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Abstract: Near infrared (NIR) spectroscopy is widely used for evaluating quality traits of cereal grains.
For evaluating protein content of intact sorghum grains, parallel NIR calibrations were developed
using an established benchtop instrumentation (Perten DA-7250) as a baseline to test the efficacy of
an adaptive handheld instrument (VIAVI MicroNIR OnSite-W). Spectra were collected from 59 grain
samples using both instruments at the same time. Cross-validated calibration models were validated
with 33 test samples. The selected calibration model for DA-7250 with a coefficient of determination
(R2) = 0.98 and a root mean square error of cross validation (RMSECV) = 0.41% predicted the protein
content of a test set with R2 = 0.94, root mean square error of prediction (RMSEP) = 0.52% with a ratio
of performance to deviation (RPD) of 4.13. The selected model for the MicroNIR with R2 = 0.95 and
RMSECV = 0.62% predicted the protein content of the test set with R2 = 0.87, RMSEP = 0.76% with an
RPD of 2.74. In comparison, the performance of the DA-7250 was better than the MicroNIR, however,
the performance of the MicroNIR was also acceptable for screening intact sorghum grain protein
levels. Therefore, the MicroNIR instrument may be used as a potential tool for screening sorghum
samples where benchtop instruments are not appropriate such as for screening samples in the field or
as a less expensive option compared with benchtop instruments.

Keywords: sorghum; protein; NIR spectroscopy; handheld spectrometer; instrument comparison

1. Introduction

Sorghum (Sorghum bicolor (L.) Moench) is the fifth most widely cultivated cereal grain
in the world after maize, wheat, rice, and barley and fourth after maize, wheat, and rice
in the USA (FAO STAT http://faostat.fao.org (Accessed on 2 August 2022)). In certain
regions of the world, sorghum is used mostly for human food. In the USA, sorghum is
primarily used as an animal feed ingredient and as a feedstock for biofuel production [1].
In addition, due to the health promoting nature of the crop and its consumer valued
qualities, such as being gluten free and a non-GMO product, sorghum’s use as human food
is also increasing. Due to the various uses of this crop [2,3], the grain quality requirements
for specific uses may vary. Therefore, variety development selection needs to consider
grain quality requirements for specific uses. To achieve this efficiently and to streamline
the new cultivar development process, it is necessary to integrate high-throughput grain
phenotyping technologies into breeding programs [4,5].

Near infrared (NIR) spectroscopy is used as an important analytical tool to evaluate
diverse materials for various applications including food, pharmaceuticals, textiles, poly-
mers, etc. [6,7]. NIR spectroscopy methods have been developed for quantitative analysis
of numerous traits on intact cereal grains [8–13]. The development of NIR spectroscopic
methods extends to rapid compositional analyses of grains such as protein [14], starch and
amylose [15,16], and phenolics [17].
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Plant breeding and germplasm evaluation may require the screening of diverse geno-
types and selection to develop new cultivars for specific uses. Screening germplasm for
grain quality traits can improve selection of elite lines with improved end-use quality and
value. High throughput grain quality analysis by NIR spectroscopic methods is a common
method for evaluating grain composition and is typically undertaken in the laboratory us-
ing bench-top instruments after the harvesting and processing of the grain samples [14–17].
A potential bottleneck in screening grain composition by NIR is the need to harvest, clean
and transport grain to the laboratory, increasing the cost of time and labor to obtain field
phenotypes, delaying availability of quality phenotypes to inform the next nursery season.
However, if grain quality traits can be screened in field, either directly on the panicle or after
an in-field hand harvest and threshing, potential candidate lines may be rapidly identified.
This rapid in-field season test could serve to identify the most promising genotypes for
subsequent laboratory analysis. This prioritization of genotypes for subsequent screening
will ultimately reduce the overall costs of labor, material, transportation, storage, and
sample processing costs for quality trait phenotyping.

Handheld MicroNIR spectrometer devices are available for various NIR spectroscopy
applications [18–20] and have been used for grain sorghum evaluation. Kosmowsky and
Worku [21] investigated the suitability of a miniaturized NIR spectrometer for cultivar
identification of barley, chickpea, and sorghum. However, there are no studies that report
on the efficacy of handheld NIR devices for the quality trait evaluation of grain sorghum in
comparison with the standard method of lab grade benchtop spectrometers. The assessment
of tradeoffs for in-field phenotyping verses the precision of current benchtop methods
requires a controlled comparison.

Research comparing the use of handheld NIR instruments to benchtop instruments
for other products, including forage, coriander seed, lamb, whey, and medicinal plants for
various traits has been published [22–28]. These papers have shown that handheld NIR
instruments can provide various degrees of performance compared with benchtop NIR
instruments. Because performance of handheld instruments across different products has
shown variation in performance, this project was designed to compare a handheld NIR to a
benchtop NIR specifically for analysis of intact sorghum grain.

If handheld instruments can be used to assess grain quality traits in-field, then grain
quality parameters can be included as selection criteria, thus enhancing the overall breed-
ing efficiency for quality traits. Handheld instruments are less expensive than benchtop
instruments, providing a reduced cost of entry for plant breeding programs to perform
grain quality phenotyping. However, before attempting to use such handheld micro spec-
trometers in the field, the feasibility of using such instruments for the evaluation of grain
traits must be assessed in comparison with laboratory grade instruments. Therefore, this
study was conducted to compare the performance of a handheld MicroNIR instrument
with a standard benchtop laboratory NIR spectrometer for evaluation of protein content of
sorghum grains.

2. Materials and Methods

Grain Samples: Grain samples for the calibration set were selected from two sample
sets harvested in 2021. Sample set 1 consisted of 414 grain samples of test market hybrids
from 2 private seed companies (3 hybrids), and 3 public breeding programs (23 hybrids)
grown under different locations at two dryland sites in Assaria, KS, and Sunray, TX, and an
irrigated site in Colby, KS. Sample set 2 consisted of 1864 grain samples from a breeding pop-
ulation entailing breeding lines from a single breeding program grown in Manhattan, KS.
Harvested grain samples were cleaned, and the protein contents were determined using an
updated in-house NIR protein calibration (R2 = 0.92, RMSECV = 0.45%, Slope = 0.93) [29].
The purpose of this preliminary NIR analysis of larger sample sets was to select a smaller
set of grain samples with a range of protein content in order to develop a calibration using
the two instruments so as to enable a comparison of their performance. A total of 59 grain
samples (32 from set 1 and 27 from set 2, about 40 g each) were selected based on the NIR
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predicted protein content and availability of sufficient seed quantities. Likewise, another
set of 33 grain samples were selected from two populations harvested in 2022. The first
sample set from 2022 was composed of test market hybrids from 2 private seed companies
(8 hybrids), and 1 public breeding program (6 hybrids) grown at two dryland sites in
Assaria, KS, and Sunray, TX and an irrigated site at Tribune, KS. The second sample set
from 2022 consisted of commercial hybrids grown in 7 locations in Texas and 2 locations
in Kansas. Growing locations from both years contained a mix of irrigated and dryland
conditions. The 33 samples selected from the populations from the 2022 harvest were used
to validate the calibration models developed from the 59 samples harvested in 2021.

Instruments: Samples were scanned by a benchtop instrument ‘DA-7250′ (Perten DA-
7250 (Perkin Elmer, Waltham, MA, USA)) and by a battery-powered handheld instrument
‘MicroNIR’ (VIAVI MicroNIR OnSite-W (VIAVI Solutions Inc., Santa Rosa, CA, USA)) at
the same time. DA-7250 is a laboratory benchtop instrument weighing about 20 kg and
captures data from 950–1650 nm in 5 nm intervals. The MicroNIR is a handheld instrument
weighing around 250 g and records spectra from 908–1676 nm at 6.2 nm intervals. Both
are photo diode array spectrometers using InGaAs detectors and in which samples are
scanned in the reflectance mode. As photodiode array instruments, light reflected from the
reference block when collecting the reference spectrum or from the sample when collecting
the sample spectrum, is collected by optics and then dispersed by a diffraction grating on
to a diode array detector, allowing instantaneous spectral data collection. The DA-7250 is
equipped with a 256-pixel detector while the MicroNIR has a 128-pixel detector.

Sample Scanning: Cleaned grain samples were placed in a white Teflon cup (60 mm
diameter and 10 mm deep). The MicroNIR equipped with a small measurement collar
was held so that it touched the grains on the Teflon cup and the spectrum was recorded
by pressing the multifunction button. Immediately after scanning, the same sample was
scanned by the DA-7250. Excess grains on the Teflon cup were removed by leveling
before scanning the respective sample so that the distance from the surface of grains to the
collecting optics of the DA-7250 was uniform for all grain samples. Likewise, when the
sample touched the collar of the MicroNIR instrument, the distance between the sample
and collection optics was the same for that instrument. Both instruments therefore collected
spectra in reflectance mode.

Sample processing for lab analysis: After scanning, grain samples were milled using a
cyclone mill equipped with a 0.5 mm screen (Udy Corp, Fort Collins, CO, USA). Protein
content of the ground samples were determined by nitrogen combustion using a LECO
FP-828p (LECO Corporation, St. Joseph, MI, USA) according to AACI approved method
46-30.01 [30] with an N-to-protein factor of 6.25. The moisture contents of the flour samples
were determined by the Perten DA7250 instrument using the in-house flour moisture
calibration (R2 = 0.98, RMSECV = 0.37%, Slope = 0.98). Grain protein levels were determined
on a dry-weight basis based on the flour moisture content. For calibrating the instruments,
reference protein levels of the grain samples at the time of scanning were determined
accordingly by using the NIR-determined moisture content of grain samples using our
grain moisture calibration (R2 = 0.99, RMSECV = 0.23%, Slope = 0.99) and dry weight basis
protein contents were measured by the LECO method.

Analysis of data: Spectral data analysis was conducted using the Unscrambler X
software Version 10.5.1 (CAMO Software AS, Oslo, Norway). Collected raw spectra
were preprocessed using 4 different methods (multiplicative scatter correction (MSC),
extended multiplicative scatter correction (EMSC), Savitzky–Golay second derivative with
15 datapoints (SG2D15), and standard normal variate (SNV)) and 4 different cross-validated
models were developed for each instrument. Those models were validated using the vali-
dation test set. The best preprocessing method for the calibration model was selected based
on the calibration and validation test results.
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3. Results
3.1. Spectra of Samples

The raw spectra collected from all of the grain samples for each instrument and respec-
tive second derivative spectra were averaged for comparison and shown in Figure 1. The
broad spectral bands in the raw spectra in the spectral range common to both instruments
appear similar. The baseline shifts in spectral bands may be due to the differences in the
optical configurations of the two instruments. Spectral preprocessing can remove the effects
of such baseline shifts as well as scattering effects. The second derivative spectra show that
the baseline effects have been minimized.
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Figure 1. Average raw (above) and second derivative (below) NIR spectra of all 59 samples collected
by the two instruments.
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3.2. Grain Protein Diversity in the Sample Population

The protein contents of the 59 samples determined by laboratory nitrogen combustion
method as the standard reference method were converted to ‘as is’ protein levels using the
moisture content of the grains at the time of scanning. The protein content of the samples
ranged from 6.41–16.76% with an average of 10.29% and a standard deviation of 2.70%
(Table 1). NIR MC of samples were determined by in-house DA-7250 moisture calibration.
The moisture contents of the grain samples ranged from 9.61–11.65% with a mean of 10.54%
and a standard deviation of 0.48%. The protein content range of the selected samples
represents expected grain protein levels of most sorghum breeding populations.

Table 1. Descriptive statistics of protein content of grain samples.

Sample Set N * Min Max Avg STD

Calibration set 59 6.41 16.76 10.29 2.70
Validation set 33 8.16 16.22 11.92 2.11

* N: Number of samples; Min: minimum; Max: maximum; Avg: average; STD: standard deviation.

3.3. Protein Calibration Models

Calibration models were developed using whole spectral regions for each instrument.
Description and performance of protein calibration models developed for the two instru-
ments using four different spectral preprocessing methods and validated with the test set
of 33 samples are presented in Table 2. Each calibration model was cross-validated using
the leave-one-out cross validation method. The best cross-validated model selected for
each instrument (Figure 2) was validated with the test set comprising 33 samples that had
been grown in different locations in the following crop year.

Table 2. Calibration and validation statistics of partial least squares models constructed with different
preprocessing methods for the two instruments.

Calibration Model Validation Test

Instrument Preprocessing LV N R2 RMSECV Slope N R2 RMSEP Slope Bias RDP

MicroNIR MSC 9 59 0.95 0.59 0.95 33 0.84 0.82 1.07 0.29 2.70
EMSC 7 59 0.95 0.62 0.95 33 0.87 0.76 1.04 −0.02 2.74

SG2D15 6 59 0.92 0.77 0.92 33 0.69 1.16 1.00 −0.38 1.90
SNV 9 59 0.95 0.61 0.95 33 0.80 0.92 1.08 0.42 2.70

DA7250 MSC 8 59 0.98 0.41 0.98 33 0.94 0.52 1.03 0.14 4.13
EMSC 6 59 0.97 0.49 0.97 33 0.80 0.92 1.03 0.46 2.57

SG2D15 5 59 0.92 0.76 0.94 33 0.78 0.97 1.02 −0.36 2.32
SNV 8 59 0.98 0.42 0.98 33 0.80 0.94 0.93 −0.21 3.46

MSC: multiplicative scatter correction; EMSC: extended multiplicative scatter correction; SG2D15: Savitzky–Golay
second derivative with 15 data points; SNV: standard normal variate; LV: number of latent variables (PLS Factors);
N: number of samples; R2: coefficient of determination; RMSECV: root mean square error of cross validation;
RMSEP: root mean square error of prediction; RPD: ratio of performance to deviation.

Cross-validated calibration models for the MicroNIR had R2 ranging from 0.92–0.95,
RMSECV ranging from 0.59–0.77% with slope ranging from 0.92–0.95. Respective ranges for
the DA-7250 were R2 from 0.92–0.98, RMSECV from 0.41–0.76% and slope from 0.94–0.98.

When calibration models were validated with the test set, calibration models con-
structed with EMSC preprocessed spectra performed better than other models for the
MicroNIR instrument while the MSC preprocessed model was the best for the DA7250
(Table 2). The MSC preprocessed model with 8 PLS factors for the DA-7250 (Figure 2A)
predicted the protein content of the test set with R2 = 0.94, RMSEP = 0.52%, slope = 1.03,
Bias = 0.14% having an RPD value of 4.13 (Figure 3A). The EMSC preprocessed MicroNIR
calibration model with 7 PLS factors (Figure 2B) predicted the protein content of test set
with R2 = 0.87, RMSEP = 0.76%, slope = 1.04, Bias = −0.02% and an RPD value of 2.74
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(Figure 3B). These prediction performances show that both instruments are suitable for
screening protein levels of sorghum grains from plant breeder samples.
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Figure 3. Lab protein content (PC%) vs NIR-predicted PC% of the validation sample set (n = 33) for
(A) DA7250 and (B) MicroNIR spectrometer calibration models.

The regression coefficient plots for the two selected cross validated models for the
two instruments are presented in Figure 4. Major regression coefficient peaks are similar
for both models. The major positive peaks around 1140, 1180 and 1372 nm are related to
protein absorptions while the negative peaks around 985 and 1335 nm are related to starch
absorptions while those around 1100, 1155 and 1410 nm to water absorptions [14,31,32].
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Therefore, these NIR wavelengths contribute more to the estimation of protein levels in the
grain samples by the selected models. Therefore, both calibrations take into account the
protein content of grains in the same manner at the above wavelengths related to the NIR
absorptions by protein, starch, and moisture.
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Figure 4. Regression coefficients of cross-validated partial least squares models constructed with
the extended multiplicative scatter correction preprocessing method for the MicroNIR and DA7250
instruments.

There is a slight difference in instruments in terms of wavelength range and data col-
lection intervals. The DA-7250 collects data from 950–1650 nm in 5 nm intervals (141 data
points) while the MicroNIR records spectra from 908–1676 nm at 6.2 nm intervals (125 data
points). Therefore, the MicroNIR instrument used in this study has an advantage in collect-
ing spectra in a wider range than the DA7250, however, DA-7250 collects more spectral
data of samples due to its lower data collection interval. Because the most important
wavelengths for protein estimation in the calibration model lie in the middle of this spectral
range—a range that is common to both instruments—there is no specific advantage of the
MicroNIR that derives from these differences in wavelength range. However, if there is
a different trait with very important NIR band(s) in the 908–950 nm and 1650–1676 nm
ranges, then the MicroNIR instrument used here may have an advantage over the DA-7250
for estimation of that particular trait. Therefore, the results of the comparison of the two
instruments may be influenced by the trait being measured as well.

For the protein calibration to offer better performance with a wide variety of samples
from different locations, years, moisture levels, breeding programs etc., it needs continuous
improvement to enhance its robustness. Therefore, as the instruments are used for future
sample sets, a smaller set of subsamples should be validated with reference laboratory
analysis and the continual addition of more samples, especially those that show higher
prediction errors due to sample matrix variations in the new samples, in order to introduce
the expected future sample matrix variations to the calibration model.

The calibration and validation tests of two calibration models developed for two
instruments showed that the handheld instrument can be used for the screening of protein
levels of grain sorghum. Therefore, there is potential for this instrument to be used to assess
the protein content and other grain quality traits of sorghum while the crop is still in the
field to inform the breeder when making their final pre-harvest field selection. However,
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because this protein calibration has been developed with harvested and processed grain
samples it should be updated with fresh field sample observations.

Sorghum grain is classified as a “naked caryopsis” and develops without any cover-
ing [33] while exposed to a wide range of changing environmental conditions (sunlight,
rain etc.), pests and diseases during its development and dry down. Deterioration of the
grains exposed to adverse environmental conditions due to chemical, enzymatic, bacterial,
fungal and insect activity is referred to as weathering [34]. Weathered sorghum showed
changes in the chemical and physical properties of grains [34–36]. Such changes in grain
properties may result in a wider variation in grain spectra and, in this context, EMSC works
best as a pre-processing method of choice for grain sorghum calibrations [29].

Additionally, given that sorghum grain develops as a naked caryopsis on a panicle at
the top of the plant [33] this opens the possibility that sorghum grain could be scanned in
the field directly on the panicle. However, panicle architecture can vary widely from very
compact to very loose in genetically diverse sorghum populations and therefore additional
research is needed to determine if grains can be successfully scanned in the field across
a variety of sorghum germplasms. It is likely that, for very open panicles, it may not
be possible to scan grain directly on the plant. Research is in progress to determine the
feasibility of directly scanning sorghum on the plant as well as the suitability of thrashing
grain in the field for scanning. Scanning sorghum directly in the field may also require
moisture calibrations to be developed with an extended range compared with samples that
are harvested, dried, and sent to laboratories for analysis as moisture levels of the grain
influence the prediction accuracy of the NIR calibrations [14,37,38].

The calibration model tested in this project could be used to measure PC in grain
samples in the 9.61–11.65% range. Whenever samples with predicted protein levels outside
this range are found, these can be retested by nitrogen combustion while those outside
the range can be incorporated to the calibration to extend its robustness and predictable
protein range.

The results of this study demonstrate that a MicroNIR instrument can collect high
quality spectra of grains comparable to that of the benchtop instrument and that such
spectra may be used for the development of calibrations for grain protein content. With
respect to scanning samples, the DA-7250 requires that grain samples be presented in the
sample cup on the sample platform. However, because MicroNIR instruments are small
units and samples can be presented in different ways, such as grains on a cup or grains on
the inflorescence of a plant, MicroNIR instruments can thus easily be adopted for use both
under the field and laboratory environments. Therefore, in addition to the possibility of
screening grain traits in the field, spectra of other plant parts such as stems, or leaves could
also be examined to determine specific traits. For example, studies are currently underway
to develop a rapid method for the determination of the dhurrin content of sorghum leaves.

4. Conclusions

Inspection of the typical raw spectra and second derivative spectra showed that both
instruments can collect spectra of sorghum grain samples with similar spectral quality. NIR
protein calibration model performance was influenced by the method used to preprocess
data. The interaction between data pre-processing techniques and calibration performance
in this study suggests this should be evaluated in future work with miniaturized NIR
instruments. Models developed with EMSC preprocessed spectra performed better for the
tested MicroNIR instrument while the MSC preprocessing was best for the DA7250 instru-
ment. The benchtop DA-7250 performed better than the handheld instrument, however, the
handheld instrument was able to predict the protein levels of grain samples with an RMSEP
of 0.76% compared with that of 0.52% for the DA-7250. Therefore, the handheld instrument
tested here may be used as an alternative low-cost instrument. Due to its smaller size and
versatile sample presentation, handheld NIR instruments in general have the potential
to be used for in-field phenotyping of sorghum grains and or other plant parts. As this
research was conducted in a controlled laboratory environment, this project provides the
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foundation for future research using miniaturized NIR instruments in both laboratory and
field conditions for the analysis of sorghum grain.
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