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Abstract: The presence of chemical contaminants, toxins, or veterinary drugs in milk, as well as the
adulteration of milk from different species, has driven the development of new tools to ensure safety
and quality. Several analytical procedures have been proposed for the rapid screening of hazardous
substances or the selective confirmation of the authenticity of milk. Mid-infrared spectroscopy and
Fourier-transform infrared have been two of the most relevant technologies conventionally employed
in the dairy industry. These fingerprint methodologies can be very powerful in determining the trait
of raw material without knowing the identity of each constituent, and several aspects suggest their
potential as a screening method to detect adulteration. This paper reviews the latest advances in
applying mid-infrared spectroscopy for the detection and quantification of adulterants, milk dilution,
the presence of pathogenic bacteria, veterinary drugs, and hazardous substances in milk.

Keywords: milk; food safety; food control; adulteration; traceability; infrared spectroscopy; mid-
infrared; Fourier-transform infrared

1. Introduction

In recent decades, the consumption of milk has increased, and contextually, it is
expected that world milk production will grow by 1.7% each year by 2028 [1]. Thanks to
its constituents, such as proteins, fats, fatty acids, peptides, minerals, and vitamins, milk
is considered to be a high nutritional value product and plays a relevant role in human
nutrition [2–4].

The increased consumption and demand for milk production, along with the centrality
of milk in human nutrition, have led to a situation where production is unable to meet the
difference between supply and demand. This has resulted in milk becoming the target of
numerous unethical procedures and has led to illegal adulteration practices to bridge this
gap and increase profits, which could have severe effects on human health [5]. Moreover,
milk payment is often based on multiple parameters such as bacteriological quality, protein,
and fat percentage, making it susceptible to several potential milk adulterants [6].

Food adulteration and contamination events aiming to achieve economic gains or
mask unsuitable conditions, including those seen in the milk industry, seem to occur
with some regularity. For example, the contamination of milk with melamine, added
with the purpose of increasing the nitrogen concentration and falsely inflating protein
concentration, first emerged in China in 2008, causing worldwide concerns [7]. Moreover,
globalization and rapid worldwide delivery systems could have far-reaching impacts. Thus,
milk adulteration has become a serious problem in the food industry from both commercial
and health perspectives [8]. An additional issue relates to the presence of veterinary drug
residues in milk, which raises serious concern as these residues constitute potential threats
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to human health [9]. To protect consumers from further sources of antibiotics, maximum
residue limits (MRLs) for veterinary drug residues in animal foodstuff raw materials have
been set [10].

Food authentication, the process that verifies whether food complies with the descrip-
tion on the label, is a rapidly growing field. This growth is attributed, on one hand, to the
increasing public awareness of food safety and, on the other hand, to the greater willingness
of consumers to pay a higher price for products considered to be of high quality, such as
those with Protected Designation of Origin [11]. Proof of provenance is an important topic
for milk safety since these products are often the target of fraudulent labeling practices.

In this scenario, the interest in analytical technologies, more rapid and cost effective
than traditional tools, that can routinely and accurately measure the quality traits of milk
has led to the application of infrared spectroscopy. Infrared spectroscopy is a technique
based on the measurement of the wavelength and the intensity of absorption of infrared
light by a substance [12]. In a few words, each functional group of a molecule has a unique
vibrational frequency that can be used to determine what functional groups are present
in a specific sample. Based on the wavelength, we distinguish different regions including
the radio frequency (1 cm–1 m), the microwave region (100 µm–1 cm), the X-ray region
(0.5–10 nm), the mid-infrared region (MIR) (2500–25,000 nm), the near-infrared region (NIR)
(800–2500 nm), the visible region (350–800 nm), and the UV region (10–350 nm) [13] (Figure 1).

Figure 1. Schematic representation of the optical system of the mid-infrared spectrometer (MIRS)
and, below, the wavelength scale; Created with Biorender.com.

Mid-infrared spectroscopy (MIRS) is one of the most relevant technologies in the
dairy industry for predicting the chemical and technological properties of different food
matrices, and one of the most promising fields of application is milk [13–17]. In the
mid-infrared region (2500 to 25,000 nm), electromagnetic radiation passes through matter,
causing movements (e.g., vibration and rotation) of molecules through molecular bonds,
resulting in varying degrees of energy absorption. By analyzing the energy supplied and the
quantity absorbed by the sample, it is possible to determine the chemical composition of the
examined sample [13]. Figure 1 summarizes the MIRS optical system and the wavelength
scale through a schematic diagram.

Biorender.com
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The use of MIRS has become widespread, especially in milk, due to several advanta-
geous features. This technology is non-destructive, does not require sample pretreatment,
and the analysis of the sample does not require highly specialized personnel. Furthermore,
spectra are obtained automatically, and they can be used simultaneously for multiple
chemical and physical predictions. Handheld tools can also be used at the farm level
for continuous monitoring “online”. The spectral data provide a detailed description of
samples, acting as a unique “fingerprint” that reflects both physical states and molecular
structures. These spectral data can be easily stored, and past records can be reevaluated
when new calibrations become available [18,19]. Often, spectral data is pretreated and
combined with chemometrics, which can enhance the reliability and reproducibility of
the analysis results [13,20]. Chemometrics, defined as “the discipline that provides maxi-
mum information from chemical data,” appears to be highly suitable for the spectroscopy
field [21]. Grassi and colleagues (2023) [22] presented an overview of different chemometric
techniques for detecting milk adulteration, describing in detail the differences between
discriminant modeling and classification methods.

Fourier-transform infrared (FTIR) spectrometry, a type of MIRS, facilitates the rapid
scanning of a complete spectrum of electromagnetic waves, ranging from 4000 cm−1 to
400 cm−1 [19,23]. It is widely used to analyze milk samples and predict the content of fat,
protein, lactose, and casein, which are collected periodically according to the milk-recording
schemes of different countries. FTIR spectrometry has been authorized by The International
Committee for Animal Recording (ICAR, 2012) as the standardized routine system for
analyzing the constituents of milk.

Over the last few decades, Fourier-transform infrared spectrometry has also been
proposed for the analysis of other milk components. The effectiveness of MIRS has been
studied to predict phenotypes for dairy industry applications, such as coagulation proper-
ties, fatty acid and protein composition, acidity, mineral composition, body energy status,
ketone bodies, and methane emissions, as extensively reviewed by DeMarchi [13]. It has
also been utilized for quality evaluation of milk products [24]; more recently, in response to
fraudulent practices and health concerns regarding milk, MIRS, often supported by chemo-
metric approaches, has also been employed to detect milk authenticity and adulteration,
proving to be a promising tool compared to traditional techniques [25,26]. Nascimento [27]
reviewed the literature on the main milk adulterants, analytical techniques, and sample
treatment strategies from 2010 to 2016, highlighting that milk adulteration is a topic of
general concern.

There is an insistent and growing need in the food industry to develop simpler,
quicker, more cost-effective, and more efficient methods for detecting chemical substances,
adulterants, and veterinary drugs in milk, and to develop accurate predictive models
for quantifying the addition of these harmful substances that affect the quality of milk.
Therefore, in this review, we aim to provide a reprisal of the most relevant literature on
mid-infrared spectroscopy studies performed over the last two decades. Literature searches
and reviews have been conducted, taking into account the recent applicative potential of
MIRS in milk. Special attention is devoted to main milk adulterants, milk contaminants,
and residues of veterinary drugs, within the context of food safety. Additionally, this
work emphasizes the potential role of MIRS in the detection and monitoring of microbial
pathogens potentially present in milk.

2. Adulterants, Diluents, Chemical Substances, and Mycotoxins in Milk

When we define food adulteration, we refer to the addition or subtraction of any
substance that affects the quality of the food. Milk adulteration has become a severe global
threat, posing risks to consumer health and causing economic losses in the dairy sector.
Consequently, there is a growing interest in techniques that can accurately and consistently
detect adulterants and chemical substances. Some authors have highlighted the use of
FT-MIR as a rapid method for detecting food adulterants or quality defects in fresh milk or
milk powder.
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The primary milk adulterations involve adding water and using milk from other
undeclared milk species. Adding water is a common practice to increase the volume of
milk, but it can be easily detected by measuring the depression of the freezing point [28].
However, this method may not always be effective, as adulterants can mask its effects.
Total reflection MIRS and partial least squares discriminant analysis (PLS-DA) have been
applied to detect and quantify water and other contaminants in milk [29]. Though the
method was able to detect five contaminants, including water, accurately quantifying the
adulteration with water proved challenging (with false positive and false negative rates
of 4% and 3.2% in the test set and 11.5% in the training sets) due to the substantial water
content naturally present in milk and physiological variations.

A similar conclusion was reached by Gondim and colleagues [30]. In fact, in the case
of water, the specificity of the one-class model (unadulterated milk samples) was lower
than 70% (56.7), which means that the samples of milk adulterated with water cannot be
effectively differentiated from unadulterated samples.

Adding water to milk results in a decrease in nutritional substances, such as protein
and solid content [31]. To counter the dilution of milk caused by adding water, adulterants
such as sucrose are often used to increase the total solid content and sweeten the milk. FTIR
spectroscopy, in combination with multivariate analysis, has been successfully applied
to discriminate between sucrose-adulterated milk and pure milk. The spectral regions
3800–2800 cm−1 and 1800–900 cm−1 and two key prominent peaks were observed in the
adulterated milk samples (996 cm−1 and 1052 cm−1). These characteristic peaks identified
in adulterated milk samples were not present in pure milk and likely correspond to the
glycosidic linkage in sucrose [32].

Adding water to milk results in a decrease in nutritional substances, such as pro-
tein and solid content. To address this, cheaper nitrogen-rich compounds and urea are
sometimes added to simulate higher milk protein content [33]. Attenuated total reflectance-
Fourier-transform infrared (ATR-FTIR) spectroscopy has been used to detect and quantify
added urea in milk [34]. The authors identified clear differences among milk spectra with
and without urea supplementation, in the region 1670–1564. Adulteration of milk with
substances that mask the dilution of milk not only results in major economic losses for the
food processing industry but also exposes consumers to health risks. This concept can be
well represented by the case of melamine addition.

Melamine (2,4,6-tri amino-1,3,5-triazine), usually employed as an industrial chemical
compound in the production of formaldehyde resins, is not approved as an ingredient
or additive in food, but some producers illegally used it as an adulterant to augment the
protein content. The unscrupulous practice of mixing chemical compounds, including
melamine, with milk to boost the protein content is widely known. In China and other
countries, the case of melamine-contaminated food, including raw milk [35], first emerged
in 2008 [7,36].

The methodology based on “fingerprint” has proven to be a strategy that can confirm
the presence of the analyte of interest. Mauer and colleagues applied FTIR methods [37] to
aid the rapid detection of 1 ppm melamine in infant formula powder. Balabin [38] proposes
the use of spectroscopy data produced by MIRS coupled for melamine detection in dairy
matrixes, including liquid milk, showing that it is an effective tool to detect melamine
with a limit of detection below 1 ppm (0.76 ± 0.11 ppm). Jawaid [39] collected spectra of
milk samples in the mid-infrared region (4000–650 cm−1) to quantify and detect melamine
in raw and powder milk samples; the author applied partial least squares (PLS) models
to correlate milk spectral data to melamine concentration (R2 > 0.99, and RMSEC 0.370),
underling how this tool provides information on the structure of organic compounds and
thus proposing this method for fast analysis. Attenuated total reflectance-Fourier-transform
infrared (ATR-FTIR) in conjunction with single-class soft independent modeling of class
analogy (SIMCA) model was applied to detect melamine in milk powder [40]. The author
obtained a satisfactory prediction with a correct classification rate of 100% for test samples
≥ 0.30% mixed wet and 1.0% mixed dry using spectra in the range 850–750 cm−1. Although
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the commonly used approach to detect melamine, including liquid chromatography or gas
chromatography, is accurate (0.3 ppm) [41], the advantages of these MID-IR techniques lie
in simplifying the analytical process.

Even milk fats could be subject to fraudulent operations such as their replacement
with non-dairy, cheaper oils or fats that will result in a lower saponification value, the most
common quality index [42]. It is very complex to identify this type of adulteration as very
often the addition of foreign fat does not induce a change in flavor, and the saponification
value is not a certain indicator in detecting fraud if the adulterant is coconut oil, whose
saponification value is higher [42]. In a very interesting work, Hanganu and Chira [43]
highlighted the weaknesses of 1H-NMR spectroscopy for the detection of milk and dairy
products adulterations, demonstrating that the butyric acid may be confounded with
the linolenic acid due to the overlapping of their distinctive signals at 0.96 ppm, thus
leading to confusion and false classification results. Also, in this case, the Fourier-transform
coupled with chemometrics proved to be a valid tool for detecting the adulteration of
ghee with coconut oil at different concentrations (2, 4, 6, 8, 10, and 15%); analyzing the
wavenumber region of 4000–500 cm−1 of 240 samples, the principal component analysis
(PCA) showed the distinct clustering of pure ghee samples and coconut oil adulterated
samples (till 2% adulteration) based on the selected wavenumber range (1170–1141 and
1117–1100 cm−1) [44].

Some authors applied MIR in the determination of a group of adulterants. Da Costa
Filho and colleagues applied FTIR-MIR as a rapidly screening for detecting sixteen adul-
terants in reconstituted skimmed milk powder, proposing this tool to rapidly screen raw
materials and detect abnormalities [45]. The author reported that the method correctly
identified 100% of unadulterated samples and 93% of samples adulterated with nitrogen-
rich compounds, thus showing the presence of characteristic peaks of food adulterants
at 5% economic adulteration. In another interesting work, Neto [46] applied machine
learning techniques to milk spectral data. The milk samples were adulterated with five
different substances, namely, sucrose, soluble starch (amylose and amylopectin), sodium
bicarbonate, hydrogen peroxide, and formaldehyde, with promising results, showing
classification accuracies up to 98.76%. Conceição applied FTIR and multivariate analysis
identifying (from 0.1%) milk adulterated with a set of six adulterants: urea, sodium hy-
droxide, sodium bicarbonate, hydrogen peroxide, starch, and sucrose [47]. Hansen and
colleagues [25] focused their work on describing how targeted and untargeted models
applied to FT-IR spectroscopy with commercial equipment for routine milk analysis could
detect potential milk adulterants, giving a practical point of view underlying the advantage
or disadvantages of these two models.

Another relevant topic is the accidental or intentional presence of lactose in low-lactose
products. The demand for low-lactose products, including milk, has become widespread
due to the high number of consumers with low lactase enzyme production and, thus,
with lactose intolerance. Ribeiro and colleagues [48] applied the association of FTIR with
machine learning tools as an original proposal to detect and quantify residual lactose and
other sugars in low-lactose milk. The results of this interesting study performed on raw
milk, pasteurized milk, and ultra-high temperature (UHT) milk indicated good accuracy
(95%) for classification. Moreover, the coefficient of determination (R2) was 81%, 86%,
and 92%, respectively, for lactose, glucose, and galactose quantification, suggesting how
this approach could be useful to identify and quantify sugars in low-lactose milk in a fast
execution time.

Another interesting topic is the contamination of milk with aflatoxins, which pose a
serious health hazard to consumers as they are potentially carcinogenic compounds [49].
The results obtained by Jaiswal and colleagues [50] revealed significant differences among
pure and AFM1 spiked milk samples (0, 0.02, 0.04, 0.06, 0.08, and, 0.1 µg/L) spectra in
the regions of 1800–650 cm−1 and 3689–3499 cm−1, probably attributed to the chemical
structure of AFM1. The model built with principal component analysis (PCA) showed
significant clustering of bovine milk samples (p < 0.05) and could classify more than 86%
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of milk samples contaminated even with a low concentration of AFM1 (0.02 µg/L). The
analysis and identification of aflatoxins in milk could be more challenging than other
adulterants due to the low presence of the molecule; furthermore, the literature to date is
limited on this point and deserves further study.

3. Milk Speciation and Geographical Origin

Currently, agricultural product trademarks, such as Protected Designation of Origin
(PDO), Geographical Indication Products (PGI), and Traditional Specialty Guaranteed
(TSG), are gaining attention from consumers who prefer them over unbranded products [51].
However, preserving these productions requires initiatives to protect against fraud, which
commonly includes the substitution of one component for a cheaper similar one and the
sale of products falsely marketed as “local” or from specific geographic regions [52].

In 2015, AOAC International (Association of Official Analytical Chemists) approved
and recommended the FTIR method for determining fat, protein, lactose, and casein in
milk and dairy products [53]. Over the past decade, FTIR spectroscopy, combined with
chemometric techniques, has shown potential for detecting authenticity and adulteration
in milk samples. This aspect is important since milk is the second most at-risk food
item for adulteration, after olive oil [54], and researchers have explored this approach for
milk authentication.

Encouraging results have been achieved in studies on milk adulteration with species
other than those declared. For instance, Spina and colleagues [55] explored the potential
application of mid-infrared (MIR) spectroscopy in combination with PLS regression analysis
to detect adulterations in buffalo milk with cow milk. Buffalo milk, which is more expensive
than cow milk, is widely used in Italy for mozzarella cheese production, holding the
European “Protected Designation of Origin” (PDO) status to prevent fraud. The authors
successfully used FTIR technology to detect a small portion of 3% cow milk in buffalo milk,
reaching good accuracy.

In another study, results on 165 buffalo milk samples adulterated with cow’s milk
(10 to 90%) were analyzed using mid-infrared spectroscopy combined with PLS and PCA,
enabling classification of adulteration with a calibration error of about 5% [56].

The FTIR spectrophotometer measurement and PLS calibration also brought good re-
sults with adulterated camel milk samples. Souhassou and colleagues showed low relative
error (3.8%), and the method was proposed to be a valid method for the authentication of
camel milk from cow milk [57].

FTIR spectroscopy and PLS regression also provided reliable predictions for the
adulteration of goat milk with cow milk above 5% level (v/v) [58]. In an interesting study,
Pappas and colleagues (2008) [59], through FT-IR spectroscopy and discriminant analysis
(cluster analysis), accurately distinguished all sheep and goat milk samples, showing that
goat milk samples can be differentiated from sheep milk samples. Nicolau et al. (2010) [60]
demonstrated that FT-IR spectroscopy in combination with PLS or with Kernel Nonlinear
PLS (KPLS) is an easy to perform, accurate and rapid (30 s for samples) method for the
quantitative assessment of sheep, goat, and cow milk in binary and tertiary mixtures. The
authors found an error (5–8%) for all the species observed and mixed samples, reaching
better predictive results (4–6%) when KPLS was employed.

The chemical and nutritional composition of the milk is influenced by several factors;
genetics represents a crucial point, not only as in terms of the species but also the breeds of
dairy animals [61]. In addition, some dairy products from various countries around the
world may be produced only from the milk of specific breeds to guarantee nutritional and
sensory characteristics. In this context, it appears more difficult to distinguish through
using MID technology the adulteration of milk samples with milk belonging to the same
species but different breeds.

As reported by Sallhe [61], Fourier-transform infrared spectroscopy (FTIR) coupled
with multivariate analysis (PLS) showed predictive features in differentiating milk from
different goat breeds. In this investigation, 18 goat milk samples belonging to Jamnapari,
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Saanen, and Toggenburg breeds were analyzed, and the results showed that the model
classifies the goat milk according to the breeds, using functional group profiles as predictors
of model validity and predictivity (Q2 and R2Y values were 0.981 and 0.958).

Animal species and breed alone cannot determine the final quality of the product
and their commercial value. The geographical origin could confer organoleptic qualities
associated with regional products. Thus, the development of new procedures for deter-
mining the geographical origin of milk and dairy products is highly useful and desirable.
Various studies have employed NIR and MID technology to successfully identify the exact
geographical origin of dairy products [51,62–64]; However, there are still a few works that
trace the geographical area of milk through MID technology. In Italy, predictive models
of the geographical origin of sheep milk were built on fatty acid composition using MIR
spectra. All models correctly predicted (correct predictions of 96%) the geographical origin
of 250 samples of sheep milk coming from different areas of the region of Sardinia [65].

Scampicchio and Colleagues (2016) [66] explored the potentiality of a routine chemical
analysis tool (Milkoscan®) combined with a chemometric model (PLS-DA) to identify and
discriminate the geographical origin of milk samples coming from Alpine (North and
South Tyrol area) and milk samples coming from other European regions. In this study,
the cow milk samples were discriminated according to their geographical origin with an
error lower than 5%, taking into account fatty acids content, dry matter, and freezing point
as the most important contributors to the variance. Table 1 summarizes the applications
of mid-infrared (MIR) spectroscopy to the analysis of milk mixture samples. Generally
speaking, the main bands obtained in the spectra, reported in the literature, were connected
to the presence of functional groups belonging to water, lipids, and proteins in the range
between 4000 and 1500 cm−1 [24]. The major peaks in the spectra range of 1500–1700 cm−1

are proteins. In protein spectra, the amide bands originate from the vibration of peptide
groups, and in particular, absorption in this area has been assigned to amide I and amide
II [67]. An absorption peak at approximately 1400 cm−1 and 1700 cm−1 is attributed to
lipids and fats. The band in the 2800–3000 region represents carbohydrates, while the
900–1200 cm−1 region is associated with lactose. For fatty acids, the selected regions for
most fatty acid categories are included approximately in the spectral subsets 950–900 cm−1,
1000–1250 cm−1, 1700–1800 cm−1, and 2800–2900 cm−1 [65]. Finally, peaks between 3400
and 3000 cm−1 and between 1700 and 1500 cm−1 correspond to the O-H stretching and
O-H folding regions, respectively, thus indicating the presence of water in these regions of
the spectrum [30]. Figure 2 summarizes these putative regions.

Table 1. Applications of mid-infrared (MIR) spectroscopy to the analysis of milk mixture samples.

Samples Aim Methods Regions (Wavenumber
Range cm−1) Accuracy References

Buffalo milk Determination and quantification of
cow milk in buffalo milk FTIR + PLS 1000–3000 R2 = 0.99 [55]

Buffalo milk Determination and quantification of
cow milk in buffalo milk MID + PCA, PLS. 1000–3000 R2 = 0.98 [68]

Buffalo milk Determination and quantification of
cow milk in buffalo milk FTIR + OPLS-DA 650–4000 R2 = 0.98 [58]

Sheep milk Determination and quantification of
cow milk in sheep milk FTIR + Kernel PLS 600–4000 R2 = 0.95 [60]

Goat milk Determination and quantification of
cow milk in goat milk FTIR + Kernel PLS 600–4000 R2 = 0.84 [60]

Camel milk Determination and quantification of
cow milk in camel milk FTIR + PLS 920–3600 R2 = 0.99 [57]

Goat Milk Determination of milk samples to
different goat breeds FTIR + PLS-DA 950–3000 R2 = 0.95 [61]

Sheep Milk Determination of milk samples to
different geographical origin FTIR + LDA; PCA 926–3500 R2 = 0.99 [65]

Cow milk Determination of milk samples to
different geographical origin FTIR + PLS-DA 1000–4000 R2 = 0.93 [66]
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The potential of using fluorescence in food research has increased in recent years,
and future research should focus on specific calibrations or markers for milk species or
geographical origin.

4. Pathogens, Biofilm, and Microbial Toxins

Another great advantage of MIR spectroscopy lies in its capability to elucidate biolog-
ical macromolecules as the fingerprint of microorganisms commonly associated with re-
duced food quality, spoilage, or pathogenic potential. For instance, Jiang and colleagues [69]
studied the surface composition of Gram-positive and Gram-negative bacteria and their
isolated cell walls via attenuated total reflectance Fourier-transform infrared (ATR-FTIR)
spectroscopy in the mid-infrared (4000 to 400 cm−1) spectral regions. Recent advances
in detector technology and data manipulation such as multivariate analysis enabled the
thorough detection of microbial specimens in a variety of food matrixes. Studies from
McKnight employed FTIR spectroscopy for the efficient detection and discrimination
of a plurality of pathogenic specimens such as Escherichia coli O157:H7, Pseudomonas
aeruginosa, Salmonella enterica, Bacillus cereus, Enterobacter sakazakii, Listeria spp., and
Alicyclobacillus in fruit juices and drinking water [70]. A detailed list of the milestone
studies employing MIR along with multivariate data analysis to detect and discriminate
pathoagenic and/or food detrimental bacterial specimen is provided in some articles [71,72].
As an example, by using FT-IR in combination with PLSR, Nicolaou and Goodacre [73]
rapidly acquired milk fingerprints and quantified the microbial amount in milk samples.
The authors concluded that FT-IR has great potential in the dairy industry as a screening
method for detection and enumeration, with very little sample preparation. However, in
non-milk matrices, Moreirinha et al. [74] successfully employed mid-infrared spectroscopy
to confirm the presence of Listeria spp. and Salmonella spp. isolated from cheeses, sausages,
and prepared dishes, underlining the potential of this technology as a sensitive and rapid
alternative to detect foodborne pathogens of One Health relevance.

Besides the detection of planktonic cells, MIR holds the potential of measuring the
biofilm typically associated with food matrices. In the food industry, biofilms represent an
important threat to food safety and quality since microorganisms present in biofilms can
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remain in food processing, increasing the chances of food contamination and foodborne
infections. In addition, strong resistance to antimicrobial agents is being registered as
compared to the planktonic counterparts, raising the need for new strategies for the early
and rapid detection of biofilm across the food processing stages. In this perspective, a valid
alternative is given by mid-infrared spectroscopy, the usage of which enabled the character-
ization of the macromolecular composition’s biofilm matrices and the assessment of the
suitability of this method for assessing the dynamics of onset and evolution of heteroge-
neous biofilms, including fungi, algae, and protozoa [71,75]. Bosch et al. [76] characterized
the biofilm of B. pertussis, describing higher intensity in the absorption bands relative to
the polysaccharides (1200–900 cm−1) and carboxylate groups (1627, 1405, and 1373 cm−1)
when compared with the spectra of the same bacterial cells growing in the planktonic form.
More recently, Wang and colleagues [77] explored mid-infrared spectroscopy intending
to detect changes in the composition of spoiled milk due to the different thermophilic
bacteria biofilm forming, showing that within the range of 3000–2800 cm−1, the control
group and the putrid milk groups were significantly separated. However, two limitations
of this technique are highlighted: (i) only the base layer of biofilms provides biochemical
information; (ii) a higher spectral absorption noise is registered, so an efficient calibration
of the instrument is necessary [71]. Nevertheless, this technique offers the advantages of
being simple, fast, easy to use, non-destructive, and environmentally friendly, making it
a promising approach for routine analyses and potentially implemented in official food
control as a screening strategy complementing gold standard approaches.

5. Drug Residues

The presence of antibiotic residues and other contaminants in milk represents a great
challenge for public health. In case their concentration exceeds the established maximum
limits, those molecules may negatively impact human health. Developing a rapid, high-
throughput, and economically convenient method is required to detect these kinds of
molecules. From this perspective, infrared spectroscopy represents a platform useful for
this purpose. The detection of antibiotics or antibiotic residues in milk is feasible with
immunochemical methods [78] or with mass spectrometry [79]. However, both methods
have some flaws. The first one lacks multiplexing, and the second one is expensive and
requires laborious sample preparation protocols and trained personnel to guarantee data
reliability. On the other hand, infrared spectroscopy applied to milk analysis is high
throughput, cost effective, and offers multiplexing features. Moreover, it is already widely
used for the routine analysis of milk of several species for human consumption. Moreover,
as described below, it has been already used for the detection of antibiotics and proteins
such as lactoferrin, placing this versatile method as a good choice for high-throughput
routine analysis.

In 2018, Casarrubias-Torres et al. conducted a study coupling Mid-FTIR (Fourier-
transform mid-infrared (FTIR) spectroscopy) with chemometric analysis in order to detect
and quantify the presence of three different tetracycline antibiotics in cow’s milk. In partic-
ular, the applied method facilitated the rapid detection of these antibiotics at concentrations
of µg/L. The study was conducted on 30 cow’s milk samples to which tetracycline, chlorte-
tracycline, and oxytetracycline were added in a concentration of 10–400 µg/L. The analyzed
samples showed different spectra, as a higher content of antibiotics determines a higher
absorbance. Therefore, for each sample a variation in the absorption of infrared energy was
recorded due to the different presence of the functional groups, thus reporting changes
in the Mid-FTIR region. Subsequently, chemometric analysis using the soft independent
modeling of class analogy (SIMCA) model made it possible to discriminate between milk,
milk added with tetracycline, milk added with chlortetracycline, and milk added with
oxytetracycline. Therefore, Mid-FTIR and chemometric analysis made it possible to rapidly
detect and quantify the antibiotics present in cow’s milk at low concentrations, i.e., with
a limit of detection (LOD) > 10 µg/L. This value is considered acceptable as it is in accor-
dance with the maximum residue limits (MRLs) of veterinary drugs present in human food
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and established in 300 µg·L−1 by the US Food and Drug Administration (FDA) and in
100 µg·Kg−1 by the European Union, for tetracycline residues present in bovine milk [80].
The potential of Mid-FTIR, associated with chemometric, to rapidly detect and quantify the
presence of tetracycline hydrochloride residues in milk, even at low concentrations, had
already been demonstrated by Sivakesava et al. in 2002. The study reported optimal corre-
lation coefficients between 0.90 and 0.92 [81]. Furthermore, the FTIR spectra (in particular,
attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy) associated
with multilayer perceptron network (MLP) and partial least squares (PLS) allowed us to
identify and quantify the presence of tylosin residues directly in the fluid milk. Tylosin is a
macrolide antibiotic often used in the dairy industry, and its MRL is 50 µg/kg. FTIR with
MLP and PLS detected tylosin residues in the range of 0–100 µg/mL with a high correlation
(R ≥ 0.99), confirming the efficiency of the method for food safety [82]. In addition, in
2021, de Freitas et al. published a study in which they determined the presence of tylosin
residues, in low concentrations (≤100 µg·L−1), in powdered milk, using FTIR spectroscopy
in association with random forest [83]. In particular, the milk used was obtained from
healthy Holstein/Zebu cows, not treated with antibiotics in the 2 months preceding the
study. The liquid milk was divided into aliquots, some of which were adulterated by the
addition of tylosin from 10 to 100 µg·L−1. Subsequently, all the aliquots were lyophilized
before being subjected to spectroscopic analysis. This methodology was also successfully
applied to directly analyze powdered milk, quickly and efficiently. Furthermore, Teixeira
et al. conducted a theoretical, experimental, and chemometric study to determine the
presence of β-lactam antibiotics, such as penicillin and ampicillin, in low concentrations in
cow’s milk. The infrared and Raman spectra together with the density functional theory
(DFT) and the statistical analysis principal component analysis (PCA) allowed us to discrim-
inate the behavior of penicillin and ampicillin in water and milk [84]. Table 2 summarizes
the literature evidence of antibiotics detection through FTIR spectroscopy.

Table 2. Literature evidence of antibiotics detection through FTIR spectroscopy.

Antibiotic Limit of Detection (LOD)/Range Accuracy References

Tetracycline LOD = 10 µg/L R2 = 0.99 [80]

Chlortetracycline LOD = 10 µg/L R2 = 0.99 [80]

Oxytetracycline LOD = 10 µg/L R2 = 0.99 [80]

Tetracycline Range 4–2000 ppb R2 = 0.89 [81]

Tylosin Range 0–100 µg/L 99% [82]

Tylosin (powdered milk) Range 0–100 µg/L R2 ≥ 0.95 [82]

Mid-infrared spectrometry was also utilized by Soyeurt et al. to establish an equation
capable of quantifying the lactoferrin (LTF) content in bovine milk. LTF is a glycoprotein
naturally present in milk, and its concentration increases during lactation. However, it
also serves as a marker of inflammation and acts as a general antibacterial and antifungal
molecule. Determining its content could aid in identifying mastitis in dairy cows when
combined with somatic cell score (SCS).

The study was conducted using milk samples from Belgium, Ireland, and Scotland,
obtained from cows of various breeds and different production systems. Based on the
mid-infrared spectra, the LTF equation was derived with a cross-validation coefficient of
determination of 0.71 and a cross-validation standard error of 50.55 mg/L of milk. This
research demonstrates that mid-infrared spectrometry facilitates the rapid quantification
of LTF directly in bovine milk, enhancing the identification of clinical mastitis when used
in conjunction with SCS alone. Moreover, it provides an opportunity to improve the
nutritional quality of milk [85].
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6. Final Remarks and Future Outlook

Over the last two decades, the application of mid-infrared (MID)-spectroscopic tech-
niques for the analysis of milk adulterants has significantly grown. Using official methods
as screening tools for numerous milk samples and various types of adulterants is neither
practical nor cost effective. The food industry has shown interest in new analytical technolo-
gies that are faster and less expensive than traditional methods, and MID-IR spectroscopy
offers several advantages, such as ease of use, non-destructive sample preparation, and
rapid identification of multiple parameters. As a result, it can be applied practically to
detect milk adulteration, making it a promising alternative or complementary method
to existing food safety detection methods. This technique holds potential for identifying
species and geographical origin as well. Although the literature on the identification of
pathogenic microorganisms in milk is not yet consistent, Fourier-transform infrared spec-
troscopy (FT-IR) could be a versatile technique for the rapid differentiation, classification,
identification, and screening of microorganisms. However, further research is necessary to fully
explore the potential of MIR spectroscopy in detecting possible hazardous substances in milk.

Author Contributions: Conceptualization, C.C. and D.B.; methodology, C.C., A.A.S. and C.P.; re-
sources, V.M.M.; data curation, C.C., A.A.S., B.T., C.P. and F.O.; writing—original draft preparation,
C.C., A.A.S., C.P., B.T. and F.O.; writing—review and editing, C.C., P.R., A.A.S., V.M.M., F.O. and
B.T.; supervision, V.M.M. and D.B.; project administration, D.B.; funding acquisition, D.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: We are grateful to the Department of Health Sciences of Magna Græcia and
CISVetSUA of University Magna Graecia of Catanzaro.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. CD-FAO Agricultural Outlook 2019–2028; OECD: Paris, France, 2019. [CrossRef]
2. Stergiadis, S.; Berlitz, C.B.; Hunt, B.; Garg, S.; Givens, D.I.; Kliem, K.E. An update to the fatty acid profiles of bovine retail milk in

the United Kingdom: Implications for nutrition in different age and gender groups. Food Chem. 2018, 276, 218–230. [CrossRef]
3. Miller, G.; Jarvis, J.; McBean, L. Handbook of Dairy Foods and Nutrition, 2nd ed.; Routledge: London, UK, 1999. [CrossRef]
4. Muehlhoff, E.; Bennett, A. Milk and Dairy Products in Human Nutrition—Question and Answers; FAO: Rome, Italy, 2013.
5. Handford, C.E.; Campbell, K.; Elliott, C.T. Impacts of Milk Fraud on Food Safety and Nutrition with Special Emphasis on

Developing Countries. Compr. Rev. Food Sci. Food Saf. 2015, 15, 130–142. [CrossRef]
6. Das, S.; Goswami, B.; Biswas, K. Milk Adulteration and Detection: A Review. Sens. Lett. 2016, 14, 4–18. [CrossRef]
7. Chan, E.; Griffiths, S.; Chan, C. Public-health risks of melamine in milk products. Lancet 2008, 372, 1444–1445. [CrossRef]
8. Ellis, D.I.; Brewster, V.L.; Dunn, W.B.; Allwood, J.W.; Golovanov, A.P.; Goodacre, R. Fingerprinting food: Current technologies for

the detection of food adulteration and contamination. Chem. Soc. Rev. 2012, 41, 5706–5727. [CrossRef]
9. Sachi, S.; Ferdous, J.; Sikder, M.; Hussani, S. Antibiotic residues in milk: Past, present, and future. J. Adv. Veter. Anim. Res. 2019, 6,

315–332. [CrossRef] [PubMed]
10. The European Commission. Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active

substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. Eur. Union 2010,
15, 1–72.

11. Spink, J.; Moyer, D.C. Defining the Public Health Threat of Food Fraud. J. Food Sci. 2011, 76, R157–R163. [CrossRef] [PubMed]
12. Putzig, C.L.; Leugers, M.A.; McKelvy, M.L.; Mitchell, G.E.; Nyquist, R.A.; Papenfuss, R.R.; Yurga, L. Infrared Spectroscopy. Anal.

Chem. 1994, 66, 26–66. [CrossRef]
13. De Marchi, M.; Toffanin, V.; Cassandro, M.; Penasa, M. Invited review: Mid-infrared spectroscopy as phenotyping tool for milk

traits. J. Dairy Sci. 2014, 97, 1171–1186. [CrossRef]
14. Xiao, S.; Wang, Q.; Li, C.; Liu, W.; Zhang, J.; Fan, Y.; Su, J.; Wang, H.; Luo, X.; Zhang, S. Rapid identification of A1 and A2 milk

based on the combination of mid-infrared spectroscopy and chemometrics. Food Control 2021, 134, 108659. [CrossRef]
15. Manuelian, C.; Visentin, G.; Boselli, C.; Giangolini, G.; Cassandro, M.; De Marchi, M. Short communication: Prediction of milk

coagulation and acidity traits in Mediterranean buffalo milk using Fourier-transform mid-infrared spectroscopy. J. Dairy Sci.
2017, 100, 7083–7087. [CrossRef] [PubMed]

https://doi.org/10.4060/ca4076en
https://doi.org/10.1016/j.foodchem.2018.09.165
https://doi.org/10.1201/9781420050189
https://doi.org/10.1111/1541-4337.12181
https://doi.org/10.1166/sl.2016.3580
https://doi.org/10.1016/S0140-6736(08)61604-9
https://doi.org/10.1039/c2cs35138b
https://doi.org/10.5455/javar.2019.f350
https://www.ncbi.nlm.nih.gov/pubmed/31583228
https://doi.org/10.1111/j.1750-3841.2011.02417.x
https://www.ncbi.nlm.nih.gov/pubmed/22416717
https://doi.org/10.1021/ac00084a003
https://doi.org/10.3168/jds.2013-6799
https://doi.org/10.1016/j.foodcont.2021.108659
https://doi.org/10.3168/jds.2017-12707
https://www.ncbi.nlm.nih.gov/pubmed/28668534


Foods 2023, 12, 2917 12 of 14

16. De Marchi, M.; Toffanin, V.; Cassandro, M.; Penasa, M. Prediction of coagulating and noncoagulating milk samples using
mid-infrared spectroscopy. J. Dairy Sci. 2013, 96, 4707–4715. [CrossRef] [PubMed]

17. Zhao, X.; Song, Y.; Zhang, Y.; Cai, G.; Xue, G.; Liu, Y.; Chen, K.; Zhang, F.; Wang, K.; Zhang, M.; et al. Predictions of Milk Fatty
Acid Contents by Mid-Infrared Spectroscopy in Chinese Holstein Cows. Molecules 2023, 28, 666. [CrossRef] [PubMed]

18. Bittante, G.; Cecchinato, A. Genetic analysis of the Fourier-transform infrared spectra of bovine milk with emphasis on individual
wavelengths related to specific chemical bonds. J. Dairy Sci. 2013, 96, 5991–6006. [CrossRef]

19. Soyeurt, H. Fourier transform mid-infrared milk screening to improve milk production and processing. JDS Commun. 2023, 4,
61–64. [CrossRef]

20. De Marchi, M.; Penasa, M.; Cecchinato, A.; Mele, M.; Secchiari, P.; Bittante, G. Effectiveness of mid-infrared spectroscopy to
predict fatty acid composition of Brown Swiss bovine milk. Animal 2011, 5, 1653–1658. [CrossRef]

21. Aleixandre-Tudo, J.; Castello-Cogollos, L.; Aleixandre, J.; Aleixandre-Benavent, R. Chemometrics in food science and technology:
A bibliometric study. Chemom. Intell. Lab. Syst. 2022, 222, 104514. [CrossRef]

22. Grassi, S.; Tarapoulouzi, M.; D’alessandro, A.; Agriopoulou, S.; Strani, L.; Varzakas, T. How Chemometrics Can Fight Milk
Adulteration. Foods 2022, 12, 139. [CrossRef]

23. Karoui, R.; Downey, G.; Blecker, C. Mid-Infrared Spectroscopy Coupled with Chemometrics: A Tool for the Analysis of Intact
Food Systems and the Exploration of Their Molecular Structure−Quality Relationships—A Review. Chem. Rev. 2010, 110,
6144–6168. [CrossRef]

24. Anjos, V. Federal University of Juiz de Fora Near and Mid Infrared Spectroscopy to Assess Milk Products Quality: A Review of
Recent Applications. J. Dairy Res. Technol. 2020, 3, 1–10. [CrossRef] [PubMed]

25. Hansen, P.W.; Holroyd, S.E. Development and application of Fourier transform infrared spectroscopy for detection of milk
adulteration in practice. Int. J. Dairy Technol. 2019, 72, 321–331. [CrossRef]

26. Kamal, M.; Karoui, R. Analytical methods coupled with chemometric tools for determining the authenticity and detecting the
adulteration of dairy products: A review. Trends Food Sci. Technol. 2015, 46, 27–48. [CrossRef]

27. Nascimento, C.F.; Santos, P.M.; Pereira-Filho, E.R.; Rocha, F.R. Recent advances on determination of milk adulterants. Food Chem.
2017, 221, 1232–1244. [CrossRef] [PubMed]

28. Barham, G.S. Detection and Extent of Extraneous Water and Adulteration in Milk Consumed at Hyderabad, Pakistan. J. Food
Nutr. Sci. 2014, 2, 47. [CrossRef]

29. Botelho, B.G.; Reis, N.; Oliveira, L.S.; Sena, M.M. Development and analytical validation of a screening method for simultaneous
detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA. Food Chem. 2015, 181, 31–37. [CrossRef]

30. Gondim, C.S.; Junqueira, R.G.; de Souza, S.V.C.; Ruisánchez, I.; Callao, M. Detection of several common adulterants in raw milk
by MID-infrared spectroscopy and one-class and multi-class multivariate strategies. Food Chem. 2017, 230, 68–75. [CrossRef]

31. Azad, T.; Ahmed, S. Common milk adulteration and their detection techniques. Int. J. Food Contam. 2016, 3, 22. [CrossRef]
32. Balan, B.; Dhaulaniya, A.S.; Jamwal, R.; Yadav, A.; Kelly, S.; Cannavan, A.; Singh, D.K. Rapid detection and quantification

of sucrose adulteration in cow milk using Attenuated total reflectance-Fourier transform infrared spectroscopy coupled with
multivariate analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 240, 118628. [CrossRef]

33. Santos, P.; Pereira-Filho, E.; Rodriguez-Saona, L. Rapid detection and quantification of milk adulteration using infrared microspec-
troscopy and chemometrics analysis. Food Chem. 2013, 138, 19–24. [CrossRef]

34. Jha, S.N.; Jaiswal, P.; Borah, A.; Gautam, A.K.; Srivastava, N. Detection and Quantification of Urea in Milk Using Attenuated Total
Reflectance-Fourier Transform Infrared Spectroscopy. Food Bioprocess Technol. 2014, 8, 926–933. [CrossRef]

35. Yan, N.; Zhou, L.; Zhu, Z.; Chen, X. Determination of Melamine in Dairy Products, Fish Feed, and Fish by Capillary Zone
Electrophoresis with Diode Array Detection. J. Agric. Food Chem. 2009, 57, 807–811. [CrossRef]

36. Rey, M.; Enjalbert, F.; Combes, S.; Cauquil, L.; Bouchez, O.; Monteils, V. Establishment of ruminal bacterial community in dairy
calves from birth to weaning is sequential. J. Appl. Microbiol. 2013, 116, 245–257. [CrossRef] [PubMed]

37. Mauer, L.J.; Chernyshova, A.A.; Hiatt, A.; Deering, A.; Davis, R. Melamine Detection in Infant Formula Powder Using Near- and
Mid-Infrared Spectroscopy. J. Agric. Food Chem. 2009, 57, 3974–3980. [CrossRef]

38. Balabin, R.M.; Smirnov, S.V. Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: A quick and sensitive
method for dairy products analysis including liquid milk, infant formula, and milk powder. Talanta 2011, 85, 562–568. [CrossRef]

39. Jawaid, S.; Talpur, F.N.; Sherazi, S.; Nizamani, S.M.; Khaskheli, A.A. Rapid detection of melamine adulteration in dairy milk by
SB-ATR–Fourier transform infrared spectroscopy. Food Chem. 2013, 141, 3066–3071. [CrossRef] [PubMed]

40. Limm, W.; Karunathilaka, S.R.; Yakes, B.J.; Mossoba, M.M. A portable mid-infrared spectrometer and a non-targeted chemometric
approach for the rapid screening of economically motivated adulteration of milk powder. Int. Dairy J. 2018, 85, 177–183. [CrossRef]

41. Li, J.; Qi, H.-Y.; Shi, Y.-P. Determination of melamine residues in milk products by zirconia hollow fiber sorptive microextraction
and gas chromatography–mass spectrometry. J. Chromatogr. A 2009, 1216, 5467–5471. [CrossRef]

42. Ivanova, M.; Hanganu, A.; Dumitriu, R.; Tociu, M.; Ivanov, G.; Stavarache, C.; Popescu, L.; Ghendov-Mosanu, A.; Sturza, R.;
Deleanu, C.; et al. Saponification Value of Fats and Oils as Determined from 1H-NMR Data: The Case of Dairy Fats. Foods 2022,
11, 1466. [CrossRef] [PubMed]

43. Hanganu, A.; Chira, N.-A. When detection of dairy food fraud fails: An alternative approach through proton nuclear magnetic
resonance spectroscopy. J. Dairy Sci. 2021, 104, 8454–8466. [CrossRef] [PubMed]

https://doi.org/10.3168/jds.2012-6506
https://www.ncbi.nlm.nih.gov/pubmed/23628254
https://doi.org/10.3390/molecules28020666
https://www.ncbi.nlm.nih.gov/pubmed/36677723
https://doi.org/10.3168/jds.2013-6583
https://doi.org/10.3168/jdsc.2022-0294
https://doi.org/10.1017/S1751731111000747
https://doi.org/10.1016/j.chemolab.2022.104514
https://doi.org/10.3390/foods12010139
https://doi.org/10.1021/cr100090k
https://doi.org/10.24966/DRT-9315/100014
https://www.ncbi.nlm.nih.gov/pubmed/37503329
https://doi.org/10.1111/1471-0307.12592
https://doi.org/10.1016/j.tifs.2015.07.007
https://doi.org/10.1016/j.foodchem.2016.11.034
https://www.ncbi.nlm.nih.gov/pubmed/27979084
https://doi.org/10.11648/j.jfns.20140202.15
https://doi.org/10.1016/j.foodchem.2015.02.077
https://doi.org/10.1016/j.foodchem.2017.03.022
https://doi.org/10.1186/s40550-016-0045-3
https://doi.org/10.1016/j.saa.2020.118628
https://doi.org/10.1016/j.foodchem.2012.10.024
https://doi.org/10.1007/s11947-014-1455-y
https://doi.org/10.1021/jf803429e
https://doi.org/10.1111/jam.12405
https://www.ncbi.nlm.nih.gov/pubmed/24279326
https://doi.org/10.1021/jf900587m
https://doi.org/10.1016/j.talanta.2011.04.026
https://doi.org/10.1016/j.foodchem.2013.05.106
https://www.ncbi.nlm.nih.gov/pubmed/23871060
https://doi.org/10.1016/j.idairyj.2018.06.005
https://doi.org/10.1016/j.chroma.2009.05.047
https://doi.org/10.3390/foods11101466
https://www.ncbi.nlm.nih.gov/pubmed/35627035
https://doi.org/10.3168/jds.2020-19883
https://www.ncbi.nlm.nih.gov/pubmed/33934861


Foods 2023, 12, 2917 13 of 14

44. Gandhi, K.; Sharma, R.; Seth, R.; Mann, B. Detection of coconut oil in ghee using ATR-FTIR and chemometrics. Appl. Food Res.
2021, 2, 100035. [CrossRef]

45. Filho, P.A.D.C.; Chen, Y.; Cavin, C.; Galluzzo, R. Mid-infrared spectroscopy: Screening method for analysis of food adulterants in
reconstituted skimmed milk powder. Food Control 2022, 136, 108884. [CrossRef]

46. Neto, H.A.; Tavares, W.L.; Ribeiro, D.C.; Alves, R.C.; Fonseca, L.M.; Campos, S.V. On the utilization of deep and ensemble
learning to detect milk adulteration. BioData Min. 2019, 12, 1–13. [CrossRef] [PubMed]

47. Conceição, D.; Gonçalves, B.-H.; Da Hora, F.; Faleiro, A.; Santos, L.; Ferrão, S. Use of FTIR-ATR Spectroscopy Combined with
Multivariate Analysis as a Screening Tool to Identify Adulterants in Raw Milk. J. Braz. Chem. Soc. 2018, 30, 780–785. [CrossRef]

48. Ribeiro, D.C.; Neto, H.A.; Lima, J.S.; de Assis, D.C.; Keller, K.M.; Campos, S.V.; Oliveira, D.A.; Fonseca, L.M. Determination of
the lactose content in low-lactose milk using Fourier-transform infrared spectroscopy (FTIR) and convolutional neural network.
Heliyon 2023, 9, e12898. [CrossRef]

49. Min, L.; Fink-Gremmels, J.; Li, D.; Tong, X.; Tang, J.; Nan, X.; Yu, Z.; Chen, W.; Wang, G. An overview of aflatoxin B1
biotransformation and aflatoxin M1 secretion in lactating dairy cows. Anim. Nutr. 2021, 7, 42–48. [CrossRef]

50. Jaiswal, P.; Jha, S.N.; Kaur, J.; Borah, A.; Ramya, H. Detection of aflatoxin M1 in milk using spectroscopy and multivariate analyses.
Food Chem. 2018, 238, 209–214. [CrossRef]

51. Katerinopoulou, K.; Kontogeorgos, A.; Salmas, C.E.; Patakas, A.; Ladavos, A. Geographical Origin Authentication of Agri-Food
Products: A Review. Foods 2020, 9, 489. [CrossRef] [PubMed]

52. Stamatis, C.; Sarri, C.A.; Moutou, K.A.; Argyrakoulis, N.; Galara, I.; Godosopoulos, V.; Kolovos, M.; Liakou, C.; Stasinou, V.;
Mamuris, Z. What do we think we eat? Single tracing method across foodstuff of animal origin found in Greek market. Food Res.
Int. 2015, 69, 151–155. [CrossRef]

53. Mendes, E.; Duarte, N. Mid-Infrared Spectroscopy as a Valuable Tool to Tackle Food Analysis: A Literature Review on Coffee,
Dairies, Honey, Olive Oil and Wine. Foods 2021, 10, 477. [CrossRef] [PubMed]

54. Du, L.; Lu, W.; Gao, B.; Wang, J.; Yu, L. Authenticating Raw from Reconstituted Milk Using Fourier Transform Infrared
Spectroscopy and Chemometrics. J. Food Qual. 2019, 2019, 5487890. [CrossRef]

55. Spina, A.A.; Ceniti, C.; Piras, C.; Tilocca, B.; Britti, D.; Morittu, V.M. Mid-infrared (MIR) spectroscopy for the detection of cow’s
milk in buffalo milk. J. Anim. Sci. Technol. 2022, 64, 531–538. [CrossRef]

56. Gonçalves, B.-H.; Silva, G.; De Jesus, J.; Conceição, D.; Santos, L.; Ferrão, S. Fast Verification of Buffalo’s Milk Authenticity by Mid-
Infrared Spectroscopy, Analytical Measurements and Multivariate Calibration. J. Braz. Chem. Soc. 2020, 31, 1453–1460. [CrossRef]

57. Souhassou, S.; Bassbasi, M.; Hirri, A.; Kzaiber, F.; Oussama, A. Detection of camel milk adulteration using Fourier transformed
infrared spectroscopy FT-IR coupled with chemometrics methods. Int. Food Res. J. 2018, 25, 1213–1218.

58. Sen, S.; Dundar, Z.; Uncu, O.; Ozen, B. Potential of Fourier-transform infrared spectroscopy in adulteration detection and quality
assessment in buffalo and goat milks. Microchem. J. 2021, 166, 106207. [CrossRef]

59. Pappas, C.; Tarantilis, P.; Moschopoulou, E.; Moatsou, G.; Kandarakis, I.; Polissiou, M. Identification and differentiation of goat
and sheep milk based on diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) using cluster analysis. Food Chem.
2008, 106, 1271–1277. [CrossRef]

60. Nicolaou, N.; Xu, Y.; Goodacre, R. Fourier transform infrared spectroscopy and multivariate analysis for the detection and
quantification of different milk species. J. Dairy Sci. 2010, 93, 5651–5660. [CrossRef]

61. Salleh, N.A.; Selamat, J.; Meng, G.Y.; Abas, F.; Jambari, N.N.; Khatib, A. Fourier transform infrared spectroscopy and multivariate
analysis of milk from different goat breeds. Int. J. Food Prop. 2019, 22, 1673–1683. [CrossRef]

62. Karoui, R.; Mazerolles, G.; Bosset, J.-O.; Debaerdemaeker, J.; Dufour, E. Utilisation of mid-infrared spectroscopy for determination
of the geographic origin of Gruyère PDO and L’Etivaz PDO Swiss cheeses. Food Chem. 2007, 105, 847–854. [CrossRef]

63. Woodcock, T.; Fagan, C.C.; O’Donnell, C.P.; Downey, G. Application of Near and Mid-Infrared Spectroscopy to Determine Cheese
Quality and Authenticity. Food Bioprocess Technol. 2008, 1, 117–129. [CrossRef]

64. Bontempo, L.; Barbero, A.; Bertoldi, D.; Camin, F.; Larcher, R.; Perini, M.; Sepulcri, A.; Zicarelli, L.; Piasentier, E. Isotopic and
elemental profiles of Mediterranean buffalo milk and cheese and authentication of Mozzarella di Bufala Campana PDO: An
initial exploratory study. Food Chem. 2019, 285, 316–323. [CrossRef] [PubMed]

65. Caredda, M.; Addis, M.; Ibba, I.; Leardi, R.; Scintu, M.F.; Piredda, G.; Sanna, G. Prediction of fatty acid content in sheep milk by
Mid-Infrared spectrometry with a selection of wavelengths by Genetic Algorithms. LWT 2016, 65, 503–510. [CrossRef]

66. Scampicchio, M.; Eisenstecken, D.; De Benedictis, L.; Capici, C.; Ballabio, D.; Mimmo, T.; Robatscher, P.; Kerschbaumer, L.;
Oberhuber, M.; Kaser, A.; et al. Multi-method Approach to Trace the Geographical Origin of Alpine Milk: A Case Study of Tyrol
Region. Food Anal. Methods 2015, 9, 1262–1273. [CrossRef]

67. Zaleska, H.; Tomasik, P.; Lii, C.-Y. Formation of carboxymethyl cellulose–casein complexes by electrosynthesis. Food Hydrocoll.
2002, 16, 215–224. [CrossRef]

68. Gonçalves, B.-H.R.F.; Silva, G.D.J.; Conceição, D.G.; Egito, A.S.D.; Ferrão, S.P.B. Buffalo mozzarella chemical composition and
authenticity assessment by electrophoretic profiling. Semin. Ciênc. Agrar. 2017, 38, 1841–1852. [CrossRef]

69. Jiang, W.; Saxena, A.; Song, B.; Ward, B.B.; Beveridge, T.J.; Myneni, S.C.B. Elucidation of Functional Groups on Gram-Positive and
Gram-Negative Bacterial Surfaces Using Infrared Spectroscopy. Langmuir 2004, 20, 11433–11442. [CrossRef] [PubMed]

70. McKnight, I.; Eiroa, M.; Sant’ana, A.; Massaguer, P. Alicyclobacillus acidoterrestris in pasteurized exotic Brazilian fruit juices:
Isolation, genotypic characterization and heat resistance. Food Microbiol. 2010, 27, 1016–1022. [CrossRef]

https://doi.org/10.1016/j.afres.2021.100035
https://doi.org/10.1016/j.foodcont.2022.108884
https://doi.org/10.1186/s13040-019-0200-5
https://www.ncbi.nlm.nih.gov/pubmed/31320927
https://doi.org/10.21577/0103-5053.20180208
https://doi.org/10.1016/j.heliyon.2023.e12898
https://doi.org/10.1016/j.aninu.2020.11.002
https://doi.org/10.1016/j.foodchem.2016.07.150
https://doi.org/10.3390/foods9040489
https://www.ncbi.nlm.nih.gov/pubmed/32295019
https://doi.org/10.1016/j.foodres.2014.12.033
https://doi.org/10.3390/foods10020477
https://www.ncbi.nlm.nih.gov/pubmed/33671755
https://doi.org/10.1155/2019/5487890
https://doi.org/10.5187/jast.2022.e22
https://doi.org/10.21577/0103-5053.20200030
https://doi.org/10.1016/j.microc.2021.106207
https://doi.org/10.1016/j.foodchem.2007.07.034
https://doi.org/10.3168/jds.2010-3619
https://doi.org/10.1080/10942912.2019.1668803
https://doi.org/10.1016/j.foodchem.2007.01.051
https://doi.org/10.1007/s11947-007-0033-y
https://doi.org/10.1016/j.foodchem.2019.01.160
https://www.ncbi.nlm.nih.gov/pubmed/30797351
https://doi.org/10.1016/j.lwt.2015.08.048
https://doi.org/10.1007/s12161-015-0308-2
https://doi.org/10.1016/S0268-005X(01)00085-6
https://doi.org/10.5433/1679-0359.2017v38n4p1841
https://doi.org/10.1021/la049043+
https://www.ncbi.nlm.nih.gov/pubmed/15595767
https://doi.org/10.1016/j.fm.2010.06.010


Foods 2023, 12, 2917 14 of 14

71. Lu, X.; Rasco, B. Investigating Food Spoilage and Pathogenic Microorganisms by Mid-Infrared Spectroscopy. In Handbook of
Vibrational Spectroscopy; John Wiley: Hoboken, NJ, USA, 2001. [CrossRef]

72. Quintelas, C.; Ferreira, E.C.; Lopes, J.A.; Sousa, C. An Overview of the Evolution of Infrared Spectroscopy Applied to Bacterial
Typing. Biotechnol. J. 2017, 13, 1700449. [CrossRef]

73. Nicolaou, N.; Goodacre, R. Rapid and quantitative detection of the microbial spoilage in milk using Fourier transform infrared
spectroscopy and chemometrics. Analyst 2008, 133, 1424–1431. [CrossRef]

74. Moreirinha, C.; Trindade, J.; Saraiva, J.A.; Almeida, A.; Delgadillo, I. MIR spectroscopy as alternative method for further
confirmation of foodborne pathogens Salmonella spp. and Listeria monocytogenes. J. Food Sci. Technol. 2018, 55, 3971–3978. [CrossRef]

75. Nivens, D.E.; Palmer, R.J.; White, D.C. Continuous nondestructive monitoring of microbial biofilms: A review of analytical
techniques. J. Ind. Microbiol. Biotechnol. 1995, 15, 263–276. [CrossRef]

76. Bosch, A.; Serra, D.; Prieto, C.; Schmitt, J.; Naumann, D.; Yantorno, O. Characterization of Bordetella pertussis growing as biofilm
by chemical analysis and FT-IR spectroscopy. Appl. Microbiol. Biotechnol. 2005, 71, 736–747. [CrossRef]

77. Wang, N.; Jin, Y.; He, G.; Yuan, L. Development of multi-species biofilm formed by thermophilic bacteria on stainless steel
immerged in skimmed milk. Food Res. Int. 2021, 150, 110754. [CrossRef]

78. Davis, F.; Higson, S.P.J. Label-Free Immunochemistry Approach to Detect and Identity Antibiotics in Milk. Pediatr. Res. 2010, 67,
476–480. [CrossRef]

79. Verdini, E.; Pecorelli, I. The Current Status of Analytical Methods Applied to the Determination of Polar Pesticides in Food of
Animal Origin: A Brief Review. Foods 2022, 11, 1527. [CrossRef]

80. Casarrubias-Torres, L.M.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Gallardo-Velazquez, T. Mid-infrared spectroscopy and
multivariate analysis for determination of tetracycline residues in cow’s milk. Acta Veter. Brno 2018, 87, 181–188. [CrossRef]

81. Sivakesava, S.; Irudayaraj, J. Rapid Determination of Tetracycline in Milk by FT-MIR and FT-NIR Spectroscopy. J. Dairy Sci. 2002,
85, 487–493. [CrossRef]

82. de Freitas, A.G.M.; de Magalhães, B.E.A.; Minho, L.A.C.; Leão, D.J.; Santos, L.S.; Fernandes, S.A.d.A. FTIR spectroscopy with
chemometrics for determination of tylosin residues in milk. J. Sci. Food Agric. 2020, 101, 1854–1860. [CrossRef] [PubMed]

83. de Freitas, A.G.M.; Minho, L.A.C.; de Magalhães, B.E.A.; dos Santos, W.N.L.; Santos, L.S.; Fernandes, S.A.d.A. Infrared
spectroscopy combined with random forest to determine tylosin residues in powdered milk. Food Chem. 2021, 365, 130477.
[CrossRef] [PubMed]

84. Teixeira, R.C.; Luiz, L.C.; Junqueira, G.M.A.; Bell, M.J.V.; Anjos, V.C. Detection of antibiotic residues in Cow’s milk: A theoretical
and experimental vibrational study. J. Mol. Struct. 2020, 1215, 128221. [CrossRef]

85. Soyeurt, H.; Bastin, C.; Colinet, F.G.; Arnould, V.M.-R.; Berry, D.P.; Wall, E.; Dehareng, F.; Nguyen, H.N.; Dardenne, P.; Schefers, J.;
et al. Mid-infrared prediction of lactoferrin content in bovine milk: Potential indicator of mastitis. Animal 2012, 6, 1830–1838.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/0470027320.s8967
https://doi.org/10.1002/biot.201700449
https://doi.org/10.1039/b804439b
https://doi.org/10.1007/s13197-018-3322-8
https://doi.org/10.1007/BF01569979
https://doi.org/10.1007/s00253-005-0202-8
https://doi.org/10.1016/j.foodres.2021.110754
https://doi.org/10.1203/PDR.0b013e3181d61c0c
https://doi.org/10.3390/foods11101527
https://doi.org/10.2754/avb201887020181
https://doi.org/10.3168/jds.S0022-0302(02)74099-X
https://doi.org/10.1002/jsfa.10799
https://www.ncbi.nlm.nih.gov/pubmed/32901945
https://doi.org/10.1016/j.foodchem.2021.130477
https://www.ncbi.nlm.nih.gov/pubmed/34237570
https://doi.org/10.1016/j.molstruc.2020.128221
https://doi.org/10.1017/S1751731112000791
https://www.ncbi.nlm.nih.gov/pubmed/22717388

	Introduction 
	Adulterants, Diluents, Chemical Substances, and Mycotoxins in Milk 
	Milk Speciation and Geographical Origin 
	Pathogens, Biofilm, and Microbial Toxins 
	Drug Residues 
	Final Remarks and Future Outlook 
	References

