can be
reduced through migration-informed manufacturing or the use of specially developed
low-migration closures, toxicological risk assessments of migrants are therefore utilized
to set the migration limits for food-packaging materials. The limitations are incorporated
into Food-Contact Regulations with the intention of limiting exposure to safeguard human
health. However, in most countries, ordinary consumers have no access, or they lack
knowledge on such regulations and, therefore, remain vulnerable until there is a national
crisis that leads to the discussion of the issue in the media. By such a time, it is likely that
there could be fatalities too.

4.3.9. Migration Kinetics

Numerous factors affect the rate and speed of migration from food-packaging materials
to food [99,104]. These include the features of the food-contact material, such as the
thickness and permeability; the migrant chemical properties, including the molecular size,
vapor pressure, polarity, structure, packaging material migrant’s original concentration,
temperature, and contact time; and, furthermore, the nature of the food interacting with the
packaging material, that is, either real food or stimulants [99,104]. Generally, for instance,
small molecules, such as residual monomers, due to lower boiling points, migrate at
a faster rate compared to larger ones [104]. Migration also increases significantly with
increased temperatures that are accompanied by shorter contact times [99,104]. Migration
also decreases with a decrease in the migrant starting concentration and the food-packaging
material thickness. To the knowledge of the researcher, there is, however, no research to
date that has compared the migration rates between real foods and simulants.

5. Interactions between Monomers and Food Nutrients

Once the monomer has leached, it combines covalently with the nutrients (Table 9)
and/or the non-nutritive ingredients in the food.

The interactions are based on the functional groups of the main nutrients usually
present in the food and the leached monomers. Additionally, the processing technologies,
storage conditions, and duration also play a significant role [138]. Table 9 illustrates some
possible interactions between the main nutrients present in the food and the monomers
(bisphenol A and styrene).

6. Human Health Risks Due to Monomer Presence in Food

The initial food-packaging material regulations generally presupposed that, besides
carcinogens, low-level chemical exposures, including EDCs, contained in food-packaging
materials lower than the toxicologically determined no-effect levels had minimal health
dangers to consumers [32]. However, to date, evidence from animal toxicological studies
involving selected wildlife and human populations have raised more health questions
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than have been answered [139] (Table 10), for instance, in plastic food packaging, due to
numerous health effects.

Table 10. Human health effects of some monomers contained in plastic food packaging.

Monomer Health Effects References

Styrene

-Toxic effect on the liver, chromosomal abnormalities, carcinogen, mucous membrane
irritation, eye irritation, gastrointestinal effects, CNS dysfunction (reaction time and
memory), effects on some kidney enzyme functions and on the blood, stimulates cell
replication, cell proliferation, and cytogenetic damage promotion.

[36,140]

Vinyl chloride
-Liver, kidney, and lung toxicity; effects on liver, kidney, lung, spleen, nervous system
and blood; cancer; causes steatohepatitis; affects glucose homeostasis; and enhances
alcoholic liver disease.

[141]

Bisphenol A Breast, ovarian, uterine, prostate, and testicular cancer. [142]

Caprolactam Cause neurasthenia syndrome and damages the central nervous system. [143]

However, the likelihood that consumers may experience negative health effects from
any chemical contained in food mainly depends on the chemical toxicology and the ex-
posure (dosage) as a result of the consumption of contaminated food. As such, currently,
the utilization of ‘acceptable limits’ for different known chemicals is used to reduce the
effects on humans. However, acceptable limits cannot exist for ‘unknown’ chemicals that,
unfortunately, might be endocrine-disruptive and might have related or different adverse
human health effects. This implies that, until a chemical is characterized and until their
toxicological profile is determined, humans therefore remain vulnerable to their effects.
There are several human EDC exposure routes, including the taking in of contaminated
water and food, contaminated air inhalation, and chemical absorption through the skin,
which are measurable using biological samples including breastmilk [89]. However, the
consumption of contaminated food is continuously singled out as the major source of
human exposure to EDCs across all age groups [144]. Once in the body, there are numerous
independent toxicity actions that EDCs, including monomers, possibly interfere with, and
they can block or imitate oestrogenic hormones, triggering diverse signalling pathways
which yield diverse and divergent biological responses [145]. Alternatively, they could
bioaccumulate in an organism’s lipid compartments and create mixed contaminated ‘body
loads’ [89]. Currently, however, there are no studies that have focused on the impact
matrices of EDC mixtures on the human body’s health. Table 11 presents the human health
effects of some EDCs contained in food-packaging materials.
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Table 11. Health effects of EDCs contained in food-packaging materials.

EDCs Present
in Packaging
Materials

Monomer Structures in the Food EDC Health Effects Sources

Plasticizers (phthalates)

DMP
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Interacts with a variety of nuclear receptors, including ERR, orphan receptor,
oestrogen receptor, glucocorticoid receptor, human oestrogen-related receptor,
PPARy, androgen receptor, and gamma receptor.
Disrupts the thyroid axis.
Causes metabolic disorders, which result in hyperactivity, neurodevelopment
disorders, and type 2 diabetes.
Causes infertility.
Gut permeability.
Breast and prostate cancers.
It directly impairs oxidative homeostasis and indirectly impairs redox
homeostasis by increasing oxidative mediators and reducing antioxidant
enzymes.
Increases hydrogen peroxide and lipid peroxidation.
Alters organogenesis of kidneys, brain, and testes in foetus.
Anxiety in childhood.
Cardiovascular function disorders.
Increases hydrogen peroxide and lipid peroxidation.
In menopausal women, it can bind to ER (oestrogen receptor), triggering
noxious cellular responses, such as binding to and stimulating oestrogen
receptors (ERs) as well as disrupting action of other steroid hormones and DNA
methylation.
Disrupts normal action of androgens and alters thyroid hormone synthesis.

[150]
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Cadmium, lead, mercury, and aluminium specifically linked to oestrogenic and
breast-cancer-related effects.
Mercury compounds also disrupt the thyroid gland function, the
hypothalamic–pituitary–adrenal axis, and thyroid hormone function.
Lead inhibits cellular enzymes and binding of sulfhydryl groups. It also affects
membrane stability of red blood cells, inducing functional disturbances in
peripheral nerves and development of the skeleton.

[152]
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The extent at which humans are exposed to EDCs varies between countries due to vari-
ations in regulations [7]. The EU Member State and European Union (EU) regulations, for
instance, list about 8030 chemical substances utilized in various food-packaging types [153].
However, in the United States (US) alone, about 10,787 chemical compounds are included
in food both indirectly and directly as food additives [154], with many being used under
the idea that they are generally recognized as safe (GRAS), even though they have not been
reported to the US Food and Drug Administration (FDA) and have possibly not been tested
to ascertain public safety. As a result, there is no published information on their use and
possible exposure effects [45]. Presently, although in Africa, South Africa is amongst the
few countries that control food-packaging materials mostly through general safety require-
ments due to its membership to the CODEX Alimentarius Commission. The Commission,
created by the Food and Agriculture Organization (FAO) together with the World Health
Organization (WHO) in 1963, creates international guidelines, food standards, and related
texts like the codes of practice under the Joint FAO/WHO Food Standards Programme.
In the above context, South Africans are protected by, for instance, the Foodstuffs, Disin-
fectants, and Cosmetics Act (FDCA) 54 of 1972, last reviewed as of 2009, which regulates
food-related issues, such as importation into South Africa, including food packaging [155].
Specific laws that impact food-packaging materials are limited and lacking. They include
R879/2011, which only forbids, among other things, the selling of Bisphenol-A-containing
polycarbonate baby feeding bottles, and yet the BPA exposure of consumers occurs daily
through everyday basic products, like food packaging. In addition, R962/2012 establishes
the general hygienic standards for the transport of food and food premises.

According to Section 7(2) of R962/2012 [155]:

“A container shall be clean and free from any toxic substance, ingredient or any
other substance liable to contaminate or spoil the food in the container”.

Given that South Africa has, as other upper–middle-income countries have, growing
industries which attract an ever increasing population, food-packaging material use is
therefore high, and standard consumer utilization practices vary and, in some instances,
may possibly not be aligned with the material design. General regulations, such as those
above, imply that producers continue to voluntarily comply with the expected standards
and, hence, that substances with unacceptable hazard characteristics, such as reproductive
toxicity, carcinogenicity, mutagenicity, bioaccumulation, and persistence or endocrine dis-
ruption, continue to be common in commerce, including their utilization in food-contact
materials. Furthermore, the lack of consumer awareness concerning the chemical com-
pounds in food packaging, such as plastics, and their effects on health continues, which
greatly risks the health of consumers. Consumers in emerging countries, including South
Africans, are therefore left to look after themselves by self-regulating legislation. There is
therefore a significant likelihood that most people are unknowingly subjected to numerous
individual and mixtures of FCC-associated chronic diseases [11,39,104].

7. Conclusions

Food packaging fulfils a significant duty in protecting food and enhancing people’s
standard of living, and, therefore, the utilization of plastic food packaging globally cannot
be expected to decrease any time soon because plastic is a unique material with numerous
benefits. However, the monomers contained within plastic food packaging are a signifi-
cant source of food chemical contamination, with endocrine-disrupting effects that affect
both current and future human generations and environmental health. Unfortunately,
research trends indicate that most monomers’ potential harm remains unaccounted for by
science. Additionally, food migration studies utilize mostly food simulants rather than
food products. Moreover, there is the broad consumer use and misuse of plastic packaging
coupled with the nonawareness of the health concerns associated with its incorrect use.
The European regulation on food packaging also continues to be criticized for its lack of
revision to keep abreast with new scientific developments. Therefore, the research sug-
gests that the entire human population is exposed to harmful substances with known and



Foods 2023, 12, 3364 32 of 38

unknown effects on health from plastic food packaging. To safeguard both the present
and coming generations, the scientific community has more work to do. The identifica-
tion and understanding of the chemistries of both known and unknown food-packaging
chemicals are more than urgent. Furthermore, food migration research studies need to be
developed and need to shift their focus to real foods rather than food simulants to avoid
generalizing the migration of a group of foods that may seem similar because they belong
to the same category of foods and yet differ by one or two chemicals, which has implica-
tions in the migration process. Especially in countries with emerging economies, chemical
migration awareness and knowledge is crucial and urgent for the relevant legislative au-
thorities for the formulation, development, implementation, enforcement, and review of
policies that advocate for sustainable packaging. Awareness and knowledge amongst the
general population promotes reflection, which encourages behavioural changes towards
the healthy utilization of plastic food packaging and towards checking on the manufac-
turing compliance with the legislation and regulations on the type of polymer used for
food-packaging materials.
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