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Abstract: Cultivating rice varieties with lower cellulose content in the bran layer has the potential to
enhance both the nutritional value and texture of brown rice. This study aims to establish a rapid and
accurate method to quantify cellulose content in the bran layer utilizing near-infrared spectroscopy
(NIRS), thereby providing a technical foundation for the selection, screening, and breeding of rice
germplasm cultivars characterized by a low cellulose content in the bran layer. To ensure the accuracy
of the NIR spectroscopic analysis, the potassium dichromate oxidation (PDO) method was improved
and then used as a reference method. Using 141 samples of rice bran layer (rice bran without germ),
near-infrared diffuse reflectance (NIRdr) spectra, near-infrared diffuse transmittance (NIRdt) spectra,
and fusion spectra of NIRdr and NIRdt were used to establish cellulose quantitative analysis models,
followed by a comparative evaluation of these models’ predictive performance. Results indicate that
the optimized PDO method demonstrates superior precision compared to the original PDO method.
Upon examining the established models, their predictive capabilities were ranked in the following
order: the fusion model outperforms the NIRdt model, which in turn surpasses the NIRdr model. Of
all the fusion models developed, the model exhibiting the highest predictive accuracy utilized fusion
spectra (NIRdr-NIRdt (1st der)) derived from preprocessed (first derivative) diffuse reflectance and
transmittance spectra. This model achieved an external predictive R2

p of 0.903 and an RMSEP of
0.213%. Using this specific model, the rice mutant O2 was successfully identified, which displayed
a cellulose content in the bran layer of 3.28%, representing a 0.86% decrease compared to the wild
type (W7). The utilization of NIRS enables quantitative analysis of the cellulose content within
the rice bran layer, thereby providing essential technical support for the selection of rice varieties
characterized by lower cellulose content in the bran layer.

Keywords: cellulose content; rice bran layer; near-infrared spectroscopy; diffuse reflectance; diffuse
transmittance; fused spectra

1. Introduction

Rice serves as the staple food for over half of the global population, accounting for a
significant proportion of human calorific intake [1]. With socioeconomic development and
improving living standards, there has been a growing demand for deep-milled, polished
white rice among consumers. However, this consumer trend has induced an over-milling
issue within the rice processing industry [2], resulting in substantial food waste and posting
a threat to global food security. According to Dhankhar’s study [3], commercial rice mills
can lose up to 25% of rice weight during milling. Reducing such losses is thus crucial
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to ensuring global food security. Moreover, over-milling compromises rice’s nutritional
value by discarding the bran layer and germ, which contain vital nutrients, such as protein,
lipids, dietary fiber, and vitamins [4]. The removal of the bran layer and germ renders
milled rice nutritionally inferior to brown rice, adversely affecting human health [5–7].
Although brown rice has better nutritional value and health benefits than milled rice,
consumer acceptance of brown rice remains low due to its perceived inferior palatability
and texture [8]. This is attributed to the bran layer’s dense fibrous structure, which inhibits
the starch components’ water absorption and gelatinization during cooking [9,10]. Previous
research has demonstrated that the degradation of cellulose in the rice bran layer via
cellulose enzymes can soften the texture of cooked brown rice, thereby enhancing its
palatability [11–13]. This could be attributed to cellulose being a key component of the
dense fiber structure in the bran layer, and its degradation contributes to the destruction of
this dense structure. However, recent research suggests that breeding rice varieties with
reduced Insoluble Dietary Fiber/Soluble Dietary Fiber (IDF/SDF) in the bran layer could
be beneficial for improving the texture of brown rice [14]. As cellulose is an important type
of IDF in brown rice, breeding rice varieties with reduced cellulose content in the bran
layer could likely improve the texture of brown rice. Furthermore, studies have found
a negative correlation between cellulose content and digestibility [15], suggesting that
bran layer cellulose content could be a significant indicator of brown rice’s digestibility
and quality. Therefore, exploring rice genetic germplasm with reduced cellulose content
in the bran layer may enhance brown rice’s palatability and digestibility, offering a new
technological avenue for optimizing brown rice utilization and bolstering food security.

The fundamental requirement for breeding rice varieties with low cellulose content in
the bran layer is the swift and precise quantification of cellulose content. However, the rice
bran layer is a structure tightly wrapped around the outside of the rice seeds’ endosperm,
rendering the separation of an intact rice bran layer extraordinarily challenging. Rice bran,
a by-product generated during the procession from brown rice to milled rice, is primarily
constituted of the bran layer, germ, and a small amount of endosperm. When endosperm
content is negligible, rice bran samples from which the germ has been removed can be
regarded as the bran layer for investigative purposes. Moreover, conventional wet chemical
analysis methods employed for determining plant cellulose content, including the Van Soest
method [16], anthrone colorimetry [17], high-performance liquid chromatography [18],
and potassium dichromate oxidation [19], bear high costs and are time-intensive, making
them unfit for large-scale rice bran layer cellulose germplasm screening. Therefore, the
predominant technical constraint in the screening of rice bran layer cellulose germplasm
is the pressing necessity for a non-destructive, rapid, and precise method of cellulose
content analysis.

Near Infrared Spectroscopy (NIRS) has gained prominence in agriculture [20], food [21],
petrochemicals [22], and medicine [23] for its ability to perform rapid, cost-effective, and
non-destructive quantitative and qualitative analyses. Numerous studies have utilized
NIRS for the quantitative analysis of plant cellulose. For instance, Wang et al. [24] suc-
cessfully developed a quantitative model for corn straw cellulose using NIRS, obtaining
a determination coefficient (R2) and a root mean square error of prediction (RMSEP) of
0.968 and 0.683%, respectively. Similarly, Nielsen et al. [25] used NIRS for the quantitative
analysis of cellulose content in wheat straw., reporting R2 and RMSEP values of 0.88 and
1.14%, respectively. Belen et al. [26] conducted quantitative analyses of cellulose in various
grain samples, such as corn, wheat, and barley, using NIRS. Their model reported an
R2 of 0.70 and an RMSEP of 0.98%. These studies attest to the potential of NIRS in the
quantitative analysis of straw and grain cellulose. However, the application of NIRS for
quantitative analysis of cellulose in the rice bran layer remains largely unexplored.

In contrast to straw, which can contain up to 30% cellulose, rice grains have consider-
ably less. As noted by Gloria et al. [15], the cellulose content in brown rice and rice bran
was reported as 0.11% and 4.39%, respectively. This discrepancy poses a challenge to the
use of NIRS for accurate cellulose quantification in the rice bran layer. To improve the
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accuracy of NIRS, it is crucial to choose a high-precision reference method and an appro-
priate measurement mode, such as diffuse reflection (DR) mode or diffuse transmission
(DT) mode. Furthermore, the accuracy of NIR spectroscopic analysis can be enhanced by
employing data fusion technology, which combines data from disparate sources. As the
sourced information might be redundant or complementary, the fused data tends to be
more reliable and accurate compared to single-source data. For instance, Xu et al. [27]
validated the viability of utilizing the data fusion method to achieve high-accuracy NIR
spectroscopic analysis for rice flour. Nevertheless, to date, no instances of data fusion
technology application in determining rice bran layer components have been documented.

In this study, the potassium dichromate oxidation (PDO) method—a standard wet
chemical analysis procedure for determining cellulose content—was initially optimized
and utilized as the reference method for NIR spectroscopic analysis. Utilizing near-infrared
diffuse reflectance (NIRdr) and diffuse transmission (NIRdt) spectra, we established quanti-
tative models for measuring cellulose content in the rice bran layer, respectively. Moreover,
this study demonstrated the viability of boosting model accuracy through the fusion of
NIRdr and NIRdt spectral data. We conducted a comparative analysis of the predictive
capabilities of the NIRdr, NIRdt, and their fused model under various optimization condi-
tions concerning the cellulose content in the rice bran layer and assessed their potential in
screening for rice germplasm with low cellulose concentrations in the bran layer. Notably,
the rice bran layer samples used in this study are rice bran without germ. This study aims
to develop an accurate, non-destructive, and cost-effective method for quantifying cellulose
content in the rice bran layer using NIRS technology, thereby offering substantial technical
support for the selection of rice genetic germplasm and the cultivation of varieties with
lower cellulose content in the rice bran layer.

2. Materials and Methods
2.1. Materials

The rice bran layer samples used in this study were rice bran with germ removed by a
40-mesh sieve. A general overview of the acquisition process is presented in Figure 1. For
a comprehensive description of the procedure used to obtain the rice bran layer samples,
please refer to Part 1 of the Supplementary Material. A set of 141 rice bran layer samples
derived from various rice germplasm and breeding lines was used to constitute the rice
bran layer CC dataset. These rice germplasms and breeding lines were selected from the
rice mutant repository constructed by our laboratory. The mutant repository was composed
of the mutant offspring of rice varieties ‘9311’ and ‘Wuyunjing 7’, which were irradiated
with low-energy heavy ions and cultivated for multiple generations [28,29]. By using the
Kennard–Stone algorithm [30], the first 70% of the samples in the rice bran layer CC dataset
were classified as the calibration set, and the remaining 30% was classified as the validation
set. In addition, to further evaluate the prediction performance of the model established in
this study, 20 rice bran layer samples not belonging to the calibration set and validation set
were randomly selected from the above mutant repository as the external prediction set.
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2.2. Chemical Analysis
2.2.1. Determination Method of Cellulose

The content of cellulose was determined by an optimized chemical method. This opti-
mized method is based on the PDO method, which was initially proposed by Halliwell [19]
and then further developed by Xiong et al. [31]. The optimization of this method was
performed by our laboratory. The general procedure of the optimized PDO method was the
same as the original PDO method, including digestion, centrifugation, washing, oxidation
reaction, and titration. However, some details have been improved. The specific improve-
ments are as follows: (1) The centrifugal system was changed from 50 mL to 10 mL, which
solved the problem of poor precipitation effect of rice bran layer sample digestion products
in the 50 mL centrifugal system. (2) The primary and secondary centrifugal system was
established. The supernatant, which should have been discarded in the original method,
was put into a new 10 mL centrifuge tube (secondary centrifuge tube) for centrifugal
treatment, and the precipitation was incorporated into the main centrifuge tube, which
reduced the loss of precipitation and improved the detection accuracy. (3) The dosage of
the potassium dichromate-sulfuric acid mixture was adjusted from 18 mL to 5 mL; (4) The
equivalent concentration of ammonium ferrous sulfate in the titration solution was adjusted
from 0.1 N to 0.05 N, which reduced the titration error and further improved the detection
accuracy. The specific steps of the optimized PDO method are shown in Part 2 of the
Supplementary Material.

2.2.2. Validation of the Optimized PDO Method

The validation of the optimized PDO method was performed on the following two
aspects: (1) The evaluation of intra-day precision and inter-day precision of the optimized
PDO method for the determination of cellulose content in the rice bran layer; (2) the
comparison between the determination results of the optimized PDO method and the
original PDO method.

The intra-day and inter-day precision of the optimized PDO method was evaluated on
the same rice bran layer sample, which was derived from the rice variety (K7). Among them,
the intra-day precision of cellulose content measurements was calculated as the relative
standard deviation (RSDr) of 6 consecutive measurements of the rice bran layer sample
within the same day. Similarly, the inter-day precision of cellulose content measurements
was calculated as the relative standard deviation (RSDR) of 18 measurements of the rice
bran layer sample over three days of analysis [32–34]. Notably, both intra-day and inter-day
precision characterize the repeatability of the method, as they were confirmed through
experiments conducted by the same experimenter using identical equipment [35].

To compare the determination results of the optimized PDO method with those of the
original PDO method, 7 rice bran layer samples were assessed using the optimized PDO
method and the original PDO method. Three repeated experiments were set up for each
method. For a certain sample, the average value of three repeated experiments was taken
as the cellulose content determination result of the corresponding method. The standard
deviation (SD) and relative standard deviation (RSD) of three repeated measurements
of each sample were calculated to compare the precision of the optimized PDO method
and the original PDO method. In addition, OriginPro Software v.8.5 (OriginLab Corp.,
Northampton, MA, USA) was used to analyze the correlation between the determination
results of the optimized PDO method and the original PDO method.

2.3. NIR Spectroscopy Measurement

All of the spectra were recorded on an MPA Fourier transform near-infrared spec-
trometer (Bruker, Ettlingen, Germany), which supports two measurement modes: diffuse
reflection and diffuse transmission. The NIRdr spectra, which were obtained under the
diffuse reflection mode, were acquired in the range of 4000–12,000 cm−1 (833.3–2500 nm)
with a resolution of 16 cm−1 and 32 repeat scans. The NIRdt spectra, which were obtained
under the diffuse transmission mode, were acquired in the range of 5793–12,489 cm−1
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(800.7–1726.2 nm) with a resolution of 16 cm−1 and 64 repeat scans. The schemata of the
NIR spectra acquisition method for the dataset are shown in Figure 2.
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The NIRdr spectral acquisition method for rice bran layer samples was as follows:
Each rice bran layer sample was placed in a cylindrical sample cup, which was a quartz
glass dish with an 11.5 mm diameter and a 7 mm height, to prevent interferences in its
absorption. Once the sample cup containing the sample was placed in the sample window,
the NIRdr spectrum would be recorded under the diffuse reflectance mode (Figure 2a).
Every sample underwent a single-spectrum recording.

The NIRdt spectral acquisition method for rice bran layer samples was as follows: Each
rice bran layer sample was weighed (10 mg) and placed in a cylindrical sample cup, which
was a quartz glass dish with an 8 mm diameter and a 5 mm height. The sample was gently
pressed with a metal rod to ensure it was evenly spread at the bottom of the sample cup.
The thickness of the sample has been validated through the thickness test mentioned in the
study by Xiang et al. [36] (for details, please refer to Part 3 of the Supplementary Material).
The purpose of this procedure is to ensure the sample is thin enough so that near-infrared
radiation can be transmitted through the sample to the sensor. An aluminum sheet, which
has a central hole with a diameter of 2 mm, was positioned over the sample window.
Once the sample cup containing the sample was positioned over the aluminum sheet, the
NIRdt spectrum would be recorded under the diffuse transmission mode (Figure 2b). The
aluminum sheet, acting as a smaller collection window, ensured that only near-infrared
radiation passing through the hole was recorded. This design restricted the collected
data solely to the sample, mitigating background interference resulting from variations
in the size of the sample cup containing the sample, thus enhancing the consistency of
transmittance spectra collection. Every sample underwent a single-spectrum recording.

It should be noted that the detector used in the diffuse reflectance mode is located
inside the instrument and is used to receive the near-infrared radiation diffusely reflected
from the sample, whereas the detector used in the diffuse transmittance mode is located on
the outside of the instrument, used for receiving the near-infrared radiation transmitted
through the sample. When using the diffuse transmittance mode to acquire spectra, it is
necessary to manually rotate the outside detector to the top of the detection window and
cover the sample, as shown in Figure 2c.

2.4. The Construction and Evaluation of the NIR Model

To obtain a calibration model for cellulose, chemometric analysis was performed using
the OPUS 7.0 software (Bruker, Ettlingen, Germany). Before the development of calibration
models, spectral data were pre-treated to reduce the interference of useless information and
noise in the spectra. The spectral pre-treatment methods used in this study included first-
order derivatives (1st der, with 17-point smoothing by default), multiplicative scattering
correction (MSC), standard normal variate transformation (SNV), the 1st der combined
with the MSC method (1st der + MSC) and the 1st der combined with the SNV method
(1st der + SNV). The MSC and SNV methods both aim to correct the spectral scattering
effect instigated by factors including particle size and shape [37]. These two methods
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can frequently be combined with other pretreatment methods, such as 1st der, thereby
enhancing the effectiveness of spectral pretreatment.

In addition to selecting an appropriate pretreatment method, it is also necessary
to select the appropriate spectral range through specific methods to construct a high-
quality calibration model. On the one hand, the selection of spectral range can improve
the operation efficiency and interpretability of the model. On the other hand, because
the irrelevant variables are eliminated in the process of selecting the spectral range, the
calibration model with strong prediction ability and good robustness can be obtained [38].
In general, the spectral data pre-treated methods need to be compared or combined, and
the partial least squares (PLS) model is constructed under the combined conditions of each
pretreatment method and spectral range.

In this study, the optimization function of the OPUS 7.0 software (Bruker, Ettlingen,
Germany) was used to screen the optimal combined conditions of the pre-treated method
and spectral range to optimize the calibration model. This function is based on the principle
of the siPLS algorithm. The core procedure of this function is to divide the pre-treated
spectrum into 10 segments at equal intervals and randomly combine 1–6 segments to
construct a calibration model [39].

In the process of model construction, it is necessary to use the calibration set to perform
the cross-validation of the model, and the quality of the model is evaluated by the root
mean square error of cross-validation (RMSECV) and the coefficient of determination of
cross-validation (R2

cv) to select the optimal modeling parameters. Generally, the model
with the lowest RMSECV value and the highest R2

cv value was used as the optimal model.
After the model was established, it was necessary to use the validation set to verify the
accuracy and robustness of the model. The model with a low root mean square error of
validation (RMSEV) value and a high coefficient of determination of validation (R2

v) value
usually had high accuracy. In addition, this study also used an external prediction set
which is independent of the calibration set and the validation set to test the prediction
performance of the model. The model with the lowest root mean square error of prediction
(RMSEP) value and the highest coefficient of determination of prediction (R2

p) had the best
prediction performance. Statistical analysis and graphing were conducted with OriginPro
Software (OriginLab Corp., Northampton, MA, USA).

2.5. Fusion of NIRdr and NIRdt Spectra

The fusion method refers to the method reported by Xu et al. [27]. Before data
fusion, in order to correct the difference in absorbance between NIRdr and NIRdt spectra,
three different pretreatment methods (no pretreatment, min-max normalization, and 1st
der) were used to process the NIRdr and NIRdt spectra, respectively. The NIRdr and
NIRdt spectra of each sample which were processed by the same pretreatment method
(no pretreatment, min-max normalization, or 1st der), were then directly joined using the
primary fusion method to obtain the fused spectra. According to the pretreatment method
(no pretreatment, min-max normalization, or 1st der) used by the components (NIRdr and
NIRdt spectra) of the fused spectrum, the fusion spectrum was recorded as NIRdr-NIRdt,
NIRdr-NIRdt (NM) or NIRdr-NIRdt (1st der). MATLAB software (MathWorks, Natick, MA,
USA) was used to obtain the fused spectra.

2.6. Statistical Analysis Software

Statistical analyses performed in this study, such as correlation analysis, paired t-tests,
and independent-sample t-tests, were all conducted using the OriginPro Software (Origin-
Lab Corp., Northampton, MA, USA).
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3. Results and Discussion
3.1. Validation of the Optimized PDO Method
3.1.1. Intra-Day Precision and Inter-Day Precision of the Optimized PDO Method

Table 1 presents the intra-day precision RSDr calculated within each day of analysis
on six measurements performed on the same rice bran layer sample using the optimized
PDO method. The optimized PDO method demonstrated good repeatability within the
same day, as indicated by the low RSDr, ranging from 0.51% (Day 2) to 0.96% (Day 1);
all values were less than 2%. Inter-day precision RSDR, calculated across three days of
analyses on 18 measurements performed on the same rice bran sample using the optimized
method, was 0.70% (Table 1). The results showed that the optimized PDO method had a
good inter-day precision performance.

Table 1. Intra-day precision and inter-day precision test results of the optimized method.

Time

The Parallel Measured Value of the Rice Bran Layer
Cellulose Content, % Mean, % RSDr RSDR

Value 1 Value 2 Value 3 Value 4 Value 5 Value 6

Day1 3.86 3.89 3.80 3.91 3.86 3.86 3.86 0.96%
0.70%Day2 3.84 3.86 3.82 3.83 3.87 3.86 3.84 0.51%

Day3 3.88 3.84 3.81 3.82 3.84 3.84 3.84 0.63%

3.1.2. Comparison between the Optimized PDO Method and the Original PDO Method

The optimized PDO method and the original PDO method were used to repeatedly
determine fifteen rice bran layer samples three times, respectively. Table 2 recorded the
mean value, standard deviation (SD), and relative standard deviation (RSD) of the determi-
nation results of each sample. The detailed results of the determination are presented in
Part 4 of the Supplementary Material.

Table 2. The mean value, SD, and RSD of the determination results.

Sample
Original PDO Method Optimized PDO Method

Mean (%) SD (%) RSD Mean (%) SD (%) RSD

A 3.57 0.097 2.73% 3.38 0.058 1.73%
B 3.62 0.161 4.45% 3.54 0.057 1.61%
C 3.73 0.144 3.86% 3.57 0.075 2.10%
D 3.69 0.061 1.65% 3.74 0.054 1.45%
E 4.58 0.051 1.12% 4.38 0.061 1.39%
F 4.30 0.155 3.60% 4.52 0.011 0.25%
G 4.63 0.092 1.99% 4.75 0.080 1.69%
H 3.00 0.116 3.85% 2.98 0.030 1.00%
I 4.16 0.087 2.10% 4.08 0.065 1.60%
J 3.59 0.046 1.28% 3.60 0.070 1.95%
K 4.33 0.125 2.88% 4.41 0.059 1.33%
L 4.19 0.155 3.71% 4.15 0.047 1.14%
M 4.06 0.114 2.80% 4.16 0.035 0.84%
N 4.08 0.110 2.70% 4.04 0.041 1.01%
O 4.36 0.145 3.33% 4.41 0.059 1.33%

Based on the mean value recorded in Table 2, the correlation between the optimized
PDO method and the original PDO method was analyzed by statistical methods. As shown
in Figure 3, the correlation coefficient (R) between the two methods is 0.97, which indicates
that there is a good correlation between the optimized PDO method and the original PDO
method. A two-tailed t-test was performed between the mean values obtained by the
optimized PDO method and the mean values obtained by the original PDO method to
evaluate the significant relationship between the optimized PDO method and the original
PDO method. The t-value was 0.22, less than the value of t14,0.05 (t14,0.05 = 2.14, two-tailed
test), and the p-value was 0.83, greater than 0.05, indicating that there was no significant
difference between the optimized PDO method and the original PDO method. Combined
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with the results of correlation analysis, it can be seen that the optimized PDO method has
the potential to replace the original PDO method for cellulose determination.
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RSD is often used to characterize the precision of the method, and its calculation
formula is RSD = SD/Mean*100%. According to Table 2, when measuring the cellulose
content of the above 15 rice bran layer samples, the mean RSD of the optimized PDO method
is 1.36%, while the mean RSD of the original PDO method is 2.80%. It can be inferred that
the precision of the optimized PDO method is higher than that of the original PDO method.
To verify the above inference, the RSD values of the optimized PDO method and the original
PDO method were compared by a one-tailed t-test. After testing, the t-value was 4.57, which
was greater than the t14,0.01 value (t14,0.01 = 2.62, single tail test), and the p-value was 0.00022,
which was less than 0.01, indicating that the precision of the optimized PDO method was
indeed higher than that of the original PDO method. In summary, the optimized PDO
method is more suitable as a reference method than the original PDO method, which will
help improve the prediction performance of near-infrared spectroscopy.

3.2. Results of Chemical Determination of Rice Bran Layer Sample Set

The statistical results of the cellulose content in rice bran layer samples determined
using the optimized method are shown in Table 3. The distribution of cellulose content in
the calibration set ranged from 2.80% to 4.92%, which completely covered the range of the
validation set. The mean values and standard deviations (SD) of the calibration set and
validation set were similar, indicating that these two data sets show similar distribution
characteristics and measures of central tendency. The standard error (SE) in Table 3 is
derived by dividing the SD by the square root of the sample number (N). The confidence in-
tervals (mean ± SE) for the mean cellulose reference values in the calibration and validation
sets are 3.836–3.944% and 3.744–3.916%, respectively. The overlapping intervals suggest no
significant difference between these two datasets. This is confirmed by an independent-
samples t-test on the cellulose content reference values of these two datasets, resulting in a
p-value of 0.55, which indicates no significant difference between the calibration set and
the validation set. These results show that the calibration set is a good representative of
the validation.

Table 3. Descriptive statistics for the cellulose content detection results of the sample set.

Analyte
Calibration Set Validation Set

N Range Mean SE SD N Range Mean SE SD

Cellulose content (%) 99 2.80–4.92 3.89 0.054 0.55 42 2.81–4.89 3.83 0.086 0.57

Note: N: sample number; SE: standard error; SD: standard deviation.
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3.3. Fused Spectra Obtained under Three Different Pretreatment Conditions

The fused NIRdr and NIRdt spectra derived from the rice bran layer sample set under
the three pretreatment conditions are shown in Figure 4. The left part of each fusion
spectrum is the NIRdr spectrum, and the right part is the NIRdt spectrum. All spectra in
the figure are displayed in wavenumber format.
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recorded for the rice bran layer samples.

As depicted in Figure 4a, the NIRdr-NIRdt spectral profile’s two sections, namely the
NIRdr and NIRdt regions, displayed distinct absorbance values. Both the NIRdr and NIRdt
regions showed absorption peaks at 8330 cm−1 (1200 nm) and 6825 cm−1 (1465 nm), which
correspond to the characteristic absorption bands of the second overtone of the C–H stretch
vibration and the first overtone of O–H stretch vibration, respectively. Furthermore, both
of them are related to the spectral absorption of cellulose [40]. Within the 3996–5793 cm−1

(1726–2502 nm) interval in the NIRdr region, there is the first overtone of the C–H stretch
vibration and the first combination bands of C–H and O–H stretch vibrations, which are
related to the spectral absorption of cellulose [41]. However, this range is absent in the
NIRdt region. The differences observed in spectral profiles and ranges imply that the NIRdt
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spectrum tends to collect the sample’s signal characteristics in the short-wavelength regions,
while the NIRdr spectra exhibit higher sensitivity to absorption within the long-wavelength
regions. Moreover, the absorbances measured in the NIRdt spectra exhibited a higher
magnitude compared to those recorded in the NIRdr spectra. The main reason is that the
near-infrared radiation transmittance of the rice bran layer sample is limited, resulting
in less near-infrared radiation returning to the sensor in the transmission mode. Due to
the difference in absorbance, there is an obvious gap at the junction of the NIRdr and
NIRdt spectra.

In Figure 4a, significant baseline drift is observed in the NIRdt region, which may
be attributed to the variations in sample density within the sample cup. Different sample
densities imply differences in the distances between sample particles, resulting in notable
discrepancies in the transmitted signal through the sample. In contrast, the NIRdr region
exhibits a smaller baseline drift, likely due to the limited penetration of the reflected signal
that comes back to the sensor in the reflection mode, resulting in less sensitivity to sample
density. The baseline drift phenomenon can be corrected through appropriate spectral
pretreatment methods.

For the NIRdr-NIRdt (NM) spectrum (Figure 4b), the normalization pretreatment
method was used to correct the differences in the absorbance between the NIRdr and NIRdt
regions to a similar scale. At the same time, the baseline drift phenomenon had also been
improved. However, the baseline drift of the NIRdt region in the range of 9500–12,500 cm−1

had not been effectively improved.
For the NIRdr-NIRdt (1st der) spectrum (Figure 4c), the derivative pretreatment

method was employed to alter the trend of absorbance recorded in the NIRdr and NIRdt
regions with respect to wavenumber. Under this pretreatment condition, the absorbance
of the fused spectra exhibited oscillations around the zero baseline. In the NIRdr-NIRdt
(1st der) spectral profiles, obvious peaks and troughs were observed in the regions ex-
hibiting strong characteristic absorption, whereas the absorbance values in other regions
approached zero. It can be seen from Figure 4c that the gap at the splicing between NIRdr
and NIRdt spectra can be effectively reduced by using the derivative pretreatment method.

3.4. NIR Calibration and Validation Results

PLS models were established based on NIRdr, NIRdt, NIRdr-NIRdt, NIRdr-NIRdt
(NM), and NIRdr-NIRdt (1st der) spectra, respectively. Figure 5 offers a visual comparison
of the RMSECV and RMSEP values for these models under six different pretreatment
conditions. Each type of spectra has an associated optimal model, the RMSECV value of
which is prominently represented by dots and specific numerical values in Figure 5a. The
corresponding RMSEP values of these models during the validation phase are similarly
annotated in Figure 5b.
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Different colored lines represent models constructed based on distinct types of spectra. Dots on each
line, as illustrated in (a,b), represent the RMSECV and RMSEP of the optimal model constructed
based on the corresponding type of spectra with specific numerical values.
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Continuing the examination of Figure 5, we identify the optimal models for each type
of spectra as those yielding the lowest RMSECV value. For example, the NIRdr model
developed under the SNV pretreatment condition delivers the lowest RMSECV value
(0.211%) among its counterparts, hence considered the optimal model for NIRdr spectra. A
similar approach was used to identify the optimal models for the remaining four types of
spectra. The specific numerical values depicted in Figure 5b represent the RMSEP values
of the five optimal models during validation. It is noteworthy that the optimal model
might not always exhibit the lowest RMSEP value. This could be attributed to potential
differences between the calibration and validation datasets.

Table 4 presents detailed information on the five optimal models constructed based
on the five different spectra mentioned above. The table includes information on the pre-
treatment conditions, spectral ranges, latent variables (LVs), and calibration and validation
results corresponding to these optimal models. For detailed information on models under
all other pretreatment conditions, please refer to Part 5 of the Supplementary Material.

Table 4. The detailed information on the five optimal models.

Spectral
Type Pretreatment Spectral Range (cm−1)

Cross-Validation Validation Set
LVs

R2
CV RMSECV/% R2

v RMSEV/%

NIRdr SNV 7506–5446; 4605–4242 0.852 0.211 0.829 0.239 8
NIRdt 1st der + SNV 7752.9–6094 0.879 0.191 0.850 0.224 8

NIRdr-NIRdt 1st der + SNV 7583.1–6109.7; 8732–7259;
11,671.7–10,198.3 0.895 0.178 0.906 0.177 9

NIRdr-NIRdt (NM) 1st der + SNV 7583.1–6109.7; 8732–7259 0.890 0.182 0.903 0.18 8
NIRdr-NIRdt (1st der) MSC 7583.1–4636.2; 8732–5793 0.898 0.176 0.914 0.169 9

Note: The spectral range of the NIRdr region is marked in red text, while the spectral range of the NIRdt region
is marked in blue text. R2

cv: determination correlation of cross-validation; RMSECV: root mean squares of
cross-validation; R2

v: determination correlation of validation; RMSEV: root mean squares of validation; LVs:
latent variables; NIRdr: Near-infrared diffuse reflectance; NIRdt: Near–infrared diffuse transmittance.

As detailed in Table 4, the five optimal models all performed reliable calibration and
verification results, and their R2

cv and R2
v were both higher than 0.8, which indicated that

these five models could measure the cellulose content of rice bran layer and could be used
to screen rice germplasm with cellulose content variation in the bran layer. Please refer
to Part 6 of the Supplementary Material for the scatterplots of reference and predicted
cellulose content for the calibration and validation sets of these five optimal models.

The number of Latent Variables (LVs) shown in Table 4 was chosen to balance the
need for low RMSECV values with the avoidance of overfitting. Figure 6 illustrates the
relationship between the number of Latent Variables (LVs) used in the five optimal models
and the corresponding RMSECV values. The principle for selecting the number of LVs is
that it should not exceed one-tenth of the number of calibration set samples. Therefore, the
maximum number of LVs chosen in this study is nine.
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In general, well-performed models need to have low RMSECV values in addition to
high R2 values. It can be seen from Table 4 that the NIRdr-NIRdt (1st der) model has the
lowest RMSECV value (0.176%) under the condition of the MSC pre-treatment, followed by
the NIRdr-NIRdt model and the NIRdr-NIRdt (NM) model, and finally the NIRdt model
and the NIRdr model. For the validation, the NIRdr-NIRdt (1st der) model showed the
lowest RMSEV value (0.169%) under the condition of the MSC pretreatment, followed by
the NIRdr-NIRdt model and the NIRdr-NIRdt (NM) model, and finally the NIRdt model
and the NIRdr model. The results showed that the NIRdt model showed better prediction
performance than the NIRdr model. Furthermore, the model constructed using the fused
spectra of NIRdr and NIRdt showed better prediction performance than the NIRdr model
and the NIRdt model. Among the three optimal models constructed using fused spectra,
the optimal model constructed using the fused spectra NIRdr-NIRdt (1st der) has the best
prediction performance.

3.5. Spectral Ranges of the Optimal Models

The spectral ranges used by the five optimal rice bran layer cellulose content models,
which are constructed based on the NIRdr, NIRdt, NIRdr-NIRdt, NIRdr-NIRdt (NM), and
NIRdr-NIRdt (1st der) spectra, respectively, are shown in Figure 7. These optimal models
are consistent with those in Table 4, with the lowest RMSECV.
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Figure 7. Spectral ranges used by the optimal rice bran layer cellulose content models. In this
figure, the black, blue, red, light cyan, and purple dashed lines are the average spectra of NIRdr,
NIRdt, NIRdr-NIRdt, NIRdr-NIRdt (NM), and NIRdr-NIRdt (1st der) of the rice bran layer samples,
respectively. In contrast, the solid lines of corresponding colors represent the spectral ranges used by
the five optimal rice bran layer cellulose content models.

It can be seen from Figure 7 that the primary spectral range engaged by the optimal
NIRdr model covers the spectral region of 7500–5400 cm−1 (indicated by a solid black
line), while the spectral range used by the NIRdt model spans the spectral region of
7800–6100 cm−1 (indicated by a solid blue line). There is a significant overlap of the spectral
ranges utilized by the three fusion models with those employed by the NIRdr and NIRdt
models. The main overlapping ranges comprise the bands within the 7500–6109 cm−1

interval in the NIRdr region, as well as the bands falling between 7752–7259 cm−1 in the
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NIRdt region. These overlapping ranges contain some segments associated with cellulose
molecule absorption, such as the bands near 1356 nm (7375 cm−1, the second overtone
of the O–H stretch vibration), 1587 nm (6300 cm−1, the first overtone of the C-H stretch
vibration) and 1428–1641 nm (7000~6700 cm−1, the first overtone of the O–H stretch
vibration). The spectral ranges used in this study overlap with those used in Liu’s study,
which are 7620–7440 cm−1, 7080–6900 cm−1, and 5810–5450 cm−1 [41].

By comparing the spectral ranges used in the above five optimal models, it can be
seen that the spectral ranges used in the optimal fusion models were observed in both
the NIRdr and NIRdt regions. These bands contain cellulose-related absorption peaks
to varying degrees, and these bands overlap with the bands used in the optimal NIRdr
and NIRdt models. The performance of the fusion model is better than that of the NIRdr
and NIRdt models, indicating that the NIRdr and NIRdt bands used in the fusion model
contain complementary information. Thus, the fusion analysis of the spectra is beneficial
to the improvement of the prediction accuracy of the model, which is consistent with
Xu’s study [27].

3.6. External Prediction of the Models

The above five optimal rice bran layer cellulose content models were used to predict the
cellulose content of 20 external prediction samples and then compared with the reference
values obtained by the optimized PDO method. The external prediction results of the
models are shown in Table 5. Please refer to Part 7 of the Supplementary Material for
detailed data and corresponding scatter plots.

Table 5. External prediction results of NIR models.

Model Type Sample Number R2
p RMSEP/%

NIRdr 20 0.748 0.344
NIRdt 20 0.815 0.257

NIRdr-NIRdt 20 0.838 0.278
NIRdr-NIRdt (NM) 20 0.855 0.229

NIRdr-NIRdt (1st der) 20 0.903 0.213

Note: R2
p: determination correlation of prediction; RMSEP: root mean square errors of prediction.

According to Table 5, the NIRdr-NIRdt (1st der) model showed the best prediction
performance (RMSEP = 0.213%), followed by the NIRdr-NIRdt (NM) model, then the
NIRdt and NIRdr-NIRdt models, while the NIRdr model showed the worst prediction
performance, with RMSEP higher than 0.3% and R2

p lower than 0.8%.
The calibration (cross-validation), validation, and external prediction results of the above

five optimal models were compared, including the comparison of R2 values (Figure 8a) and
RMSE (RMSECV or RMSEV or RMSEP) values (Figure 8b). Compared with the calibration
and verification results of the above five optimal models, the prediction performance of the
five models showed different degrees of deterioration in external prediction, which was
manifested by the decrease of R2 value and the increase of RMSE value. Among them, the
R2 value and RMSE value of the NIRdr-NIRdt (1st der) model vary the least, indicating that
the model has the strongest stability. However, the R2 value and RMSE value of the NIRdr
model vary the most, indicating that the stability of the model is the weakest. In addition,
when comparing the calibration and validation results of the models, the variation range of
the R2 value and RMSE value of the NIRdt model is greater than those of the NIRdr-NIRdt
model. However, when comparing the validation and external prediction results of the
models, the variation range of the R2 value and RMSE value of the NIRdt model is smaller
than those of the NIRdr-NIRdt model, which indicates that the NIRdt model has a stronger
generalization ability than the NIRdr-NIRdt model and can better predict the cellulose
content in unknown rice bran layer samples.
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Moreover, in this study, we conducted a two-tailed t-test to analyze the relationship
between the chemical reference cellulose content of the external prediction set and the
cellulose content predicted by various models. In the NIRdt, NIRdr-NIRdt (NM), and
NIRdr-NIRdt (1st der) models, there were no statistically significant differences between
the predicted results and the chemical reference values, with corresponding p-values of
0.75, 0.47, and 0.15, respectively. However, in the NIRdr and NIRdr-NIRdt models, we
observed significant differences between the predicted values and the chemical reference
values, with respective p-values of 0.026 and 0.017.

These findings suggest that although the NIRdr and NIRdr-NIRdt models demon-
strate low RMSEP values, their generalizability is limited, potentially posing challenges in
practical application. In contrast, the NIRdt, NIRdr-NIRdt (NM), and NIRdr-NIRdt (1st der)
models showing no significant discrepancies between their predicted results and the chem-
ical reference values, demonstrate considerable potential for application. They might be
particularly advantageous for implementation in practical breeding practices, with the
NIRdr-NIRdt (1st der) model exhibiting the most prominent potential among them.

3.7. Rice Varieties with Low Cellulose Content in Bran Layer Screened by NIRS

According to Table S2, located in Part 7 of the Supplementary Material, the range of
cellulose content in the external prediction set spans from 3.10% to 4.78%. Given that over
half of the samples in this prediction set are mutants obtained by heavy ion mutagenesis
of the japonica rice variety Wuyunjing 7 (W7), we consequently established the chemical
reference cellulose content and the predicted value of W7’s bran layer (4.26%, and 4.14%
respectively) as a benchmark, identifying samples with fluctuations in cellulose content
exceeding 0.43% as rice varieties with low or high cellulose levels. Table 6 presents a subset
of the screening results obtained through chemical reference values and predicted values,
with the predicted values acquired through the NIRdr-NIRdt (1st der) model. Table 6
illustrates a selection of results obtained via chemical reference values and predicted values,
with the latter derived from the NIRdr-NIRdt (1st der) model. Notably, rice variety O2
demonstrates the lowest cellulose content, with a predicted value of 3.28, representing a
decrease of 0.86% compared to wild-type W7 (O2 is a mutant of W7, characterized by its
brittle stem).

Table 6. Screening results of rice varieties with different levels of bran layer cellulose content.

Cellulose Content Level Sample Name Reference
Cellulose Content (%)

Predicted Cellulose
Content (%)

Low

O1 3.15 3.42
O2 3.10 3.28
O5 3.19 3.30
O9 3.35 3.51
O17 3.22 3.48

Normal
O7 4.20 4.13
O13 4.26 4.37
W7 4.26 4.14

High O19 4.74 4.58

Note: The bold part was the control group (Wild type variety W7).
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4. Conclusions

We introduced a rapid detection method based on NIRS technology for the cellulose
content of the rice bran layer in this study. Our work showcases the potential of this method
to screen rice varieties based on variations in bran layer cellulose content. By utilizing an
improved rice bran extraction technology, we were able to use de-germinated rice bran as
a representative sample of the rice bran layer. This enabled us to determine the cellulose
content within the bran layer.

To enhance the accuracy of micro-chemical detection of cellulose, we developed the
optimized PDO method, which served as a reliable reference for NIR spectroscopic analysis
of cellulose content in the rice bran layer. Furthermore, we employed the fusion technology
of NIRdr and NIRdt to optimize the spectral quantitative model of rice bran layer cellulose,
achieving rapid and precise detection of its content.

Our results demonstrated that the NIRdr-NIRdt (1st der) quantitative model devel-
oped in this study produced satisfactory results, with RMSE (RMSECV, RMSEV, and
RMSEP) of cross-validation, validation, and external prediction being 0.176%, 0.169%, and
0.213%, respectively. These findings suggest the potential of NIRS in predicting the cellulose
content of the rice bran layer. This is significant as it aids related breeding work and is
anticipated to contribute to the palatability improvement and promotion of brown rice.

Despite these promising results, we acknowledge that our study has certain limitations.
In particular, our model was constrained by the calibration set for the cellulose range,
limited to 2.80% to 4.92%. This restriction presented challenges in accurately predicting the
cellulose content for rice bran layer samples with cellulose content outside this range. To
address this, future research should focus on expanding the calibration set range, thereby
enhancing the model’s applicability.

Moving forward, our method could stimulate further research into the impact of
cellulose on the palatability of brown rice and guide the selection of more desirable varieties.
These advancements have the potential to improve human health, minimize food waste in
the rice processing industry, and, ultimately, strengthen global food security efforts.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods12162997/s1, Figure S1: The thickness of 5 mg, 10 mg, 15 mg,
and 20 mg rice bran layer samples in the sample cup used for DT measurements; Figure S2: NIRdt
spectra collected using the Bruker MPA, corresponding respectively to the rice bran layer powder
samples of (a–c) 5 mg, (d–f) 10 mg, (g–i) 15 mg, and (j–l) 20 mg. Within each row of images, from left
to right, are the single-channel spectra of the background, the single-channel spectra of the samples,
and the absorbance spectra of the samples; Figure S3: Cross-validation, and Validation of NIR models
for cellulose: predicted vs. reference value scatter plot. Scatter plots illustrating the correlation
between predicted and chemical reference values for the calibration sets of NIRdr, NIRdt, NIRdr-
NIRdt, NIRdr-NIRdt (NM), and NIRdr-NIRdt (1st der) models are respectively presented in Figure
S1a, S1c, S1e, S1g, and S1i. Conversely, Figure S1b, S1d, S1f, S1h, and S1j respectively depict scatter
plots correlating predicted values and chemical reference values for the corresponding validation sets
of these models.; Figure S4. Scatter Plots of Predicted vs. Reference Values for External Prediction of
NIR Cellulose Models. Each plot represents the correlation between predicted and chemical reference
values for the respective models: (a) NIRdr, (b) NIRdt, (c) NIRdr-NIRdt, (d) NIRdr-NIRdt (NM),
and (e) NIRdr-NIRdt (1st der).; Table S1: Determination results of seven samples by the optimized
PDO method and the original PDO method; Table S2. The calibration and validation results of
models.; Table S3. Predicted and Reference cellulose content from the NIR models for the external
prediction Set.
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