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Abstract: Continuous monitoring and recording of the type and caloric content of ingested foods
with a minimum of user intervention is very useful in preventing metabolic diseases and obesity.
In this paper, automatic recognition of food type and caloric content was achieved via the use of
multi-spectral images. A method of fusing the RGB image and the images captured at ultra violet,
visible, and near-infrared regions at center wavelengths of 385, 405, 430, 470, 490, 510, 560, 590, 625,
645, 660, 810, 850, 870, 890, 910, 950, 970, and 1020 nm was adopted to improve the accuracy. A
convolutional neural network (CNN) was adopted to classify food items and estimate the caloric
amounts. The CNN was trained using 10,909 images acquired from 101 types. The objective functions
including classification accuracy and mean absolute percentage error (MAPE) were investigated
according to wavelength numbers. The optimal combinations of wavelengths (including/excluding
the RGB image) were determined by using a piecewise selection method. Validation tests were
carried out on 3636 images of the food types that were used in training the CNN. As a result of the
experiments, the accuracy of food classification was increased from 88.9 to 97.1% and MAPEs were
decreased from 41.97 to 18.97 even when one kind of NIR image was added to the RGB image. The
highest accuracy for food type classification was 99.81% when using 19 images and the lowest MAPE
for caloric content was 10.56 when using 14 images. These results demonstrated that the use of the
images captured at various wavelengths in the UV and NIR bands was very helpful for improving
the accuracy of food classification and caloric estimation.

Keywords: multispectral imaging; convolutional neural network; food analysis; non-invasive analysis;
dietary assessment; data fusion

1. Introduction

Precise and continuous monitoring of the types and amounts of foods consumed is
very helpful for the maintenance of good health. For health professionals, being aware of
the nutritional content of ingested food plays an important role in the proper treatment
of patients with weight-related diseases and gastrointestinal diseases as well as those at
high risk for metabolic diseases such as obesity [1]. For people with no health problems,
monitoring the types, amounts, and nutritional content of food consumed is useful in order
to maintain this status. Monitoring of the types and amounts of foods eaten is often achieved
via manual record-keeping methods that include food-frequency questionnaires [2], self-
report diaries [3], and multimedia diaries [4]. Several user-friendly diet-related apps have
become available on smartphones in which image recognition schemes are in part adopted
to classify the types of food. In such an approach, however, the accuracy is affected by user
inattention and erroneous record-keeping that often decreases usefulness.

Several automatic food recognizers (AFRs) are available to continuously recognize the
types and amounts of consumed food with minimum user intervention required. Wearable
sensing and digital signal-processing technologies are key factors in the implementation of
AFRs which are divided into several categories according to the adopted sensing method.
In acoustic-based methods, classifying the types of food is achieved via chewing and
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swallowing sounds. The underlying principle is that chewing sounds vary depending
on the physical characteristics of the food, which includes shape, hardness, and moisture
content. In-ear microphone [5–7] and throat microphone [8,9] are typically used to acquire
the sounds of food intake. By using a throat microphone, recognition experiments were
carried out on seven types of food [9]. A recognition rate of 81.5∼90.1% was achieved where
a hidden Markov model (HMM) was adopted to classify the types of food [9]. Päfiler et al.
performed recognition experiments on seven types of food using an in-ear microphone and
reported a recognition rate of 79∼66%. The performance achieved using acoustic signals
has been limited, however, because it is difficult to discriminate various foods by using
only acoustic cues.

A variety of sensors are used in non-acoustic methods. These include an imaging
sensor [10], a visible light spectrometer, a conductive sensor [11], a surface electromyo-
gram (sEMG) sensor attached to the frame of eyeglasses [12], and a near-infrared (NIR)
spectrometer [13]. These methods have the advantages of distinguishing and sub-dividing
different types of food while analyzing the principle constituents. Sensors that are in-
convenient to wear, however, can be disadvantageous and separate sampling of the food
is required [11,13]. Ultrasonic Doppler shifts are also employed to classify the types of
food [14]. The underlying principle of non-acoustic methods involves movements of the
jaw during the chewing of food, as well as vibrations of the jaw caused by the crushing of
food, both of which reflect the characteristics of food types. The accuracy of the ultrasonic
Doppler method was 90.13% for the six types of food [14].

Since types of food are easily distinguished according to their shape, texture, and
color, visual cues have been used for the classification of food types and estimation of
the food amount [10,15–23]. In a vision-based approach, the classification of food types
can be formulated as pattern recognition problems where segmentation, feature selection
and classification are sequentially carried out for food images. Due to recent advances in
machine learning technology, an artificial neural network has been employed to classify
food categories and to predict the caloric content of food [18,22,23]. Convolutional neu-
ral networks (CNNs) have been used to established 15 food categories with an average
classification accuracy of 82.5% and a correlation between the true and estimated calo-
ries of 0.81 [18]. When RGB images under visible lighting sources were used in previous
vision-based approaches, recognition accuracy was degraded for visually similar foods.
Moreover, the lack of a specific reaction to UV and NIR lights is a limitation meaning that
this technology cannot be utilized in food analysis.

Multispectral analysis has been widely adopted in food analysis [24–39]. The underly-
ing principle is that individual ingredients in food have different absorption spectra. For
example, infrared (IR) light is strongly absorbed by water compared with ultraviolet (UV)
and visible (VIS) light. Therefore, differences in the absorption spectra between the VIS
and IR bands are useful in estimating the amount of water contained in food. In previous
studies, multispectral analysis of food was employed to quantify specific contents, such
as oil, vinegar [24], water [27], sugar [28–36], and soluble protein [37]. The multispectral
analysis involved the use of a spectrometer and a wide-band light source (such as a halogen
lamp). Using these methods, an optimal set of wavelengths was chosen from the absorption
spectra in the interest of maximizing the prediction accuracy for the ingredients of interest.
A correlation of 0.8912 was obtained using four wavelengths out of a 280-bin absorption
spectrum when predicting the sugar content of apples [28]. When hyperspectral imaging
was adopted to predict the sugar content in wine, a maximum correlation of 0.93 was
obtained when using partial least squares regression [32]. The usage of a spectrometer
and a wide-band light source confers the ability to select the optimal wavelength in sharp
detail. Problems associated with size, weight, and power consumption, however, could
potentially cause difficulties in implementing wearable monitoring devices.

The multispectral approach has also been implemented by using a number of
narrow-bandwidth light sources, such as light emitting diodes (LEDs), and a digital
camera [24,26,27,31,35,39]. Compared with halogen lamps, the improvement gained when
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using an LED light source was verified for multispectral food analysis [31]. Experimental re-
sults obtained showed that use of an LED light source returned a slightly higher correlation
than that of halogen lamps (0.78 vs. 0.77). The number of employed wavelengths ranged
from 5 [39] to 28 for UV, VIS, and NIR bands [31]. Raju et al. [24] used the multispectral
images from 10 LEDs with different wavelengths to detect dressing oil and vinegar on
salad leaves, and reported an accuracy of 84.2% by using five LEDs. Previous studies were
focused mainly on predicting the specific nutritional content of specific foods (e.g., water in
beef [27], sugar in apples [28], sugar in sugarcane [29], sugar in peaches [30], soluble solids
in pomegranates [33], sugar in potatoes [34], sugar in black tea [35], and soluble protein
in oilseed rape leaves [37]). The caloric content of food is determined by the amounts of
each ingredient, and it would be reasonable to expect accurate predictions when using
multispectral analysis techniques.

In the present study, multi-wavelength imaging techniques were applied to classifying
food items and estimating caloric content. Compared with conventional RGB image-
based methods, the usefulness of NIR/UV images was experimentally verified for food
classification and predictions of caloric content. The optimal number and combination of
the wavelengths was determined to maximize the estimation accuracy where a piecewise
selection method was adopted.

This paper is organized as follows: In Section 2, the processing of data preparation
and the properties of the employed food items are presented. The preliminary verification
results and the overall procedure for food analysis are explained in Section 3. The experi-
mental results and discussion of the results are presented in Section 4. Concluding remarks
are provided in Section 5.

2. Data Acquisition

The list of the food items used in this study is presented in Table 1. The food items
were selected to represent the various physical properties (liquid/soft/hard) of everyday
foods and to reflect the naturally occurring balances between healthy and unhealthy foods.
The caloric amount was obtained from existing nutrition fact tables for each food and food
composition data released by the Ministry of Korea Food and Drug Safety (KFDA) [40].
It is noteworthy that a number of foods were nutritionally different but were difficult to
distinguish visually (e.g., cider and water, coffee and coffee with sugar, tofu and milk
pudding, milk soda and milk. . . ). Such pairs of food items were good choices for verifying
the feasibility of UV and NIR images in the recognition of the types and calories of food. In
the case of liquid food, images were acquired by putting the same amount of food in the
same container (cup) so that the shape of the cup and the amount of food were not used as
a clue for food recognition. In a similar manner, in the case of non-liquid foods, plates of
the same size and shape were used.

A custom-made image acquisition system was employed to obtain the multispectral
images. A schematic of the image acquisition system appears in Figure 1. The photography
is shown in Figure 2. The light source was positioned 25 cm above the food tray. Four
digital cameras faced the center of the food tray and were connected to the desktop PC via a
universal serial bus (USB). The acquisition image size was set at 640 × 480 pixels (HV), and
each pixel had a 16-bit resolution. Each camera was equipped with a motorized IR-cut filter
to block the visible lights when the IR images were acquired. The light source consisted of
a total of 20 types of LEDs emitting light at different wavelengths (385, 405, 430, 470, 490,
510, 560, 590, 625, 645, 660, 810, 850, 870, 890, 910, 950, 970, 1020 nm, and white). The white
LED was used to obtain the RGB images, which were split into three (R-G-B) channels. The
light source of each wavelength was composed of 30 LEDs with the exception of the white
light source(10 LEDs). The LEDs of each wavelength were arranged in a circular shape
at a specified position on the printed circuit board (PCB), as shown in Figure 3. Before
the image of a specific wavelength was acquired, the center of the corresponding LED
area was moved to the center of the food tray. Since the intensities of LEDs were different
according to wavelength, the driving current of LEDs for each wavelength was adjusted to
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minimize the differences in light intensity according to the wavelength. The LED panel
moved back-and-forth and left-to-right using the linear stages powered by the stepping
motors. Data augmentation was achieved not by image transformations but by capturing
images from as many views as possible. Accordingly, the four cameras and a rotating
table were employed. The angular resolution of the rotating table could be adjusted from
0.5∼90◦. The movement of the LED panel, rotation of the tables, and the on/off switch of
each of the LEDs were all controlled by a micro-controller (Atmega128A).

Figure 1. Schematic of the image acquisition system.

Figure 2. Photograph of the image acquisition system.

Figure 3. Photograph of LED in the panel.
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Table 1. Dataset properties per food item.

Food Item Weight Calorie Food Item Weight Calorie
Units g kcal Units g kcal

apple juice 180.5 N/a pork (steamed) 119.3 441.41
almond milk 175.5 41.57 potato chips 23.5 130.82
banana 143.6 127.80 potato chips (onion flavor) 23.5 133.95
banana milk 174.6 110.27 sports drink (blue) 170 17.00
chocolate bar (high protein) 35 167.00 chocolate bar (with fruits) 40 170.00
beef steak 68.1 319.39 milk pudding 140 189.41
beef steak with source 79 330.29 ramen (Korean-style noodles) 308 280.00
black noodles 127.4 170.00 rice (steamed) 172.3 258.45
black noodles with oil 132.4 N/a rice cake 119.3 262.46
blacktea 168 52.68 rice cake and honey 127.9 288.60
bread 47.8 129.54 rice juice 173.8 106.21
bread and butter 54.8 182.04 rice (steamed, low-calorie) 164.6 171.18
castella 89.9 287.68 multi-grain rice 175.3 258.08
cherryade 168 79.06 rice noodles 278 140.00
chicken breast 100.6 109.00 cracker 41.5 217.88
chicken noodles 70 255.00 salad1 (lettuce and cucumber) 96.8 24.20
black chocolate 40.37 222.04 salad1 with olive oil 106 37.69
milk chocolate 41 228.43 salad2 (cabbage and carrot) 69.1 17.28
chocolate milk 180.1 122.62 salad2 with fruit-dressing 79 28.04
cider 166 70.55 armond cereal (served with milk) 191.7 217.36
clam chowder 160 90.00 corn cereal (served with milk) 192 205.19
coffee 167 18.56 soybean milk 171.9 85.95
coffee with sugar (10%) 167 55.74 spagetti 250 373.73
coffee with sugar (20%) 167 92.92 kiwi soda (sugar-free) 166 2.34
coffee with sugar (30%) 167 130.11 tofu 138.6 62.37
coke 166 76.36 cherry tomato 200 36.00
corn milk 166.6 97.18 tomato juice 176.8 59.80
corn soup 160 85.00 cherry tomato and syrup 210 61.90
cup noodle 262.5 120.00 fruit soda 169 27.04
rice with tuna and pepper 305 418.15 vinegar 168 20.16
dietcoke 166 0.00 pure water 166 0.00
choclate bar 50 249.00 watermelon juice 177.7 79.97
roasted duck 117.2 360.98 grape soda 170.9 92.43
orange soda 173.6 33.33 grape soda (sugar-free) 170.9 0.00
orange soda (sugar-free) 166.2 2.77 fried potato 110.5 331.50
fried potato and powder 120 364.92 yogurt 179 114.56
sports drink 177.1 47.23 yogurt and sugar 144.6 106.04
ginger tea 178.3 96.79 milk soda 167 86.84
honey tea 183.9 126.69 salt crackers 41.3 218.89
caffelatte 171.6 79.13 onion soap 160 83.00
caffelatte with sugar (10%) 171.6 115.66 orange juice 182.6 82.17
caffelatte with sugar (20%) 171.6 152.19 peach (cutted) 142 55.38
caffelatte with sugar (30%) 171.6 188.72 pear juice 181.5 90.02
mango candy 36.4 91.00 peach and syrup 192 124.80
mango jelly 58.6 212.43 peanuts 37.1 217.96
milk 171 94.50 peanuts and salt 37.3 218.21
sweet milk 171 N/a milk tea 167 63.46
green soda 174.5 84.55 pizza (beef) 85.5 212.08
pizza (seafood) 60 148.83 pizza (potato) 72.3 179.34
pizza (combination) 70.9 175.87 plain yogurt 143.7 109.89
sports drink (white) 175.8 43.95

mean 141.17 139.27
standard deviation 60.69 101.36
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The number of control commands was predefined both in the control module of the
acquisition system and in the host desktop PC. Hence, the task of acquisition was achieved
entirely by constructing the sequence of the individual commands. The acquisition code
was written in Python (version 3.6.11). The communication between the desktop PC and the
control module was achieved using Bluetooth technology. Image acquisition was carried
out in a dark chamber (470 mm × 620 mm × 340 mm, WDH) where external light was
blocked. The angular resolution of the rotating table was set at 10◦ (total 36 views per
camera). The total acquisition time for each food was 2738 s, which corresponded to an
acquisition time of 3.8 s per frame. The images of bread, castella, and a chocolate bar were
captured under white light from specific angles, as shown in Figure 4.

Figure 4. Examples of images ((Top): bread, (Middle): castella, (Bottom): chocolate bar) acquired
from various directions.

3. Food Analysis
3.1. Preliminary Feasibility Tests for UV/NIR Images

The main objective of this study was to improve the accuracy of food classification
and calorie estimation by using UV/NIR images. Prior to construction of the classifica-
tion/estimation rules, the use of UV/NIR images was experimentally verified as adequate
for this purpose. The white LED used for capturing RGB images was experimentally mea-
sured as emitting light with a wavelength that ranged from 430 to 640 nm. Hence, images
acquired under a light source with a wavelength shorter than 430 nm were considered UV
images, and the images acquired under a light source with a wavelength longer than 640 nm
were considered NIR images. Two food items could not be well-distinguished visually
under a visible light source, which necessitated confirming whether the corresponding
images acquired under UV or NIR light sources could be relatively well-distinguished.
Food images are visually distinguished according to shape, texture, and the distribution of
brightness values (histogram). The shapes and textures of foods, however, are uniquely
determined independent of the light source, whereas the distribution of brightness values is
affected not only by food types but also by the wavelength of the light source. Accordingly,
brightness distribution was used to measure the difference between two food images that
are affected by the wavelength of the light source. A histogram was obtained from the
image in which the non-food portion was masked. In the present study, the Bhattacharyya
distance was employed to measure the differences between two food images. The Bhat-
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tacharyya distance for two images In and Im acquired under a light source of a wavelength
λk is given by

DB(In, Im|λk) = − log
{

∑
y∈Y

√
p(y|In, λk)p(y|Im, λk)

}
(1)

where Y is the set of possible brightness values, and p(y|I, λ) is the probability density
function of the brightness value y included in image I at a wavelength of λ. The Bhat-
tacharyya distance represents a complete match at a value of 0 (minimum) and a complete
mismatch at a value of 1 (maximum). Figure 4 presents an example of the two different
food images acquired under the different wavelength light sources. Two food items, coke
and sugar-free grape juice looked similar under a visible light source, as shown in the first
row of Figure 4, whereas the differences between these two food images were apparent in
the IR images at 810 nm. For this image pair, the Bhattacharyya distances for λ = 640 nm
and λ = 810 nm were given as 0.45 and 0.99, respectively. This example shows that the
Bhattacharyya distance can be a good indicator of visual differences between two different
food items.

The usefulness of UV/NIR images in terms of food classification was verified by
examining the proportion of food pairs that were visually similar under visible light but
visually distinct under UV or NIR light. To this end, a cumulative distribution function
was defined; it can be heuristically computed as follows:

FC(TV , TNV) ≈
|{(Im, In)|D(V)

B (In, Im) < TV and D(NV)
B (In, Im) > TNV}|

|{(m, n)|D(V)
B (In, Im) < TV}|

(2)

where (Im, In) is the pair of two different food items m and n, and |S| is the cardinal of the
set S. In this study, the maximum DB value in each band (visible and non-visible bands)
was chosen as the representative DB for the corresponding band, and, hence, D(V)

B and

D(NV)
B are given by

D(V)
B (In, Im) = max

λ∈ΛV
DB(In, Im|λ)

D(NV)
B (In, Im) = max

λ∈ΛNV
DB(In, Im|λ) (3)

where ΛV and ΛNV are the sets of visible and non-visible wavelengths, respectively. TV
and TNV are the thresholds of the Bhattacharyya distances for the visible band and non-
visible band, respectively, and FC(TV , TNV) represents the ratio of image pairs that satisfy
the condition whereby the Bhattacharyya distance from the VIS images is less than TV
while the Bhattacharyya distance from UV or IR images is greater than TNV . The case
of TV < TNV , F(TV , TNV) represents the frequency of a relatively small Bhattacharyya
distance (a low degree of discrimination) in the visible light band but a high Bhattacharyya
distance (a high degree of discrimination) in the non-visible light band.

The cumulative distributions for the various thresholds are plotted in Figure 5. Note
that the visual difference between two images was not significant at a Bhattacharyya
distance of 0.45, as shown in Figure 6. And, hence, the curves with TV ≤ 0.4 correspond
to the cumulative distribution obtained from food pairs that are not well distinguished
under a visible light source. In the case of TV = 0.4, the ratio of the Bhattacharyya
distance for UV/NIR images exceeding 0.5 (corresponds to well-distinguished) was about
70%. Similar results were obtained for other TV values. (e.g., For TV = 0.2, 0.3, and 0.4,
FC(TV , TNV = TV) = 89, 77, and 64%, respectively) This means that a significant number of
food pairs that were not visually well-distinguished under visible light sources was better
distinguished under non-visible light sources. Such results indicate that the performance
of food classification can be improved by using UV/NIR images that are complementary to
VIS images.
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In terms of caloric estimation, the usefulness of a specific wavelength image was
determined by examining whether differences in the amount of calories between two
food items were significantly correlated with differences between the two corresponding
images. The underlying assumption is that if the difference between the two food images
is large, their caloric difference will also be large and vice-versa. The caloric count was
computed via the measured weight and the nutrition facts for each food. The Bhattacharyya
distances were also adopted to measure the differences between the two food items. The
caloric difference between the two food items n and m is given by the following absolute
relative difference:

Dc(n, m) =
|cn − cm|
cn + cm

(4)

where cn and cm are the calories of food items n and m, respectively. The Pearson correlation
for the k-th wavelength images is given by

ρ(λk) =
cov[DB(I|λk), DC]

σDB(I|λk)
σDC

(5)

where cov[x, y] denotes the covariance of x and y and σx is the standard deviation of x.
DB(I|λk) denotes the Bhattacharyya distance computed from the images acquired under a
light source of λk wavelength.

The correlations are presented across the wavelengths of each light source in Figure 7.
The maximum correlation was obtained at λ = 870 nm. A second maximum also appeared
in the wavelength of the NIR band (λ = 850 nm). The results indicate that the differences
between the NIR images are moderately correlated with differences in caloric content. The
images acquired under the NIR light source are beneficial in terms of caloric estimation. The
average correlations of the visible and non-visible bands were 0.636 and 0.633, respectively.
The significance test also showed that there was no remarkable difference between the
correlation values of the visible band and those of the non-visible band (p = 0.7). From such
results, it can be reasonably assumed that VIS- and UV/NIR-images are equally useful in
terms of caloric estimation.

Figure 5. The cumulative distributions of the distances obtained from non-visible images and those
from visible images.
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(a) (b)

Figure 6. (a) Images acquired under a 640 nm light source. (b) Images acquired under a 810 nm light
source. The food items are coke (top) and sugar-free grape juice (bottom).

Figure 7. Correlations for each of the wavelength images between the caloric differences and the
Bhattacharyya distances.

3.2. Preprocessing

Although a highly stable current source was adopted to drive the LEDs, there was
some variation in the intensity of the light from shot to shot. This caused unwanted changes
in the acquired images and resulted in degradation of the estimation accuracy. A simple
way to compensate for variations in the intensity of light sources is to adjust the intensity of
the incident light so that the average intensity approximates that of the reference intensity.
A typical scale factor is given by

α
(i)
ω =

µ
(i)
ω

µ
(re f )
ω

(6)

where ω and i are the indices of the wavelength and shot, respectively, and µ
(i)
ω and µ

(re f )
ω

represent the average and reference intensities, respectively. The reference intensity can be
obtained by averaging a large number of light source images at different times. Such an
intensity normalization method is very simple and easy to implement.

3.3. Food Analysis Using a Convolutional Neural Network

There are many machine learning schemes, such as random forest (RF), support vector
regression (SVR), partial least squares regression (PLSR) and artificial neural networks
(ANNs), that can be applied to recognition of the types, amounts, and nutritional content
of food. Among them, the ANN-based approaches have an advantage wherein nonlin-
ear relationships between the input (multispectral images) and the output (target values)
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can be taken into consideration in constructing the estimation rules. This leads to higher
performance in terms of classification and regression. Accordingly, a supervised learning
approach that employs convolutional neural networks (CNNs) was adopted in this study.
The architecture of the CNN adopted in this study is shown in Figure 8, and was heuris-
tically determined using a validation dataset (10% of the entire learning dataset). Note
that the CNN architecture shown in Figure 8 was used to classify the types of food. The
final output was replaced by a single output in the case of caloric estimation. The resultant
architecture of the CNN was simpler than others previously proposed in image recognition
tasks (e.g., ResNet-50, Inception-v3, Xception). This was due mainly to the smaller number
of targets compared with that of other CNNs (101 vs. 1000).

We tested the performance in terms of food classification accuracy and estimation error
for target values according to different sizes of CNN input (input image sizes). The results
showed that sizes of 64 × 64 yielded the highest performance for both classification and
estimation accuracies. Accordingly, all images from the camera were reduced to 64 × 64 by
using interpolation. Before reducing the size, no cropping was carried out on the acquired
images, and the entire image size (640 × 480) was used.

The performance according to the hyperparameters of CNN was also investigated
using a validation dataset. This was performed separately for each task (food classification
and caloric estimation). The resultant CNN was composed of two convolution/max pooling
layers and a fully connected multi-layer perceptron (MLP) with a recognition output, as
shown in Figure 8. The kernel sizes of the first and the second convolution layers were
11 × 11 and 7 × 7, respectively, while the window sizes of the max pooling layers were
commonly 4 × 4. There were three fully connected layers in the employed CNN, which
corresponded to input from the final convolution layer, and to the hidden and output layers.
The numbers of nodes for each of the layers were also determined using the validation
datasets 112, 128, and 18, respectively. Although the hyperparameters of each CNN were
separately tuned for each task, the architecture of the CNN, shown in Figure 8, yielded
satisfactory performance for both image classification and caloric estimation.

A rectified linear unit (ReLU) was adopted as an activation function for all hidden
layers. A soft-max function and linear combination function were employed for the output
layer for classification and regression CNNs, respectively. Accordingly, the loss functions
were given by the cross-entropy and the mean absolute percentage error (MAPE) in the cases
of food classification and caloric estimation, respectively. A total of 1000 epochs resulted
in a trained CNN with sufficient performance in terms of food recognition accuracy. It
is noteworthy that the accuracy of classification/estimation was strongly affected by the
mini-batch size. The experimental results showed that a mini-batch size of 32 gave the best
performance for all cases. Since the MAPE is given by dividing the absolute error value by
its ground truth, the loss value cannot be calculated when the given target value is zero.
As shown in Table 1, there were some cases when the ground-truth caloric count was zero.
Note that a value of zero in the nutrition facts does not necessarily mean that the amount
of the nutritional content is zero. A value of zero actually means that the amount is less
than its predefined minimum. In the present study, zero caloric values were replaced by
the minimum, which was 5 (kcal) according to [40].

Figure 8. Architecture of the proposed CNN for the classification of food type, where Nw is the
number of input images and Nt is the number of targets. (101 for food classification and 1 for
caloric estimation).
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3.4. Selection of the Wavelengths

Although evaluation of all possible wavelength combinations was performed via off-
line processing, it was desirable to avoid an enormous amount of computational time for a
brute-force grid search. In the present study, a piecewise selection method was adopted
to select the set of optimal wavelengths. Let Ω = {ω0, ω1, . . . , ωN−1} be the set of the
employed wavelengths, where N is the total number of the wavelengths. The set of the
wavelengths was gradually constructed by adding and removing the wavelength either to
or from the previously constructed set. The overall procedure is as follows:

Step-1. Forward selection: Let Ω(i)
F be the set of the wavelength at the i-th forward step,

all combinations Ω(i−1) ∪ {ω| ω ∈ Ω̄(i−1) = Ω−Ω(i−1)} are evaluated to find the optimal
wavelength ω∗F that minimizes the given loss function, then construct Ω(i)

F = Ω(i−1) ∪ {ω∗F}.
Step-2. Backward elimination: The element (wavelength) that minimizes the loss

function is removed from Ω(i)
F . The set of the wavelength at the i-th backward step is then

given by
Ω(i)

B = Ω(i)
F − {ω

∗
B} (7)

where
ω∗B = arg min

ω∈Ω(i)
F

L(Ω(i)
F − {ω})

and L(S) is the loss for a wavelength set S that is given by the final loss of the learned CNN.
Step-3. Final forward selection: The final set is built by the forward selection step

wherein the optimal wavelength ω∗ is chosen from the set Ω−Ω(i)
B so as to minimize the

loss function.
The procedure Steps-1∼3 was iteratively performed until Ω(i) = Ω. The final set of

the optimal wavelengths is given by

Ω∗ = min
i
L(Ω(i)) (8)

A large number of the wavelengths in Ω∗ involved an increased number of LEDs
and shots, which resulted in a large device, a high rate of power consumption, and long
acquisition times. Hence, it is preferred that the number of wavelengths should also
be considered in building the estimation rules. The three-channel (RGB) images could
be obtained from one image acquired under the white light that could be regarded as a
representative image within the visible light region. In the present study, food analysis
was performed in combination with RGB, UV, and NIR images to reduce the number of
shots and the results were compared by combining all the images acquired in the full set
of wavelengths.

4. Experimental Results
4.1. Accuracy for Food Item Classification

The food classification accuracy according to the number of input images is presented
in Figure 9. The number of input images is equal to the number of images actually taken by
the camera at a different wavelength. Note that although the RGB image was separated
into three individual images that were inputted to CNN, they were considered as one
image because they were captured by one shot. The results indicated that the accuracy
was increased rapidly when the number of images was less than five. Even when one
image was used, the classification accuracy was higher than the previous CNN-based
food recognition method [18]. Such a high level of accuracy was due mainly to the usage
of a large-sized training dataset that included images acquired from various directions.
A maximum accuracy of 99.81% was obtained when images acquired from 11 different
wavelength light sources were used. However, the accuracy increased until the number of
images was five, at which point no significant increase was observed when the number
of images exceeded five. The maximum increase in classification accuracy (7.67%) was
obtained when the number of input images was increased from one to two. This was
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confirmed by the fact that the correlation coefficient between the number of images and
classification accuracies was 0.919 for as many as five images. The correlation coefficient
was decreased to 0.587 when the number of images ranged from 6 to 19. Such results
indicate that it is possible to obtain a sufficient recognition rate by using five images at
different wavelengths. In fact, the recognition rate obtained from the five images was
99.12%, which was not significantly lower than the maximum recognition rate of 99.81%.

Thus far, the results were obtained by excluding RGB images. The food classification
accuracy is presented in Figure 9, where single-wavelength images were added to the
RGB image. The increase in recognition rate was more rapid compared with when the
RGB image was not used. A maximum recognition rate of 99.83% was obtained when
almost all images (19 out of 20) were used. The largest increase in classification accuracy
was achieved when only one single wavelength image was added to the RGB image (e.g.,
accuracy was increased from 88.86 to 97.08% when an image from a wavelength of 890 nm
was added to the RGB image.) The accuracy gradually increased until the number of
images added exceeded three, and remained almost constant until the number exceeded
five. When food classification was performed with only one type of image (as with the
previous image-based food classification methods), the correct recognition rates of 88.86%
and 87.9% were achieved by using the RGB image and one other image from a single
wavelength, respectively. This indicates that an RGB image is a slightly better choice for
food classification when only one type of image is used.

Figure 9. The classification accuracies of food items according to the number of light sources when
the RGB image is included or excluded.

As noted in the previous section, a high level of accuracy is paramount when using
a small number of images. From this point of view, it is meaningful to examine how the
correct recognition rate changes according to the food item when recognition is performed
by adding only one type of NIR or UV image to an RGB image. The experimental results
on two input images (including the RGB image) showed that the highest classification
accuracy was achieved when an image from a wavelength of 890 nm was added to the RGB
image. Accordingly, the change in the recognition rate for each food item was examined
when adding only one NIR image from a wavelength of 890nm to the RGB image. From
among 101 food items, 62 items showed an improved recognition rate by adding only
one type of NIR image, and 35 items showed the same recognition rate. A decrease in
the recognition rate was observed for only four food items, but the level of decrease
was generally small (<5%). The list of food items that resulted in a significant level of
improvement in the recognition rate by adding one type of NIR image is presented in
Table 2. It is noteworthy that, for most of these food items, there exist other food items
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that are not easily distinguished under visible light. For example, the food pairs coffee
and coffee with sugar, as well as caffelatte and caffelatte with sugar, were almost visually
identical. These food items were often recognized as other foods that appeared almost
identical under visible light. For the food item of grape soda, a recognition rate of 0% was
obtained when only an RGB image captured under visible light was used. In this case, all
grape soda images were recognized as sugar-free grape soda that is visually identical to
grape soda. When adding an image acquired under a 890 nm wavelength light source, a
recognition rate of 44% was obtained. Consequently, it is apparent that the NIR/UV images
improve the accuracy of image-based food classification.

4.2. Accuracy for Caloric Estimation

The results for caloric estimation are presented in Figure 10 in which MAPEs are
plotted for each number of images actually taken. Without an RGB image, the minimum of
MAPE was 10.49 when a total of 10 different wavelength images were employed. Interest-
ingly, MAPE was decreased until the number of input images reached 10 (R2 = −0.9317),
but was increased after the number of input images exceeded 11 (R2 = 0.6530). That result
was likely due to the limitations of the piecewise algorithm adopted in the selection of the
wavelengths and overfitting problems caused by an excessive increase in the number of
input images. When the three wavelength images were employed, the MAPE was 18.97%,
which was significantly lower than when using the RGB image alone (=41.97%). Such a
result was also remarkably better than those of the previous CNN-based caloric estimation
schemes (27.93% [19], even though the number of the food items adopted was relatively
large (101 vs. 15). The selected wavelengths were 385, 560, and 970 nm in the case of
three input images, indicating that one each of UV, VIS, and NIR wavelength band images
was selected. This implies that not only the number of input images, but also the selected
wavelengths play an important role in the accuracy of caloric estimation.

When single-wavelength images were added to an RGB image, a minimum of 10.56%
MAPE was achieved. A total of 14 input images were needed to obtain the minimum
MAPE, which meant more images were required compared with when the RGB image
was excluded (10 images). Overall, the MAPEs take the form of decreasing curves with
an increasing number of input images (R2 = −0.5935). However, the correlation values
before and after the minimum point (14) were−0.6847 and−0.4919, respectively, indicating
that there was no significant difference between the number of input images and MAPE
when the number of input images exceeded 14. The Pearson correlation for the caloric
counts between the ground truth and the estimation was also notably larger than that
of the previous CNN-based estimation schemes [18,19] (0.975 vs. 0.806) when a total of
14 UV/VIS/NIR images was employed in the caloric estimation. This was due mainly to
the usage of the UV/NIR images in this study. Even for visually similar foods with different
caloric counts, their UV/NIR images were often clearly distinguishable. Adding more
images obtained from light sources with various wavelengths in the UV and NIR bands
progressively improved the process of classifying images according to the caloric count.

Figure 11 compares the cumulative distribution function of MAPE when using only
RGB images to also using other images acquired from a single wavelength light source.
The superiority of using additional images along with RGB images is confirmed by this
figure. For example, about 50% of all test food images revealed a MAPE value of less than
30 in the case of using only RGB images. When adding one image to the RGB image, 50%
of all test food images showed a MAPE value of less than 12. This was further reduced to
five when five images were added to the RGB image.

It was also important to examine the accuracy of the caloric estimation for each food
item when adding only one type of NIR/UV image to the RGB image. An image acquired
at a wavelength of 970 nm represented the highest MAPE reduction rate and was chosen as
an addition to the RGB image. Compared with the use of only RGB images, the number
of food items with decreased, increased, and maintained MAPE values was 77, 20, and 1,
respectively (out of 98 food items with valid caloric values). This indicates that the accuracy
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of caloric estimation for many food items (>78%) can be improved by including only one
type of NIR image. This is also confirmed by the fact that most of the MAPE reduction
(74.8%) was achieved when only one NIR image (at 970 nm) was added to the RGB image,
as shown in Figure 11. Table 3 lists the large differences in MAPE when only the RGB image
was used compared with using the RGB + 970 nm images. The estimated caloric values of
the food items presented in Table 3 deviated from the ground truth by more than 50%. The
results show that the MAPEs values for these food items were reduced by more than half
when calories were estimated after adding one type of NIR image to the RGB image.

In conclusion, the use of UV/NIR images in additionj to RGB images increases the
accuracy of caloric estimation. Even with a smaller number of UV/NIR images, the
performance in terms of caloric estimation was significantly improved compared with
conventional RGB-based estimation.

Table 2. Comparisons of recognition rates (%) for food items that revealed a large difference between
the use of only an RGB image and using an RGB image with one additional (NIR) image.

Food Items RGB-Image RGB-Image
+Image at 890 nm

black noodles with oil 58.33 100
coffee with sugar (10%) 16.67 100

orange soda 47.22 100
caffelatte with sugar (30%) 25.00 97.22

peach (cut) 55.56 97.22
milk pudding 44.44 100

rice cake 44.44 86.11
rice cake and honey 52.78 100
salad1 with olive oil 47.22 94.44

salad2 (cabbage and carrot) 47.22 94.44
grape soda 0.00 44.44

Figure 10. The mean absolute percentage errors (MAPEs) of caloric content (kcal) according to the
number of wavelengths, when the RGB image was either included or excluded.
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Figure 11. The cumulative distribution of MAPE according to the input of CNN (RGB image only,
RGB + 1-images, and RGB + 5-images).

Table 3. Comparison of MAPEs in caloric content (%) for food items showing large differences
between use of the RGB-image only and use of the RGB image and one (NIR) image.

Food Items RGB-Image RGB-Image
+Image at 970 nm

salad1 (lettuce and cucumber) 94.46 20.85
salad2 (cabbage and carrot) 85.2 35.37
rice with tuna and pepper 51.68 6.27
orange soda (sugar-free) 63.06 18.19

salad2 with fruit dressing 62.11 15.41
cherry tomato 58.87 21.38

fried potato and powder 55.06 25.41
green soda 52.99 17.53

salad1 with olive oil 62.65 28.58
rice cake and honey 62.1 29.52

rice cake 61.94 30.09

4.3. Analysis of the Selected Wavelengths

The wavelengths selected for food classification appear in Table 4 for each number
of images. The selection rate for each wavelength is shown in Figure 12. The results are
presented for two cases: inclusion and exclusion of RGB images. When the RGB image
was excluded, the ratio of wavelengths corresponding to the NIR band being selected
was 46.84%. On the other hand, 41.05% of wavelengths corresponded to the visible light
band. The UV band was selected at a relatively low rate (12.11%). This was partially
because the number of employed UV light sources was smaller than that of the UV/VIS
light sources. Hence, the light source in the UV band was not likely to be selected. The
chances of selecting the wavelength of the NIR band was increased to 60% in cases when a
relatively small number of wavelengths was allowed (≤5). Considering the fact that the
number of wavelengths belonging to the NIR band was slightly less than the number of
VIS wavelengths (8 vs. 9), a higher selection rate of wavelengths in the NIR band indicates
that the NIR images are more useful in food classification compared with the VIS images.
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This seems to be due in part to the nature of the NIR images, where the distribution of
water content in food can be approximately obtained.

When the RGB image was included, the ratio of wavelengths in the NIR band being
selected was further increased to 50.53% This is because the RGB image actually includes
three visible light images (RGB images), so the NIR band images are likely to be selected.
Whether the RGB images were included or excluded, frequent wavelength selections were
385, 870, 890, and 970 nm. This also indicates that the wavelengths corresponding to the
invisible band were more frequently selected for food classification.

Table 4. Selected wavelengths for food classification. Top: without RGB image. Bottom: with
RGB image.

No. of images Selected wavelengths (nm)

1 870
2 660 950
3 660 950 970
4 590 660 950 970
5 490 660 890 950 970
6 405 490 660 890 950 970
7 385 405 490 560 660 890 970
8 385 490 560 660 870 890 970 1020
9 385 405 490 560 850 870 890 970 1020

10 385 490 560 645 810 850 870 890 970 1020
11 385 490 510 560 625 645 810 850 870 890 970
12 385 430 490 510 560 625 810 850 870 890 910 970
13 385 405 430 490 510 560 625 850 870 890 910 950 970
14 385 405 430 470 490 510 560 625 850 870 890 910 950 970
15 385 405 430 470 490 510 560 625 645 850 870 890 910 950 970
16 385 405 430 470 490 510 625 645 660 850 870 890 910 950 970 1020
17 385 405 430 470 490 510 625 645 660 810 850 870 890 910 950 970 1020
18 385 405 430 470 490 510 590 625 645 660 810 850 870 890 910 950 970 1020
19 385 405 430 470 490 510 560 590 625 645 660 810 850 870 890 910 950 970 1020

No. of images Selected wavelengths (nm)

1 RGB
2 RGB 890
3 RGB 870 970
4 RGB 385 870 970
5 RGB 385 870 890 970
6 RGB 385 625 870 890 970
7 RGB 385 625 810 870 890 970
8 RGB 385 625 810 870 890 910 970
9 RGB 385 430 625 870 890 910 950 970

10 RGB 385 430 490 625 870 890 910 950 970
11 RGB 385 430 490 625 645 870 890 910 950 970
12 RGB 385 405 430 625 645 870 890 910 950 970 1020
13 RGB 385 405 430 510 625 645 870 890 910 950 970 1020
14 RGB 385 405 430 510 560 625 645 870 890 910 950 970 1020
15 RGB 385 405 430 490 510 560 625 645 870 890 910 950 970 1020
16 RGB 385 405 430 470 490 510 560 625 645 870 890 910 950 970 1020
17 RGB 385 405 430 470 490 510 560 625 645 810 870 890 910 950 970 1020
18 RGB 385 405 430 470 490 510 560 625 645 810 850 870 890 910 950 970 1020
19 RGB 385 405 430 470 490 510 560 590 625 660 810 850 870 890 910 950 970 1020
20 RGB 385 405 430 470 490 510 560 590 625 645 660 810 850 870 890 910 950 970 1020
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Figure 12. The selection ratio of each wavelength for food classification when the RGB image is
included or excluded.

The wavelength selection results for caloric estimation are shown in Figure 13 and in
Table 5. When excluding the RGB images, the wavelengths in the NIR region were selected
with a frequency of 31.58%, whereas wavelengths in the visible region were selected with a
frequency of 51.05%. Even when RGB images were included, the wavelengths in the visible
region were selected more frequently compared with those in the NIR band. This result
was somewhat different from that for food classification. Wavelengths of 385, 430, 560, and
970 nm were frequently selected when excluding the RGB images, which indicates that the
wavelengths corresponding to the visible band were also frequently selected. On the other
hand, the wavelengths of 405, 430, 950, and 1020 nm were selected with relatively high
frequency when the RGB images were included.

Figure 13. The selection ratio of each wavelength for calorie estimation when the RGB image is
included or excluded.
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Table 5. Selected wavelengths for caloric estimation. Top: without RGB image. Bottom: with
RGB image.

No. of images Selected wavelengths (nm)

1 430
2 385 970
3 385 560 970
4 385 430 560 970
5 385 405 430 560 970
6 385 405 430 560 660 970
7 385 405 430 510 560 660 970
8 385 405 430 510 560 625 660 970
9 385 405 430 510 560 625 660 910 970

10 385 405 430 470 510 560 660 850 910 970
11 385 405 430 470 510 560 645 660 850 910 970
12 385 405 430 470 510 560 625 645 660 850 910 970
13 385 405 430 470 510 560 590 625 660 850 890 910 970
14 385 405 430 470 490 510 560 625 660 810 850 890 910 970
15 385 405 470 490 510 560 625 645 660 810 850 890 910 950 970
16 385 405 430 470 490 510 560 625 645 660 810 850 890 910 950 970
17 385 405 430 470 490 510 560 590 625 645 660 810 850 890 910 950 970
18 385 405 430 470 490 510 560 590 625 645 660 810 850 870 890 910 950 970
19 385 405 430 470 490 510 560 590 625 645 660 810 850 870 890 910 950 970 1020

No. of images Selected wavelengths (nm)

1 RGB
2 RGB 970
3 RGB 405 1020
4 RGB 405 510 1020
5 RGB 405 510 950 1020
6 RGB 405 430 510 950 1020
7 RGB 405 430 510 660 950 1020
8 RGB 405 430 470 510 660 950 1020
9 RGB 430 470 510 590 660 950 970 1020

10 RGB 385 430 470 590 660 810 950 970 1020
11 RGB 385 405 430 470 590 660 870 950 970 1020
12 RGB 385 405 430 470 560 590 660 870 950 970 1020
13 RGB 385 405 430 470 560 590 660 810 870 950 970 1020
14 RGB 385 405 430 470 560 590 625 810 850 870 950 970 1020
15 RGB 385 405 430 470 490 560 590 625 810 850 870 950 970 1020
16 RGB 385 405 430 470 490 560 625 660 810 850 870 910 950 970 1020
17 RGB 385 405 430 470 490 560 590 625 660 810 850 870 910 950 970 1020
18 RGB 385 405 430 470 490 510 560 590 625 810 850 870 890 910 950 970 1020
19 RGB 385 405 430 470 490 510 560 590 625 660 810 850 870 890 910 950 970 1020
20 RGB 385 405 430 470 490 510 560 590 625 645 660 810 850 870 890 910 950 970 1020

5. Conclusions

RGB images are mostly used in image-based food analysis. The proposed approach
assumes that the types of food and the caloric count in them could partially be determined
by the morphological characteristics and wavelength distributions of food images. A multi-
spectral analysis technique using NIR and UV light along with VIS light was employed in
the analysis of various foods and the results approximated those of conventional chemical
analysis techniques. The present study was motivated by such a multi-spectral approach,
and the procedure for food classification and caloric estimation adopted a multi-spectral
analysis technique. Automated equipment capable of acquiring images of up to 20 wave-
lengths was devised, and approximately 15,000 images were acquired per wavelength from
101 types of food. The types of food and caloric content were estimated using a CNN.
A CNN was used so that the relevant features for estimating the target variables could
be automatically derived from the images, and a feature extraction step was unnecessary.
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The experimental results showed that the performance in terms of the accuracy for food
item classification and caloric estimation was notably superior to previous methods. This
was due mainly to the usage of various light sources in the UV/VIS/NIR band, unlike
conventional methods which use only RGB images. It would be interesting to connect the
multi-spectral imaging techniques with the quantification of ingredients such as proteins,
fats, carbohydrates, sugars, and sodium. Future work will focus on this issue.
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