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Abstract: Monitoring and identifying the freshness levels of meat holds significant importance in
the field of food safety as it directly relates to human dietary safety. Traditional packaging methods
for lamb meat quality assessment present issues such as cumbersome operations and irreversible
damage. This research proposes a quality assessment method for modified atmosphere packaging
lamb meat using near-infrared spectroscopy and multi-parameter fusion. Fresh lamb meat quality
is taken as the research subject, comparing various physicochemical indicators and near-infrared
spectroscopic information under different temperatures (4 ◦C and 10 ◦C) and different modified
atmosphere packaging combinations. Through precision parameter comparison, rebound and TVB-N
values are selected as the modeling parameters. Six spectral preprocessing methods (multi-scatter
calibration, MSC; standard normal variate transformation, SNV; normalization; Savitzky–Golay
smoothing, SG; Savitzky–Golay 1 derivative, SG-1st; and Savitzky–Golay 2 derivative, SG-2nd),
and three feature wavelength selection methods (competitive adaptive reweighted sampling, CARS;
successive projections algorithm, SPA; and uninformative variable elimination, UVE) are compared.
Partial least squares (PLS) and support vector machine (SVM) are used to construct prediction models
for chilled fresh lamb meat quality. The results show that when rebound is used as a parameter,
the SG-2nd-SPA-PLSR model has the highest accuracy, with a determination coefficient R2p of
0.94 for the prediction set. When TVB-N is used as a parameter, the MSC-UVE-SVM model has
the highest accuracy, with an R2p of 0.95 for the prediction set. In conclusion, the use of near-
infrared spectroscopic analysis enables rapid and non-destructive prediction and evaluation of lamb
meat freshness, including its textural characteristics and TVB-N content under different modified
atmosphere packaging. This study provides a theoretical basis and technical support for further
encapsulating the models into portable devices and developing portable near-infrared spectrometers
to rapidly determine lamb meat freshness.

Keywords: near-infrared spectroscopy; mutton quality detection; texture parameters; modified
atmosphere packaged

1. Introduction

With the continuous improvement of people’s living standards and the abundant
supply of meat in the market, people have higher requirements for the quality of meat.
They are also more concerned about the nutritional value, taste, texture, and appearance
of meat, as well as its convenience, healthiness, and safety. However, consumers can
only rely on visual and olfactory judgments to select high-quality meat [1,2]. Sheep meat
is prone to microbial contamination during storage, transportation, and sales, leading
to spoilage and the loss of its edibility and commercial value. Modified atmosphere
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packaging technology can partially compensate for the limitations of vacuum packaging
and further delay microbial-induced spoilage [3]. Traditional detection methods often
require experienced professionals to perform inspection, which is time-consuming and
destructive to the samples, thus reducing detection efficiency and no longer meeting the
current industrial development requirements [4,5]. The non-destructive assessment of lamb
meat quality using near-infrared spectroscopy and multi-parameter fusion in modified
atmosphere packaging can avoid the product damage caused by traditional destructive
testing and achieve accurate and rapid real-time detection of the products [6–8].

Near-infrared spectroscopy (NIRS) detection technology has been a rapidly developing
spectral analysis technique in recent years. It offers advantages such as non-destructiveness,
environmental friendliness, speed, and high accuracy, and has been widely applied in
food safety testing [9,10]. Fresh meat, as the target of detection, is complex in composi-
tion, containing numerous chemical components, which results in diverse near-infrared
spectroscopic characteristics. Therefore, many researchers have adopted various spectral
preprocessing methods or algorithms. For example, in terms of Savitzky–Golay (SG),
convolution smoothing, and derivative methods [11–13], the most common approach for
building prediction models based on spectral data is to use the entire spectrum information
composed of hundreds or even thousands of wavelengths. However, this can introduce
interference from a large amount of redundant information, leading to poor model accuracy
and unsatisfactory predictive performance. The effective selection of feature wavelengths
is a good method for simplifying the workload and improving efficiency, such as regression
coefficients, competitive adaptive reweighted sampling (CARS), Fisher Linear Discriminant
Transformation, and genetic algorithms [14–16].

Previous studies have shown that many scholars have applied near-infrared spec-
troscopy technology to meat quality detection, including pork and lamb [17–19]. Li et al.
used Fourier transform near-infrared (FT-NIR) spectroscopy combined with fuzzy cluster-
ing algorithms to identify the storage time of pork [20]. Zhang et al. proposed a model
based on ensemble learning to predict the TVB-N content of pork using near-infrared spec-
troscopic information [21]. Lintvedt et al. [22] used near-infrared technology to determine
the fat composition in salmon fillets, but there have been few studies on lamb meat quality
detection in modified atmosphere packaging. Low temperature combined with modified
atmosphere packaging is considered an important technology for maintaining fresh meat
quality standards and extending shelf life [23]. It is cost-effective, has a high safety factor,
and does not alter the taste of the food. Correct modified atmosphere packaging methods
are essential to ensure the quality and prolong the shelf life of meat products [24]. The gas
composition commonly used in meat packaging is 20–30% CO2 and 70–80% O2 [25].

During the process of meat spoilage, enzymes, and bacteria produce a class of sub-
stances containing alkaline nitrogen, known as volatile basic nitrogen (TVB-N) [26]. As
fresh meat deteriorates, the content of TVB-N gradually increases, making it widely rec-
ognized as an important indicator for assessing meat freshness [27]. However, traditional
methods for determining TVB-N content mainly rely on the Kjeldahl method [28], which
has several drawbacks including low efficiency, time-consuming procedures, and sample
destruction. Therefore, it is not suitable for on-site testing requirements in the modern meat
processing industry. Similarly, the textural characteristics of meat [29], such as hardness,
rebound, elasticity, adhesiveness, cohesiveness, and chewiness, are also key parameters
that determine the overall quality of meat products. Therefore, establishing predictive
models for the texture characteristics and TVB-N content of modified atmosphere packaged
lamb meat is of significant importance for meat quality detection.

Therefore, this study focuses on controlled atmosphere lamb meat stored at temper-
atures of 4 ◦C and 10 ◦C [30]. The quality attributes of the lamb meat, including textural
characteristics and TVB-N content, were determined using physical and chemical tests.
The original spectral information was subjected to various preprocessing techniques using
chemometrics. The competitive adaptive reweighted sampling algorithm (CARS), the
uninformative variable elimination method (UVE), and the successive projections algo-
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rithm (SPA) were employed to select the optimal wavelengths. Prediction models were
established using partial least squares (PLS) regression and support vector machines (SVM).
Ultimately, a lamb meat quality detection model based on selected wavelengths from
near-infrared spectroscopy and multiple parameters was developed. The experimental
and modeling procedures are illustrated in Figure 1. The specific objectives of this study
were as follows: (1) to compare the predictive performance of models combining textural
characteristics, TVB-N values, and spectral data, including both original spectra and six
different spectral preprocessing methods, to determine the model inputs; (2) to compare
three novel methods for extracting feature wavelengths from near-infrared spectra; and
(3) to establish lamb meat quality prediction models based on feature wavelengths extracted
using the promising methods. These models would provide a foundation for the quality
assessment of meat products using portable near-infrared spectroscopy devices.
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Figure 1. Flow chart of the test and modeling process.

2. Materials and Methods
2.1. Experimental Methods

The tools and cutting board used for portioning the lamb meat were wiped with steril-
ized ethanol. Sterile knives were used to slice the hind leg lamb meat into approximately
2.5 cm thick samples. A total of approximately 180 lamb meat samples were obtained
and packed in sealed bags. The bags were then placed in a refrigerated storage box main-
tained at a temperature range of 4 to 8 ◦C. Afterward, the samples were transported to
the laboratory. Upon arrival, the lamb meat samples were grouped according to the con-
ditions specified in Table 1, with 30 pieces of lamb meat allocated to each group. The
samples were temporarily stored under the respective conditions without compression.
The measurements were conducted continuously for a duration of 10 days.
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Table 1. Storage of lamb in 6 groups.

Group Temperature (◦C) O2 (%) CO2 (%) N2 (%)

A 4 70 20 10
B 4 50 40 10
C 4 Air Air Air
D 10 70 20 10
E 10 50 40 10
F 10 Air Air Air

During the experiment, under different temperature conditions (4 ◦C and 10 ◦C) and
various modified atmosphere packaging combinations, the tested samples were taken out
daily for a period of 10 days and allowed to equilibrate at room temperature (approximately
20 ◦C). This step facilitated the sufficient evaporation of surface moisture from the samples
and ensured stable contact of the meat surface with air, thereby reducing errors during
spectral data collection [31]. Subsequently, the lamb meat samples were subjected to
texture analysis using a texture analyzer, and a portion of the lamb meat was taken for
TVB-N content analysis. Finally, the samples were placed in a near-infrared spectroscopy
instrument for spectral data collection. The evaluation indices for lamb meat freshness
obtained are depicted in Figure 2.
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2.2. NIR Spectral Data Acquisition

The near-infrared spectroscopy instrument was powered on and allowed to preheat
for a minimum of 30 min. After performing resolution calibration, the finely ground
lamb meat was densely packed into the sample cup provided with the instrument. Care
was taken to ensure that the meat was uniformly distributed at the bottom of the cup
without any air bubbles. A customized standard white plate was placed over the opening
of the sample cup to avoid any spectral data anomalies caused by human manipulation
or external environmental factors. The sample cup was then placed on the instrument’s
sample tray, and the scanning process was initiated to obtain spectral data. A total of
180 samples were prepared, and each sample was scanned five times, resulting in a total of
900 spectral data records.

2.3. Determination of Physical and Chemical Indexes
2.3.1. Determination of Texture Characteristics

The texture analysis was conducted using the texture analyzer from SMS Company,
UK. There are various evaluation methods for texture, and the commonly used method is
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texture profile analysis (TPA), which simulates the chewing movement in the oral cavity [32].
The sample was compressed twice during the test, and the test process was connected to a
computer, which provided an interface for outputting the texture test curve. A P5 probe
was selected, with a testing speed range of 0.1–10 mm per second (mm/s), testing distance
accuracy of 0.1 mm, and testing force accuracy of 0.1 g. Three different points on each
sample were selected for measurement, resulting in a total of 540 data records.

With increasing storage time, lamb meat exhibits increased hardness, cohesiveness,
and chewiness due to protein degradation, moisture loss, and changes in connective
tissues [33]. However, elasticity and adhesiveness tend to decrease.

2.3.2. TVB-N Content Determination

The method for determining TVB-N in this experiment followed the guidelines out-
lined in GB 5009.228-2016 [34]. Approximately 10.00 g of ground lamb meat sample was
weighed and transferred to a 50 mL centrifuge tube. Then, 40 mL of 0.6 molar per milliliter
(mol/L) perchloric acid solution was added to the tube to make it up to volume. The
tube was centrifuged at 4000× g revolutions per minute (rpm) for 10 min in a centrifuge
machine. Subsequently, 20 mL of the supernatant was transferred to a digestion tube in
a Kjeldahl nitrogen analyzer for the determination of TVB-N content. Each sample was
tested three times, and the average value was calculated. According to the regulations
specified in GB 2707-2016 [35] “National Food Safety Standard for Fresh (Frozen) Livestock
and Poultry Products”, the TVB-N content of chilled lamb meat with first-grade freshness
should not exceed 15 milligrams per 100 g of lamb meat (15 mg/100 g).

2.4. Statistical Analysis
2.4.1. Abnormal Spectral Sample Rejection

In qualitative analysis, samples corresponding to spectral anomalies are commonly
referred to as abnormal samples. The Mahalanobis distance (Di) is calculated for each
sample, and an outlier threshold (Dth) is set to identify and remove abnormal samples [36].
The calculation method for the Mahalanobis distance of each sample is as follows:

D2
i = (ti − T)M−1(ti − T)′ (1)

T = (∑m
1 ti)/m (2)

where M represents the covariance matrix of the principal component scores matrix of the
training set spectra, ti denotes the principal component score vector of sample i, T is the
average score matrix of m training set samples, and Di represents the Mahalanobis distance
of training set sample i.

The formula for calculating the threshold for detecting abnormal samples in the
training set is as follows:

Dth = Dm + e · σd. (3)

Given the threshold adjustment weight coefficient e, where Dm and σd represent the
average value and standard deviation of the Mahalanobis distances for m samples, if
Di ≥ Dth, the ith sample in the training set is considered an abnormal sample and is
removed. Conversely, if Di < Dth, it is considered that the spectrum of sample i in the
principal component space is similar to the others in the training set.

2.4.2. Spectral Preprocessing

Before establishing the prediction model, six different spectral preprocessing meth-
ods with distinct effects [37] were employed. Multi-scatter calibration (MSC) effectively
eliminates spectral differences caused by varying levels of scattering, thus enhancing the
correlation between spectra and data [38]. Standard normal variate transformation (SNV)
reduces the gaps and differences between two spectra, resulting in more compact spectra.
This transformation helps eliminate differences caused by factors such as particle size,
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leading to increased consistency among spectra with similar sample properties. Normal-
ization (Nor) scales and shifts spectra proportionally to eliminate the influence of data
dimensions, ensuring comparability between spectral indices. It is crucial for establishing
the model. [39] Savitzky–Golay smoothing (SG) is a convolutional smoothing technique
that suppresses signal fluctuations, thereby reducing spectral noise. Savitzky–Golay’s
first-order derivative (SG-1st) and second-order derivative (SG-2nd) also provide some
inhibition of signal vibrations, contributing to noise reduction in the spectra.

2.4.3. Selection of the Characteristic Wavelength

To address the issue of redundant spectral bands and noise affecting modeling accuracy
within a large number of wavelength points, it is essential to identify wavelength points
that contribute significantly to the modeling results. Feature wavelength selection, where
a subset of wavelengths replaces the entire spectrum, can be employed. In this study,
three feature wavelength selection methods were used: competitive adaptive reweighted
sampling (CARS) [40], successive projections algorithm (SPA) [41], and uninformative
variable elimination (UVE) [42]. These methods aim to identify the most informative
wavelength points for modeling by considering their contributions to prediction accuracy.

2.4.4. Division of the Sample Set

The experimental samples were divided into training and prediction sets using three
methods: random partitioning, Kennard–Stone, and SPXY algorithms. In the Kennard–
Stone (KS) algorithm, all samples are initially considered candidates for the training set.
Samples are selected one by one into the training set based on their distances. The algorithm
starts by choosing the two samples with the maximum Euclidean distance and adds them
to the training set. Subsequently, for each remaining sample, the Euclidean distance to each
known sample in the training set is calculated. The sample with the maximum minimum
distance is selected and added to the training set. This process continues until the desired
number of samples is reached [43]. The formula for calculating the Euclidean distance is
as follows:

dx(p, q) =
√

∑N
j=1

[
xp(j)− xq(j)

]2; p, q ∈ [1, N]. (4)

The SPXY algorithm is an extension of the KS algorithm, which takes into account
both the x and y variables when calculating the distances between samples [44]. In the
SPXY algorithm, the distances between samples are calculated by considering the simul-
taneous variations in both the x and y variables. This allows for a more comprehensive
evaluation of the sample distances and provides a refined approach for sample selection in
the training set.

2.4.5. Model Construction

Partial least squares regression (PLS) is a modeling method used to fit multiple depen-
dent variables to multiple independent variables. It is commonly employed in constructing
linear regression models for spectral data and effectively addresses issues related to high
collinearity in the spectral data. By evaluating the regression curve on a validation set, the
method calculates the limit of detection (LOD) and limit of quantification (LOQ) for the
model [45].

Support vector machine (SVM) is a powerful machine learning algorithm widely
used in both classification (SVC) and regression analysis (SVR). It is known for its strong
mathematical theoretical support, high interpretability, and independence from statistical
methods. SVM is particularly suitable for handling small-batch samples.

2.4.6. Reliability Verification of the Model

The determination coefficients (R2c and R2p) and root mean square errors (RMSEC,
RMSEP) are used as model evaluation metrics, based on the training set and prediction set.
The formulas for these calculations are provided in Equations (5) and (6). The determination
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coefficient (R2) is a statistical measure that reflects the correlation between the absorbance
at specific wavelengths and the physicochemical properties of the samples. RMSEC is used
to assess the fitting accuracy of the constructed model, while RMSEP is used to evaluate
the predictive ability of the model for target samples [46]. A higher R2 value closer to 1 and
a smaller RMSE indicate a better agreement between the measured and predicted values,
indicating a more reliable model [47].

R2 = 1−

1
M

m
∑

i=1
( fi − yi)

2

1
m

m
∑

i=1
(yi − yi)

2
(5)

RMSE =

√
1
m ∑m

i=1 ( fi − yi)
2 (6)

In the Equations provided: fi represents the true value of the ith sample, yi represents
the predicted value of the ith sample, yi represents the average value of all the true values
of the samples, and M represents the number of samples.

2.5. Software and Programs

The data for this study were stored using Excel software (2016 edition, Microsoft
Corporation, Washington, DC, USA). The variable selection, spectral preprocessing, out-
lier removal, and construction of prediction models were implemented using MATLAB
software (2020 edition, MathWorks Corporation, Natick, MA, USA).

3. Results and Discussion
3.1. Textural Properties and TVB-N Value Analysis

The trends of the indicators under different lamb meat storage conditions over time
are shown in Figures 3 and 4. Hardness, elasticity, cohesiveness, adhesiveness, and chewi-
ness did not show a clear increasing or decreasing trend over time, indicating significant
fluctuations in the texture parameters. This suggests that there is considerable interference
during measurement, leading to some level of data error. Therefore, it is necessary to select
specific indicators to ensure the accuracy of the model. Based on modeling analysis, it was
found that resilience and TVB-N exhibited higher prediction accuracy compared to other
indicators. The prediction accuracy of the remaining indicators was below 0.6, with model
errors exceeding the acceptable range. Hence, those indicators were discarded. Finally,
rebound and TVB-N were selected as parameters for modeling.

As time increases, the noticeable decrease in rebound indicates a decline in lamb meat
quality and a reduction in freshness. The decline in resilience is relatively slow from 0
to 5 days, but the rate of decline accelerates after the 6th day. This may be attributed to
significant meat spoilage during the later stages of storage, resulting in substantial loss of
moisture, extensive tissue damage, and enhanced bottom effect [48]. On the other hand,
the TVB-N content in each group shows a significant increase with increasing storage time.

3.2. Spectral Preprocessing Results

To select the threshold range, partial least squares regression (PLS) is used to model
and predict. The root means square error of cross-validation (RMSEC) is calculated, and
the optimal weight coefficients and threshold are determined based on the minimum
RMSEC. The corresponding outlier sample serial numbers are identified and removed.
Similarly, using the same approach, the best spectral preprocessing methods for modeling
with resilience and TVB-N as parameters are found to be the SG-2nd method and the
MSC method.
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If the original spectral data is directly subjected to Mahalanobis distance-based out-
lier removal, a total of 111 samples are removed, including severe outliers as shown in
Figure 5. The red dashed line represents the threshold, and the area above the dashed line
corresponds to the removed portion, while the area below represents the retained sample
numbers. However, since the number of removed samples is relatively large compared
to the original sample size, it is advisable to perform preprocessing first and then remove
the outliers.
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After applying the 6 preprocessing methods, the number of removed outliers varies for
each method, as shown in Table 2. Among them, the SG-2nd preprocessing method resulted
in the least number of removed outliers, with 7 samples, while the SG preprocessing method
had the highest number of removed outliers, with 111 samples. The spectra after removing
outliers for each preprocessing method are shown in Figure 6.

Table 2. Number of abnormal samples rejected by 6 spectral preprocessing methods.

Preprocessing Methods Number of Abnormal Rejection Samples

MSC * 29
SNV 28
Nor 15
SG 111

SG-1st 109
SG-2nd 7

* MSC, multi-scatter calibration; SNV, standard normal variate transformation; Nor, normalization; SG, Savitzky–
Golay smoothing; SG-1st, SG first-order derivative; SG-2nd, SG second-order derivative.
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3.3. Results of Dividing the Sample Set

The experimental samples were divided into training and prediction sets using three
different methods: random splitting, Kennard–Stone algorithm, and SPXY algorithm. Since
the number of samples varies after combining each preprocessing method with outlier
removal, the ratio of a training set to a prediction set was set to 7:3 for consistency.

To compare the effectiveness of different sample partitioning methods, R2 and RMSE
were used as indicators to select the best partitioning method. According to Table 3, the
prediction set R2 values for the KS algorithm and SPXY algorithm are the same, both
at 0.6257. However, the SPXY algorithm has a lower RMSEP value compared to the KS
algorithm. On the other hand, the random splitting method resulted in the prediction set
R2 values ranging from 0.57 to 0.72, showing less stability compared to the SPXY algorithm.
Additionally, the RMSEP values for random splitting were all higher than those of the
SPXY algorithm. In summary, it is recommended to use the SPXY algorithm for data set
partitioning and model building.
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Table 3. Model prediction results under 4 sample division methods (TVB-N).

Classification
Method

Number of Principal
Components

Training Set Prediction Set

R2c * RMSEC R2p RMSEP

Random division

10 0.7706 1.6311 0.7199 2.0226
10 0.7835 1.6952 0.6581 1.8747
8 0.7161 1.8673 0.7185 1.9128
10 0.7188 1.5935 0.7139 1.9707
10 0.8104 1.5934 0.5797 2.0873

KS 10 0.7029 1.7040 0.6257 1.8912
SPXY 9 0.6552 1.8733 0.6257 1.7972

* R2c, training set determination factor; R2p, prediction set decision factor; RMSEC, training set root mean square
error; RESEP, prediction set root mean square error; KS, Kennard–Stone; SPXY, sample set partitioning based on
joint X-Y distance.

3.4. Feature Wavelength Selection Results

The wavelength points for acquiring spectral data from the instrument are 1921. Within
a large number of wavelength points, there are redundant spectral bands and noise. By
eliminating irrelevant wavelengths and replacing them with characteristic wavelengths,
the model can be simplified. Taking TVB-N as an example, the sequence number of
wavelength points is obtained through the UVE method, and random noise is added to
each curve corresponding to the sequence number of the wavelength points. A total of 920
characteristic wavelength points were selected. However, this method may result in too
many characteristic wavelength points and potential collinearity issues. Therefore, the UVE
method is more suitable for the rough selection of characteristic wavelength points. Based
on the SPA method, 9 characteristic wavelength points were obtained, namely 729, 1012,
1154, 1409, 2069, 2167, 2283, 2568, and 2600. The CARS method determines the optimal
subset based on the lowest root mean square error value from cross-validation and obtains
60 variables. The variable selection results from each method are shown in Figure 7.
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3.5. Prediction Modeling
3.5.1. Results of PLS Model Based on Characteristic Waveform

The predictive modeling results for the response variable, based on the SG-2nd method
for spectral preprocessing and incorporating three different feature wavelength treatments,
are presented in Table 4. After the selection of feature wavelengths, the accuracy of the
predictive model for the response variable significantly improved. Among them, the SG-
2nd-SPA model showed the best performance (R2c = 0.95, R2p = 0.94). Modeling the TVB-N
variable and comparing it with the full spectral range PLS model, all evaluation metrics
improved when using the MSC combined with three feature wavelengths in the PLS model.
The PLS model without any treatment yielded an effectiveness of 0.45, which improved
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to 0.62 after MSC preprocessing. Furthermore, after wavelength treatment, the model
accuracy reached 0.7 to 0.75, with the UVE method showing the highest accuracy of 0.74,
corresponding to an RMSEP of 1.81. This effectively enhanced the model’s accuracy. The
prediction results of the MSC-UVE-PLS model for TVB-N are depicted in Figure 8.

Table 4. PLS model prediction results for 2 indicators.

Physical and
Chemical Indicators

Preprocessing
Methods

Number of Principal
Components

Training Set Results Prediction Set Results

R2c * RMSEC R2p RMSEP LOD LOQ

Rebound

None 10 0.63 1.03 0.46 1.26 56.99 130.85
SG-2nd 9 0.90 0.06 0.886 0.07 120.82 370.83

SG-2nd-CARS 9 0.93 0.05 0.91 0.06 12.81 45.36
SG-2nd-UVE 8 0.94 0.05 0.91 0.06 13.56 47.42
SG-2nd-SPA 7 0.95 0.04 0.94 0.05 15.93 53.65

TVB-N

None 10 0.63 1.03 0.45 1.38 10.69 33.54
MSC 9 0.65 1.87 0.63 1.79 46.99 120.36

MSC-CARS 9 0.78 1.64 0.73 1.82 46.98 140.94
MSC-UVE 10 0.78 1.66 0.74 1.81 126.45 374.65
MSC-SPA 9 0.71 1.89 0.72 1.89 13.26 80.83

* R2c, training set determination factor; R2p, prediction set decision factor; RMSEC, training set root mean
square error; RESEP, prediction set root mean square error; none, raw spectrum without using any preprocessing
technique; SG-2nd, SG second-order derivative; MSC, multi-scatter calibration; CARS, competitive adaptive
reweighted sampling; SPA, successive projections algorithm; UVE, uninformative variable elimination; LOD, limit
of detection; LOQ, limit of quantification.
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3.5.2. Results of the SVM Model Based on the Characteristic Waveform

According to Table 5, the SVM model demonstrates good predictive performance for
both indicators. The SG-2nd-SVM and MSC-SVM models improve the model’s performance
by 0.3 to 0.4. Building upon this, when combined with SPA and UVE wavelength treatments,
there is a slight further improvement in model performance. Regarding the response
indicator, the SG-2nd-SPA model shows the best performance (R2c = 0.94, R2p = 0.90).
However, for predicting TVB-N content, the SVM models, after wavelength selection using
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the CARS and SPA algorithms, exhibit lower accuracy compared to before the treatment.
Hence, the optimal approach is MSC-UVE. Figure 9 illustrates the prediction results of the
MSC-UVE-SVM model for TVB-N.

Table 5. SVM model prediction results for 2 metrics.

Physical and
Chemical Indicators

Preprocessing
Methods

Wave Length
Point

Training Set Results Prediction Set Results

R2c * RMSEC R2p RMSEP LOD LOQ

Rebound

None 1921 0.60 0.14 0.58 0.16 13.67 35.62
SG-2nd 1921 0.86 0.07 0.83 0.08 46.96 130.25

SG-2nd-CARS 87 0.90 0.06 0.86 0.07 33.87 101.60
SG-2nd-UVE 1034 0.91 0.05 0.87 0.07 27.20 81.61
SG-2nd-SPA 14 0.94 0.05 0.90 0.06 37.18 111.54

TVB-N

None 1921 0.70 0.92 0.59 1.19 27.70 86.16
MSC 1921 0.94 0.12 0.93 0.75 276.56 812.62

MSC-CARS 60 0.92 0.98 0.88 1.22 16.36 46.98
MSC-UVE 920 0.96 0.67 0.95 0.80 16.35 49.38
MSC-SPA 9 0.89 1.16 0.87 1.28 120.34 315.32

* R2c, training set determination factor; R2p, prediction set decision factor; RMSEC, training set root mean
square error; RESEP, prediction set root mean square error; none, raw spectrum without using any preprocessing
technique; SG-2nd, SG second order derivative; MSC, multi-scatter calibration; CARS, competitive adaptive
reweighted sampling; SPA, successive projections slgorithm; UVE, uninformative variable elimination; LOD, limit
of detection; LOQ, limit of quantification.
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3.6. Comparison of PLS and SVM Models

Both models show consistent performance for predicting the rebound variable, with
the optimal model obtained from the linear PLS model (SG-2nd-SPA-PLS). However, for
predicting TVB-N content, the SVM model is more suitable. In a longitudinal comparison
with the PLS model, the SVM model outperforms it, with higher R2 values for both the test
and prediction sets. The MSC-UVE-SVM model shows a strong linear correlation between
predicted and actual values, indicating its superior performance and making it the best
model. To further validate the developed models, three new samples were tested, including
pure lamb meat, pure chicken meat, and a 50% chicken–lamb meat mixture. The results
are shown in Figure 10, and they demonstrate good performance. The PLS model based
on the response variable achieved an R2

train of 0.93 and an R2
test of 0.90, while the SVM
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model based on TVB-N content achieved an R2
train of 0.94 and an R2

test of 0.93. These
results indicate that linear PLS regression performs well for predicting target values with
small variations, while SVM is a modeling method suitable for small-sample situations
with large variations in the target values.
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4. Conclusions

This study employed the parameters of response and TVB-N to comprehensively
evaluate the quality of modified atmosphere-packaged lamb meat and developed a pre-
diction model based on near-infrared spectroscopy. The results revealed that when using
the response parameter, the SPA-PLS model based on second derivative preprocessing
achieved the highest accuracy, with an R2p of 0.9383 for the prediction set. On the other
hand, when using TVB-N as the parameter, the UVE-SVM model based on MSC prepro-
cessing demonstrated the best performance, with a model prediction R2p of 0.9482. The
study findings demonstrate that the combination of near-infrared spectroscopy and chemo-
metrics significantly improves the prediction performance of TVB-N content in lamb meat
and achieves rapid non-destructive detection. In terms of model performance, the linear
regression model PLS is more suitable for regression prediction problems with smaller
variations in the target value compared to the SVM model. Integrating machine learning
algorithms to develop regression prediction models can better exploit the information
in near-infrared spectroscopy. The developed method offers advantages such as simple
preparation, high throughput, and good performance, which will contribute to the quality
and safety control of meat products in the food industry. It also provides a theoretical basis
and technical support for the development of portable near-infrared spectrometers for the
rapid freshness determination of lamb meat.
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