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Abstract: Stingless bee honey (SBH) is rich in phenolic compounds and available in limited quantities.
Authentication of SBH is important to protect SBH from adulteration and retain the reputation
and sustainability of SBH production. In this research, we use portable LED-based fluorescence
spectroscopy to generate and measure the fluorescence intensity of pure SBH and adulterated samples.
The spectrometer is equipped with four UV-LED lamps (peaking at 365 nm) as an excitation source.
Heterotrigona itama, a popular SBH, was used as a sample. 100 samples of pure SBH and 240 samples of
adulterated SBH (levels of adulteration ranging from 10 to 60%) were prepared. Fluorescence spectral
acquisition was measured for both the pure and adulterated SBH samples. Principal component
analysis (PCA) demonstrated that a clear separation between the pure and adulterated SBH samples
could be established from the first two principal components (PCs). A supervised classification based
on soft independent modeling of class analogy (SIMCA) achieved an excellent classification result
with 100% accuracy, sensitivity, specificity, and precision. Principal component regression (PCR) was
superior to partial least squares regression (PLSR) and multiple linear regression (MLR) methods,
with a coefficient of determination in prediction (R2

p) = 0.9627, root mean squared error of prediction
(RMSEP) = 4.1579%, ratio prediction to deviation (RPD) = 5.36, and range error ratio (RER) = 14.81.
The LOD and LOQ obtained were higher compared to several previous studies. However, most
predicted samples were very close to the regression line, which indicates that the developed PLSR,
PCR, and MLR models could be used to detect HFCS adulteration of pure SBH samples. These
results showed the proposed portable LED-based fluorescence spectroscopy has a high potential to
detect and quantify food adulteration in SBH, with the additional advantages of being an accurate,
affordable, and fast measurement with minimum sample preparation.

Keywords: authentication; food adulteration; Heterotrigona itama; multivariate calibration; portable
LED-based fluorescence spectroscopy; stingless bee honey (SBH)

1. Introduction

Two types of honey are now available in Indonesia that are premium-priced: floral
honey (FH) (Apis mellifera) and stingless bee honey (SBH) [1]. The entomological morphol-
ogy of the two honeybees is different. Apis mellifera (FH) is bigger in size, has a sting, and
produces sweet honey, while SBH is smaller in size, stingless, and produces a mixture of
sweet and sour-tasting honey [2,3]. One of the distinguishing features of honey and its
derivative products (propolis, royal jelly, and bee pollen) is that they are high in bioactive
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compounds (total phenolic compounds and flavonoid contents) and are widely used in
the food, cosmetic, and pharmaceutical industries [4,5]. Of particular interest, honey is
a natural food that is proven to increase human immunity. Honey is effective against
virus-based diseases (such as influenza and HIV viruses) and thus potentially effective for
COVID-19 [6–8]. In particular, SBH contains more total phenolic compounds and flavonoid
contents and produces superior antioxidant properties compared to FH [9–11]. In Indonesia,
three popular and profitable SBHs are Heterotrigona itama, Tetrigona apicalis, and Geniotrigona
thoracica. SBH is more expensive compared to FH (non-SBH) due to its limited production
and high flavonoids and polyphenolic content, thus making it a target of economically
motivated adulteration [EMA] [12]. In the market, SBH is often adulterated with low-cost
honey or cheaper artificial industrial sweeteners, such as HFCS-55 (high fructose corn
syrup), glucose syrup, rice syrup, and invert sugar syrups, resulting in inferior nutrient
content as well as potential food safety hazards in the final commercial SBH [13–16].

The sugar composition of SBH depends mainly on the source of nectar [17]. Conse-
quently, the physicochemical analysis of individual SBH samples for honey authenticity
tests is unreliable. According to Codex Alimentarius (Codex Alimentarius, 2001), the
adulteration of honey with sugar cane or corn syrups, including HFCS, is currently verified
by stable carbon isotope ratio analysis (SCIRA) or by the sugar profile determined by
high-performance liquid chromatography (HPLC). However, these two standard methods
include costly instrumentation, complex techniques, laborious sample preparation, and
time-consuming analysis [18].

More recent honey authenticity detection techniques, including near-infrared (NIR),
Raman, and fluorescence spectroscopy [19–26], also suffer from several limitations, such
as being time-consuming, involving expensive benchtop-based instruments, requiring
a highly-trained operator to perform the analysis, and in a number of cases generating
toxic waste and using expensive chemicals. On the other hand, the use of easy, fast, and
chemical-free analytical methods based on ultraviolet-visible (UV-visible) spectroscopy
with a benchtop spectrometer for testing the authenticity of food has been well reported in
Indonesia, especially for coffee [27–29], tea [30], and honey [31].

Recently, the development of compact and portable spectrometers has increased and
is now available in UV-visible to near-infrared regions and Raman spectroscopy [32–34].
It is a promising technology for rapid, low-cost, and on-site honey analysis, including
botanical and geographical detection [35], honey authentication [36], and traceability
evaluation [37]. This portable spectroscopy combined with appropriate chemometrics offers
several advantages compared to lab/benchtop-based spectroscopy, such as fast spectral
acquisition and analysis time, affordable operating and maintenance costs, low energy
consumption, easy operation, and affordability for field work in developing countries, with
Indonesia being no exception [38]. Portable spectrometers can be implemented in situ,
allowing the flexibility of on-site measurements, minimizing sample transport errors, and
providing real-time responses [39].

To develop a compact and cost-effective portable spectrometer, the use of a light-
emitting diode (LED) as the light source for excitation is also promising. LED is a semi-
conductor source that offers extremely low power consumption and operating voltage,
compactness, and durability, and a high cost/performance ratio compared to other light
sources [40]. On the other hand, there are several drawbacks to LED-based fluorescence
spectroscopy, such as its limited spectral range and the necessity of arranging multiple
LEDs when multiple excitation wavelengths are required [41,42]. This results in a more
complex system arrangement compared to the system that utilizes polychromatic light
sources. LED-based fluorescence spectroscopy with multiple LED systems will also have
a low spectral resolution compared to conventional spectroscopy systems [43]. To date,
though, limited studies have explored the use of LED-based fluorescence spectroscopy
equipped with a single LED for honey authentication [44,45]. For this reason, in this study,
we evaluate the use of a compact, inexpensive, and portable fluorescence spectrometer
equipped with four single UV-LED lamps (peak at λ = 365 nm) as excitation sources to
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generate and then measure the intensity of fluorescent components in pure SBH samples
as well as SBH samples that have been adulterated. In this study, HFCS-55 (high fructose
corn syrup), an inexpensive and commonly used artificial sweetener in the food indus-
try, was used as the adulterant. Chemometric models were developed for identification
(PCA and SIMCA) and quantification (PLSR, PCR, and MLR) of corn syrup adulterants in
SBH samples.

2. Materials and Methods
2.1. Stingless Bee Honey (SBH) Samples

The stingless bee honey (SBH) of monofloral Heterotrigona itama (floral nectar Acacia
mangium) was collected and processed in February 2023 by a registered and reputable stin-
gless bee honey processing farm, PT Suhita Lebah Indonesia, located in Bandar Lampung,
Lampung, Sumatra, Indonesia, with known GPS locations (5◦27′ S and 105◦16′ E latitude
and longitude, respectively, with 100 m altitudes) (Figure 1). The samples were transported
to the Bioprocess and Postharvest Engineering Laboratory at The University of Lampung
and stored at about 15 ◦C in the dark to avoid direct light exposure before fluorescence
spectral data was acquired. The adulterated samples were generated by directly mixing
pure SBH with varying amounts of high fructose corn syrup (HFCS-55): from 10–60%
(volume/volume) adulteration.
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In this study, we measured three hundred forty samples of pure and adulterated
SBH (n = 100 for pure Heterotrigona itama and n = 240 for adulterated Heterotrigona itama,
respectively). More detailed information on the pure and adulterated SBH samples used is
described in Table 1. The color of pure SBH (0% adulteration or MA) samples was darker
compared to their adulterated ones (Figure 2). It was reported that honey color presents
variations depending on the contents of beta-carotene, chlorophyll and its derivatives, and
anthocyanins, and thus there is a correlation between color and the total phenolic content
and antioxidant activity. As a result, the color of honey highly depends on its botanical
source [46–48]. For this reason, the discrimination between the pure and adulterated SBH
samples based solely on color features, especially at low adulteration levels, is not reliable.
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Table 1. Detailed information on pure and adulterated SBH samples used in this study.

Sample Code Adulteration Level (%) 1 Number of Samples

MA 0 100
MC10 10 40
MC20 20 40
MC30 30 40
MC40 40 40
MC50 50 40
MC60 60 40

1 adulteration level was expressed in % (v/v).
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Figure 2. The visual appearance of SBH Heterotrigona itama honey and their adulterated samples.

2.2. Sample Preparation

Sample preparation of pure and adulterated SBH samples was done using a simple
protocol (Figure 3). All samples were heated in a water bath at 60 ◦C for 30 min [49]. A
previous report noted that dilution significantly affected the intensity of the fluorescence
spectra of the diluted samples compared to the pure honey samples [50]. In this study, the
pure and adulterated SBH samples were subjected to dilution with distilled water (at 1:5
volume/volume proportion) to obtain a diluted honey sample [50]. The diluted honey
samples were stirred well using a magnetic stirrer (CiBlanc) for 10 min before fluorescence
spectral data acquisition.

2.3. Fluorescence Spectral Data Acquisition

A portable fluorescence spectrometer from GoyaLab (IndiGo Fluo UV spectrometer,
Talence, France) working with 4 LED lamps with an excitation wavelength of λ = 365 nm
and 0.5 nm of resolution was connected to a personal computer. This spectrometer was
utilized to obtain fluorescence emission spectra of pure and adulterated SBH samples
over the range of 357 to 725.5 nm (Figure 3). For each sample, two mL of diluted sample
were pipetted into a quartz cuvette with a 10 mm path length. The spectral acquisition
was performed using 2000 ms of exposure time, and it was controlled by the SpectroLab
application installed on the personal computer free of charge. The original fluorescence
spectral data of all the SBH samples (Heterotrigona itama) were transferred to a computer for
further chemometric analysis. A moving average smoothing algorithm with 15 segments
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of smoothing points was used to smooth and increase the signal-to-noise ratio (SNR) of the
obtained original fluorescence spectral data.
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2.4. Chemometric Analysis

Chemometrics can be defined as “the chemical discipline that uses mathematical, sta-
tistical and other methods employing formal logic to design or select optimal measurement
procedures and experiments, and to provide maximum relevant chemical information by
analysing chemical data” [51]. Fluorescence spectroscopy generates rich-overlapped spec-
tral data, and it is hard to understand the phenomenon directly from the raw spectral data.
From this point, chemometrics are useful techniques to separate informative data from
noise, extract hidden correlations, and provide a visual approach for both qualitative and
quantitative multivariate data analysis. In general, chemometric approaches are applied for
explorative analysis, classification, and multivariate calibration purposes [52]. In this study,
the explorative analysis and classification between pure and adulterated SBH samples are
evaluated by using principal component analysis (PCA) and soft independent modeling of
class analogy (SIMCA) methods, respectively. There are several algorithms to determine
the optimal principal components (PCs), including singular value decomposition (SVD)
and nonlinear iterative partial least squares (NIPALS) algorithms. In this study, PCA was
calculated for all pure and adulterated samples (n = 340) with the NIPALS algorithm, a
common algorithm for the analysis of complex data, to generate the score and loading of
each PC. The score plot of the first two PCs (PC1 × PC2) was utilized to evaluate the possi-
ble separation between pure and adulterated SBH samples, while the plot of x-loadings for
PC1 and PC2 was used to identify the important variables responsible for the separation.
The theory and detailed explanation of PCA have been discussed in several studies [53,54].
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A well-known supervised classification was developed by the SIMCA method using
three sample sets (Table 2). The SIMCA model for each class of pure and adulterated SBH
was developed using a calibration sample set for each class (n = 51 and n = 126 for pure and
adulterated SBH samples, respectively) and then validated using a t-test validation method
(n = 33 and n = 78 for pure and adulterated SBH samples, respectively). The prediction
sample set (unknown samples) (n = 16 and n = 36 for pure and adulterated SBH samples,
respectively) was then compared to the class models and its members assigned to classes
according to two criteria: the distance from the model center (leverage) and the distance to
the model (residual). A confusion matrix was generated to visualize the classification result
of SIMCA. The sensitivity, specificity, accuracy, and precision were used to assess the results
of the classifications and were calculated according to Equations (1)–(4), respectively [55,56].
In this study, pure SBH was denoted as “positive” and adulterated SBH as “negative”.
The terms FP, FN, TP, and TN mean the numbers of false positives, false negatives, true
positives, and true negatives, respectively [56]. The classification results of SIMCA are
shown at a significance level of 0.05 (α = 0.05).

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

Accuracy =
TN + TP

TN + TP + FN + FP
(3)

Precision =
TP

TP + FP
(4)

Table 2. Sample distribution in calibration, validation, and prediction sets of pure and adulterated
SBH classes for SIMCA calculation.

Classes Calibration Set Validation Set Prediction Set

Pure SBH 51 33 16
Adulterated SBH 126 78 36

To quantify the pure and adulterated SBH samples, three regression methods based
on partial least squares regression (PLSR), principal component regression (PCR), and
multiple linear regression (MLR) were used as statistical methods to develop a model for
training with fluorescence spectra of pure and adulterated SBH samples having known
adulteration levels. The developed model predicts the unknown adulteration level based on
the captured fluorescence spectra. PLSR utilizes all fluorescence spectra data as predictors
and aims to develop a linear regression model using a latent variable (LV) approach by
projecting the predicted variables and the observable variables to a new space. PCR aims
to find hyperplanes of maximum variance between the two variables. PLSR and PCR were
developed using fluorescence spectra from 357 to 725.5 nm (number of variables = 738). In
MLR, several selected wavelengths were used as predictors to build a linear relationship
between the fluorescence spectral data and adulteration level. PLSR, PCR, and MLR
models were validated by a t-test validation method to optimize the model parameters.
In accordance with Yulia and Suhandy [29], several statistical parameters were used to
assess the calibration model, including the coefficients of determination of calibration and
validation (R2

c and R2
v), root means squared errors of calibration and validation (RMSEC

and RMSEV), the ratio of prediction to deviation in prediction (RPD), and the range error
ratio (RER) index. The limit of detection (LOD) and limit of quantification (LOQ) were also
calculated according to Milani et al. [57] and Rambla-Alegre et al. [58], respectively. SD
is the residual standard deviation of the regression curve (or standard error of prediction
(SEP)), and S is the slope [58]. For quantification purposes, the pure and adulterated SBH
samples were divided randomly into three different sample subsets: calibration, validation,
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and prediction data sets (Table 3). All chemometric calculations were conducted using the
Unscrambler®, version 10.5 from CAMO (Norway).

LOD =
3× SD

S
(5)

LOQ =
10× SD

S
(6)

Table 3. Calibration, validation, and prediction sets of pure and adulterated SBH samples were used
in this study.

Items Calibration Set Validation Set Prediction Set

Number of samples 177 111 52
Range 1 0–60 0–60 0–60

Standard deviation (SD) 1 21.48 21.57 21.72
Mean 1 24.92 24.59 24.23

1 The range, mean, and standard deviations were expressed in % (v/v).

3. Results and Discussion
3.1. Fluorescence Spectral Intensity of Pure and Adulterated SBH Samples

Figure 4 shows the smoothed fluorescence spectra of pure and adulterated SBH
samples excited using 4 UV-LED lamps (λ = 365 nm). It can be seen that some regions of
fluorescence emission could distinguish the different qualities of SBH, especially in the
wavelength range of 350–410 nm and 430–570 nm. However, exploration of other excitation
wavelengths could be worthwhile. Regarding the intensity, it can be seen that the emission
spectra produced in this experiment have a high signal-to-noise ratio (SNR), showing that
the intensity of the present excitation light source with four single LED lamps is sufficient.
In general, the shape and intensity of the obtained fluorescence spectra were similar to
those reported previously [59–61]. Two fluorescent peaks were observed at 378 nm and
477 nm. It is observed that the original fluorescence spectra of pure SBH samples were
lower compared to the adulterated samples at around 378 nm and 477 nm peaks.
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At the 378 nm peak, the fluorescence intensity of adulterated SBH samples increased as
the adulteration level increased. In contrast, at the 477 nm peak, the fluorescence intensity
of adulterated SBH samples decreased as the adulteration level increased. Our findings are
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in close agreement with previous work. Ghosh et al. [59] reported the fluorescence of Apis
florea honey adulterated with cane sugar syrup, a C-4 plant sweetener. In this study, the
fluorescence intensity of adulterated honey increased at 365 nm and decreased at 460 nm
as the concentration of cane sugar syrup increased [59]. According to previous works,
the observed peaks in the current study at 378 and 477 nm are closely related to nicoti-
namide adenine dinucleotide (NADH) and flavin absorption peaks, respectively [59,60].
The fluorescence intensity (I) ratio between 378 and 477 nm (I378/I477) could be an im-
portant index for characterizing and differentiating between pure and adulterated SBH
samples. Nikolova et al. [61] investigated the fluorescence spectra of 24 different types of
honey, including Robinia pseudoacacia and Helianthus annuus, from different botanical and
geographical origins in Bulgaria using LED lamps with four excitation wavelengths at 375,
395, 425, and 450 nm. For most samples measured, the peak fluorescence intensity was
observed at wavelengths of 490 and 505 nm. Ruoff et al. [62] reported a similar result. With
excitation at 290 nm, peak fluorescence of chestnut and honeydew honey was observed at
375 and 410 nm.

3.2. PCA and SIMCA Results

Figure 5 shows the result of the PCA calculation. Using the first two PCs that ex-
plained 95% of the variance, a separation between pure and adulterated SBH samples was
established, especially along the PC1 axis. The addition of HFCS-55 to pure Heterotrigona
itama honey shifted the samples to the right of PC1 (PC1 scores became more positive). For
this, we can see that all pure SBH samples were clustered on the left of PC1 (PC1 score < 0),
and most of the adulterated SBH samples were located on the right of PC1 (PC1 score > 0).
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pure and adulterated SBH samples in the range of 357–725.5 nm.

The X-loading spectra of the first three PCs were plotted against wavelengths to
evaluate the most contributive variables (Figure 6). The positive loading spectra for PC1
showed that the peak at 391 nm has a significant positive contribution, while other peaks
at 384 and 470 nm in PC2 and PC3 had a similar impact in the opposite direction. Two
positive peaks at 490 and 540 nm were also observed for PC2 and PC3. These important
peaks in the fluorescence spectra of honey are consistent with those reported in previous
works. For example, the emission at 391 nm is closely related to phenolic compounds,
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and the emissions at 470 and 490 nm may well be related to caffeic acid, chlorogenic acid,
and ferulic acid in honey [63]. The presence of a peak at 391 nm with a positive direction
could be understood to be due to the fact that SBH honey is rich in phenolic compounds,
as reported in many studies [63]. The intensity of these phenolic compounds is strongly
correlated with the antioxidant activity, color, and sensory features of SBH, and it could
provide a valuable marker for differentiation between pure and adulterated SBH [64]. The
peaks at 470 and 490 nm obtained in our SBH samples have also been observed in several
previous studies. Lang et al. [65] reported a fluorescence peak of phenolic substances, such
as chlorogenic acid, caffeic acid, and coumarins, close to 450 nm. The emission band for
caffeic acid is in the range between 445 and 460 nm, which corresponds to the chlorogenic
and ferulic acids of SBH, as reported by Sergiel et al. [66]. For these reasons, the important
emission peaks at 391, 384, 470, 490, and 540 nm were selected as inputs for MLR.
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Table 4 shows the result of SIMCA model development for pure and adulterated SBH
classes. The first six principal components (PCs) were obtained both in calibration and
validation for both classes. The cumulative percent variance (CPV) of the first four PCs was
more than 99% for calibration and validation, both for pure and adulterated SBH classes. It
should be noted that a CPV of more than 70–85% is required to establish a reliable SIMCA
model [67]. Thus, the developed SIMCA model of pure and adulterated SBH classes was
used to predict the class of new SBH samples in the prediction sample set (n = 52 for pure
and adulterated SBH samples). The result is presented in Table 5.
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Table 4. The result of SIMCA model development for pure and adulterated SBH classes.

Principal Components (PCs)

Cumulative Percent Variance (CPV) (%)

Pure SBH Adulterated SBH

Calibration Validation Calibration Validation

PC1 84.08973 80.41664 63.44584 63.91681
PC2 94.11534 91.30837 93.14684 93.60857
PC3 98.08557 96.70327 98.38311 98.59088
PC4 99.64038 99.54868 99.70518 99.66491
PC5 99.73003 99.60417 99.88976 99.85424
PC6 99.77257 99.64778 99.90607 99.86829

Table 5. Confusion matrix based on using the developed SIMCA model for classification of pure and
adulterated SBH classes.

Predicted Class

Pure SBH Adulterated SBH Total

Actual Class Pure SBH True Positive (TP) = 16 False Negative (FN) = 0 16
Adulterated SBH False Positive (FP) = 0 True Negative (TN) = 34 34

Total 16 34

The pure and adulterated prediction samples were classified with 100% accuracy,
sensitivity, specificity, and precision, resulting in excellent classification. To confirm the
result of classification, a model distance between the pure and adulterated SBH classes
was calculated. A distance larger than 3 indicates good class separation and a low risk
of misclassification in the model. A model distance of 121.6199 was obtained in this
study (much larger than 3). This indicates the pure and adulterated SBH models were
highly differentiating, providing a low risk of misclassification in the model. The plot of
model distance (Si) versus leverage (Hi) for the pure SBH model is shown in Figure 7,
demonstrating that there is no overlap between any of the pure and adulterated samples
(all adulteration levels), with no sample classified as false positive or false negative (FP
and FN equal to 0). According to Se et al. [12], the limit of detection (LOD) of the SIMCA
model can be calculated based on only the true positive (TP) results. Consequently, the
developed SIMCA model with smoothed fluorescence spectra had excellent classification
for the adulterated SBH samples at concentrations above 10% (v/v). This LOD value for
the developed SIMCA model is consistent with the result of a previous study. For example,
Se et al. [12] proposed the rapid detection and quantification of adulterants in stingless
bee honey (Heterotrigona itama) using an FTIR approach. The LOD was 2% (w/w) and
8% (w/w) for sugar cane and corn syrup adulteration, respectively. Our result was also
comparable with the standard analysis technique for honey adulteration detection based
on stable carbon isotope ratio analysis (SCIRA). According to this standard method, the
direct addition of HFCS to honey would be detected when the adulteration was greater
than 7%; this is the internationally recognized threshold level for samples to be considered
adulterated [68,69].

3.3. Quantification of SBH Adulteration Level Using Different Regression Methods

Supervised quantification of the SBH adulteration level was studied using three
different multivariate regression methods: PLSR, PCR, and MLR. For PLSR and PCR,
fluorescence spectra from 357–725.5 nm (n = 738 wavelengths) were used as predictors
(x-variables). For MLR, eight peaks were selected as x-variables based on their important
fluorescence information: 378 nm, 384 nm, 391 nm, 470 nm, 477 nm, 490 nm, 540 nm,
and the intensity ratio of 378 nm and 477 nm (I378/I477). The adulteration level (0–60%)
was assigned as the target (y-variables). To minimize the risk of overfitting, the PLSR,
PCR, and MLR were validated using an external validation sample set (t-test validation).
The scatter plot of the developed calibration model and the validation are presented in
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Figures 8–10 for PLSR, PCR, and MLR, respectively. The PLSR calibration model was
acceptable, with R2 = 0.9637, RMSEC = 4.0792%, and SEC = 4.0907%. In the validation
step, a good agreement between actual and predicted levels of adulteration was achieved
with an R2 = 0.9610, RMSEV = 4.2418%, and SEV = 4.2608%. An even better result was
obtained for PCR with lower error and higher R2 (RMSEC = 3.7014%, SEC = 3.7119%,
R2 = 0.9701 in calibration, and RMSEV = 3.8347%, SEV = 3.8506%, R2 = 0.9681 for valida-
tion). Interestingly, the calibration and validation results of MLR with fewer x-variables
are also acceptable, with an R2= 0.9480 for both calibration and validation. The error
obtained in MLR is also acceptable (RMSEC = 4.8836%, SEC = 4.8974% for calibration and
RMSEV = 4.9007%, SEV = 4.9206% for validation). It was noted that the RMSEC and
RMSEV along with SEC and SEV were quite close (with a difference of less than 1%) for
all regression models; indicating no over-fitting occurred. This study also showed that the
PCR model with the highest R2 both in calibration and validation outperformed the PLSR
and MLR models.
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The quality of the regression models obtained in this study is comparable with
previously reported studies. For example, Chen et al. [70] studied the application of
three-dimensional fluorescence spectroscopy and PLSR to the authentication of four types
of honey (sunflower, longan, buckwheat, and rape) adulterated by rice syrup. They ob-
tained R2= 0.9495~0.9972. Ferreiro-Gonzalez et al. [71] demonstrated the success of visible-
near-infrared spectroscopy applications coupled with PLSR for the prediction of honey
adulteration with fructose-rich corn syrup. An R2 = 0.9990 and R2= 0.9855 were obtained for
calibration and validation, respectively. UV-VIS (ultraviolet-visible) and NIR (near-infrared)
spectroscopy were utilized to predict the fructose corn syrups in Acacia honey from Croatia
(adulteration range: 10–90% w/w). Two regression models were developed for quantifi-
cation of the adulteration level based on PLSR and MLP ANN (multiple layer perceptron
neural networks). Using PLSR, R2 = 0.9268, and R2 = 0.9100 were reported for calibration
and validation, respectively [26]. Possible quantification of glucose syrup adulteration
in Acacia honey in the range of 10–90% (w/w) from Croatia was also investigated using
NIR spectroscopy, resulting in the best PLSR model using pre-treated NIR spectra with
R2 = 0.8978 for calibration and R2 = 0.8557 for validation [72]. Raypah et al. [73] studied SBH
adulteration using visible-near infrared (VIS-NIR) spectroscopy combined with aquapho-
tomics. The direct adulteration was done by mixing high fructose syrup with the pure SBH
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samples in the range of adulteration from 10 to 90% (v/v). The VIS-NIR spectra from 400 to
1100 nm were pre-treated using smoothing and detrend (1st polynomial) and were used
as x-variables, while the adulteration level (10–90% v/v) was input as a y-variable. The
PLSR result was accurate, with R2 = 0.98 and RMSEC = 3.93% for calibration and R2 = 0.96
and RMSEV = 5.88% for validation. Visible and NIR spectroscopy was used to quantify
different types of adulterants (inverted sugar, rice syrup, brown cane sugar, and fructose
syrup) added to high-quality honey (Granada Protected Designation of Origin, Spain) at
adulteration levels of 5–50% w/w [74]. Individual and global models based on PLSR were
developed with R2 = 0.964~0.990 and RMSEC = 1.621~3.195%. Laser-induced breakdown
spectroscopy (LIBS) along with four different PLSR methods was utilized to quantify the
HFCS-55 and HFCS-90 in Acacia honey. R2 = 0.931~0.966 and RMSEC = 5.6~7.9% could be
obtained [75]. In a recent study, NIR spectroscopy was combined with chemometrics to
evaluate the adulteration in the SBH sample [76]. The adulterants were distilled water and
apple cider vinegar. The PLSR model was developed with R2= 0.986049, bias= −0.010%,
and RMSECV = 1.686% [76]. Raman spectroscopy was recently applied along with PLSR
and ANN to quantify the adulteration level of a common single-flowered lychee honey
adulterated with four syrups, HFCS, RS (rice syrup), MS (maltose syrup), and BS (blended
syrup), in the range of adulteration 5–90% (w/w) [77]. The calibration model of PLSR with
6 LVs for HFCS quantification gave R2 = 0.9997, RMSEC = 0.6270% for calibration, and
R2 = 0.9910, RMSECV = 3.2633% for validation. It is noted that a difference of 2.6363%
was observed between RMSEC and RMSECV, which is bigger than that of our present
study. Wu et al. [78] reported a similar result using Raman spectroscopy and PLSR for
adulteration quantification of Acacia honey, litchi honey, and linden honey mixed with
four syrups, including HFCS-55, RS, MS, and BS, with adulteration concentrations ranging
from 5 to 60% (w/w). The quantification of multiple syrups in adulterated samples was
performed using PLSR with acceptable results. The performance of our regression models
was also comparable to the result of honey adulteration quantification using the standard
method of HPLC and linear regression with R2 = 0.9835 [69].
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The developed PLSR, PCR, and MLR models were used to predict the adulteration
level in an independent prediction sample set (n = 52 samples). The slopes for the PLSR,
PCR, and MLR models were 0.96, 0.95, and 0.94, respectively (Figure 11). Table 6 sum-
marizes the performance of the prediction result. It is noted that all models resulted in
satisfactory prediction results with the coefficient of determination in prediction (R2

p)
greater than 0.90 for the PLSR, PCR, and MLR models. The error was low both in terms of
RMSEP, SEP, and bias. To compare our prediction performance with previously reported
studies, two parameters, RER and RPD, are frequently used. According to Parrini et al. [79],
the model can be considered sufficient for screening if the RPD is between 1.5 and 2.5. An
excellent and acceptable prediction result must have an RER of more than 10 and an RPD
of more than 2.5, as adopted by several studies [80–82]. All developed models are superior
with acceptable RER and RPD values (RER = 13.16~14.81; RPD = 4.76~5.36), as seen in
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Table 6. Compared to previous studies on the quantification of honey adulteration using
several different spectroscopy methods, our present results are better in terms of RER and
RPD values. Nespeca et al. [83] used laser-induced breakdown spectroscopy (LIBS) for the
detection and quantification of honey adulteration (range of HFCS and sugar cane syrup
adulteration 5–95% w/w) and developed an acceptable PLSR model with RPD = 2.7. A
report has been published on the use of visible and near-infrared (VIS-NIR) spectroscopy
and PLSR with a t-test validation method for the detection of glucose concentration in
a mixture of Saudi and imported honey samples (adulteration range: 0–33% w/w). An
RPD of 2.06 was obtained [84]. A similar result was reported on the application of UV-
VIS and NIR spectroscopy for quantification of fructose corn syrup in Acacia honey in
the range of adulteration (10–90% w/w). The best PLSR model had RPD = 3.3150 and
RER = 10.4512 [73]. A quantitative study was conducted using NIR spectroscopy and PLSR
to predict the glucose syrup adulteration in Acacia honey (10–90% w/w). The best model
was obtained for multiplicative scatter correction (MSC) spectral data with RPD = 2.7601
and RER = 8.7157 [74].
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Table 6. The result of prediction using three different regression methods for quantification of the
adulteration level.

Regressions R2
p RMSEP 1 SEP 1 Bias 1 RER RPD LOD 1 LOQ 1

PLSR 0.9566 4.4818 4.3547 1.2197 13.79 4.99 13.59 45.31
PCR 0.9627 4.1579 4.0469 1.1073 14.81 5.36 12.79 42.63
MLR 0.9497 4.8259 4.5601 1.7015 13.16 4.76 14.55 48.51

1 RMSEP, SEP, bias, LOD, and LOQ were expressed in % (v/v).

The LOD of the regression models varied between 12.79 and 14.55%. In recent work,
honey adulteration using brown rice syrup, corn syrup, glucose syrup, sugar cane syrup,
and wheat syrup (10–50% w/w) of Western Australian honey was quantified using benchtop
1H NMR (nuclear magnetic resonance) spectroscopy with a LOD = 5% w/w [85]. Our
result was worse compared to the standard analytical methods of HPLC and SCIRA for
honey adulteration. Ultrahigh-performance liquid chromatography with quadrupole time-
of-flight mass spectrometry (UHPLC-Q-TOF-MS) successfully determined all the honey
adulterants simultaneously with a detection range above 10% [86]. SCIRA methods can
detect only up to 7% (w/w), whereas HPLC was found to detect as low as 2.5% (w/w)
adulterants [86]. The LOD and LOQ in this present study were higher compared to several
previous studies due to the high range of adulterated SBH samples (10–60% v/v) used
in the study. However, as demonstrated in Figure 11, the prediction plot, most predicted
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samples were very close to the regression line, which indicates that the developed PLSR,
PCR, and MLR models could be used to detect HFCS adulteration of pure SBH samples.

4. Conclusions

This study reported for the first time the application of portable LED-based fluores-
cence spectroscopy for non-targeted detection and quantification of SBH samples adul-
terated with HFCS-55. It was clear that the typical fluorescence spectral data of pure and
adulterated SBH samples was similar in shape but different in intensity. According to this
result, a further qualitative study was conducted to classify and discriminate between pure
and adulterated SBH samples. The results of PCA and SIMCA showed a possible sepa-
ration between pure and adulterated SBH samples, with accuracy, sensitivity, specificity,
and precision reaching 100%. Several important wavelengths with high x-loadings were
identified based on SIMCA results, including wavelengths at 378, 384, 391, 470, 477, 490,
and 540 nm and the intensity ratio of 378 nm and 477 nm (I378/I477). Using these impor-
tant wavelengths, a quantification of adulteration level based on MLR was successfully
developed with acceptable performance, where RPD = 4.76 and RER = 13.16. In conclu-
sion, this current research successfully provides new insights regarding the application of
portable LED-based fluorescence spectroscopy for the identification of SBH. The proposed
portable LED-based fluorescence spectroscopy can be applied to measure spectral informa-
tion in various locations, including field environments, remote sites, and non-laboratory
settings. In addition, the methods could work with very small sample volumes, making
them suitable for applications where sample availability is limited or precious, such as
SBH. Additionally, even though the statistical model used is simple and common, it gives
high accuracy in the discrimination of pure and adulterated SBH samples. However, the
sample number in this study is limited. To generalize the results and provide a more robust
model, measurement of various samples of SBH with different botanical, entomological,
and geographical origins is required. This portable fluorescence spectrometer could be
connected to a smartphone via Bluetooth and easily connect to the internet to develop an
IoT for honey authentication in the field. In turn, it could be used to support rapid, accurate,
and affordable food traceability.
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