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Abstract: Cultured meat is one of the meat substitutes produced through tissue engineering and
other technologies. Large-scale cell culture is the key for cultured meat products to enter the market.
Therefore, this study is aimed to explore the effect of long-term passage in vitro on smooth muscle
cells (SMCs) and the effect of transforming growth factor-β1 (TGF-β1) on SMCs in the late passage.
Multiple passages lead to the decline of the proliferation rate of SMCs in the proliferation stage and
the differentiation ability in the differentiation stage. Transcriptome results showed that the ECM
pathway and aging-related signaling pathways were significantly up-regulated in the late passage
period. TGF-β1 did not promote SMCs of late passage proliferation at the proliferation stage but
promoted the gene and protein expression of collagen as the main protein of the extracellular matrix
proteins at the differentiation stage. In addition, proteomic analysis revealed that TGF-β1 promoted
the expression of cell adhesion molecules which activate the Hippo signaling pathway and the HIF-1
signaling pathway and further promoted the production of collagen-containing extracellular matrix
proteins. This could provide ideas for large-scale production of cultured meat products using SMCs.

Keywords: cultured meat; large-scale cultivation; SMCs; TGF-β1; extracellular matrix proteins

1. Introduction

The rapidly growing world population will increase meat consumption in the future.
With the improvement of the consumption level of meat products, the expansion of traditional
animal husbandry and the breeding industry has been promoted [1,2]. Intensive animal hus-
bandry has brought a series of problems, such as land use, energy consumption, greenhouse
gas emissions and animal welfare [2–6]. Therefore, traditional livestock breeding for meat
production may be unsustainable in the future, and technological innovation is needed to
meet the growing global demand for meat consumption while protecting the environment.
In order to solve a series of problems caused by meat production, people are also searching
for meat substitutes to replace traditional meat, such as plant protein, insect protein, fungal
protein, etc. [7]. However, due to people’s inherent desire for meat-flavored and -textured
foods, researchers have further studied techniques that may produce animal proteins.

As one of the emerging disruptive technologies for traditional animal husbandry,
cultured meat has attracted wide attention due to its advantages of traceability, food
safety, greenness and sustainability [8]. Cultured meat technology is a technology of
cultivating cells in vitro and inducing cell differentiation to produce animal proteins for
meat production. Although the technology of cultured meat has developed rapidly in
recent years, there are still many technical difficulties, including the functional maintenance
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of cultured cells in vitro [9], the development of a serum-free culture medium [10], a
three-dimensional cell culture to construct simulated meat [11], etc. In addition, the
reagents currently used to produce cultured meat products have food safety risks, and
the subsequent realization of organic production to reduce food safety risks is the key to
achieving cultured meat on the table to pass the examination of government. Hence, there
is also a need to develop more seed cells that can be used to cultured meat production.
Many types of cells are incorporated into the preparation of cultured meat, including
muscle stem cells [12], adipocytes [13], fibroblasts [14], etc. These cells will produce muscle
protein, fat, extracellular matrix protein and other components after differentiation, which
endow the cultured meat products with good quality attributes. In combination with tissue
engineering technology, the texture of products prepared by inducing differentiation of
these cells in vitro is quite different from that of traditional meat products [15]. As one of
the three major muscle types, smooth muscle has dense connective tissue network and high
content of collagen, so the shear force of meat by-products composed of smooth muscle
is far greater than that of skeletal muscle [16]. SMCs, which make up smooth muscle
tissue, produce both muscle proteins [15] and extracellular matrix proteins [17], which are
considered a good choice for seed cells in cultured meat.

SMCs have two phenotypes: contractile and synthetic. In vivo, highly differentiated
SMCs are contractile phenotypes that are at rest and heavily express contractile proteins [18].
In vitro, SMCs gradually changed from contractile cells to synthetic cells and then began to
migrate and proliferate and secrete some extracellular matrix proteins [19,20]. If SMCs prop-
erties are used as seed cells for cultured meat production, the secretory and proliferative
properties of SMCs in long-term culture in vitro need to be further evaluated. In addition,
the large-scale cultivation is essential if cultured meat is to reach the market in the next few
years [21]. From the initial two-dimensional culture to the later three-dimensional culture
such as bioreactors, many meat culture teams have been optimizing biological processes
through innovative technologies [22]. Since the cells themselves cannot proliferate indefi-
nitely in vitro, the amount of cells harvested during the expansion culture process will be
affected by the characteristics of the cells themselves [23]. Large-scale cell expansion means
that SMCs need to be subcultured in vitro many times, and cells are bound to be aged.
Transforming growth factor β1 (TGF-β1) is the principal pro-fibrotic factor [24,25], which
is considered to be the main acting factor in fibrotic diseases. In addition to the classical
TGF-β/Smad signaling pathway, upregulation of interleukin-11 (IL-11) is a major transcrip-
tional response to TGF-β1 treatment and is required for its profibrotic effects [26,27]. IL-11
and its receptor (IL11RA) are specifically expressed in fibroblasts, where they drive an
atypical ERK-dependent autocrine signal to promote fibroblast synthesis [28,29]. Current
studies on the promoting effect of TGF-β1 on fibrin production by cells have focused more
on pathological studies.

Therefore, this research aims to investigate the effects of long-term passage on SMCs
and then explore the effects of TGF-β1 on the function of SMCs in the later passage and
further explore its action pathways. This should help improve the properties of SMCs as
seed cells for cultured meat production and provide theoretical guidance for industrial
production of cultured meat.

2. Materials and Methods
2.1. Cell Culture and Reagent

The cells used in all experiments were isolated from healthy pigs (piglets aged 3 to
7 days). All animal care and experimental protocols were approved and carried out in
accordance with the Animal Care and Use Committee of Nanjing Agricultural University.
In this part of the experiment to study the effects of long-term passage on SMCs, primary
SMCs were cultured by continuous passage, and P2, P4, P6, P8, P10, P12 and P14 samples
were collected for the determination of indexes. The cells frozen in liquid nitrogen were
resuscitated and cultured in a collagen-covered culture dish at 37 ◦C under 5% CO2. The cul-
ture method of SMCs is as described previously [30]. The proportion of SMCs proliferation
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medium was DMEM/F12 (Gibco, Carlsbad, CA, USA) supplemented with 15% fetal bovine
serum (Thermo, Waltham, MA, USA), 1% (v/v) penicillin/streptomycin (Gibco, USA) and
the addition of a final concentration of 5 ng/mL basic fibroblast growth factor (Genscript,
NKC, Zhenjiang, China). The SMCs’ differentiation medium was based on the proliferation
medium with serum reduced to 2% and no basic fibroblast growth factor added. In order
to study the effect of TGF-β1 on the function of late passage cells, passage 14 of cells was
used for the experiment and adding 5ng/mL of TGF-β1 (GenScript, NKC, China) for a
proliferation and differentiation medium for the culture of SMCs. The morphologic images
of the cells were observed daily with a bright field microscope (Olympus, Tokyo, Japan),
and the cell proliferation was recorded during the passage.

2.2. Quantitative Real-Time PCR

In this study, real-time quantitative PCR was used to detect the gene expression of
related proteins in cells under different states. The sample harvesting method of real-time
quantitative PCR is consistent with that described in previous research [31]. The total RNA
of smooth muscle cells was collected and extracted according to the instructions. RNA
concentration and purity were determined using Nano Drop2000 (Agilent Technologies,
Santa Clara, CA, USA). RNA was reverse-transcribed into cDNA using a qScript cDNA
Super Mix kit (TAKARA, QKV, Japan) according to the manufacturer’s instructions. The
cDNA, primers of corresponding genes and reagents needed for PCR were configured
into the machine system according to the manufacturer’s instructions. RT-qPCR was
conducted using CFX Opus (BIO-RADXR, Hercules, CA, USA) and performed according
to the amplification procedure specified in qPCR RT kit. The gene expression levels of
the following proteins were determined: muscle proteins (actin, myosin heavy chain
(MyHC)), proteins associated with SMCs differentiation (smoothelin) and extracellular
matrix proteins (collagen III, collagen I, laminin, elastin and fibronectin). The relative
differences in each sample were corrected using GAPDH mRNA as an internal control and
normalized to the control level by the 2−∆∆Ct method. Finally, the relative gene expression
data were imported into GraphPad Prism for mapping.

2.3. Western Blot Analysis

The protein expression of SMCs was determined by Western blots. The sample col-
lection and Western blots methods were performed according to Tom Ben-Arye [32]. The
protein sample collection method for two-dimensional cells is as follows: suck up the
culture medium of the cells in the Petri dish and add an appropriate amount of phosphate-
buffered saline (PBS) for cleaning. Clean it three times to ensure that the residual culture
medium is removed. Slightly dry PBS in a Petri dish and add precooled radioimmunopre-
cipitation assay (RIPA) lysis buffer (Beyotime, CGO, Shanghai, China) plus 1% protease
inhibitors (Beyotime, CGO, China) to lyse cells for proteins collection in cells. The ex-
pression of muscle protein (actin, MyHC), phenotypic protein (smoothelin), extracellular
matrix protein (collagen I, collagen III) and GAPDH (control) was detected in SMCs. An
equal amount of total protein (20 µg) was loaded onto a 4–20% SDS-PAGE gel. After
electrophoresis, the SDS-PAGE gels were placed on a wet transfer device for operation.
And the proteins were then transferred to polyvinylidene fluoride (PVDF) membranes
(GenScript, CGO, China). At the end of the transfer, the nitrocellulose membrane cut out
the target band according to the knowledge of protein markers and put it into 5% skim milk
powder for sealing at room temperature for two hours. After the closure of milk powder,
the membranes were rinsed three times with TBST buffer (Tris, NaCl, Tween-20) and then
incubated for 12 h at 4 ◦C with primary antibodies. The primary antibodies used in this
experiment are as follows: mouse anti-GAPDH (1:1000; Millopore, Burlington, MA, USA),
rabbit anti-α-SMA (1:500; Abcam, EGSC), mouse anti-smoothelin (1:200; Abcam, EGSC),
mouse anti-MyHC (1:500; Invitrogen, Carlsbad, CA, USA) and mouse anti-collagen III
(1:500; Santa Cruz Biotechnology, Dallas, TX, USA). After the incubation of the primary
antibody, the primary antibody was recovered, and the membranes were cleaned three
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times with TBST. The second antibody was then added to the membrane and incubated
at room temperature for 2 h. The horseradish peroxidase-conjugated goat anti-mouse
IgG (1:2000) (CWBio, Taizhou, China) and horseradish peroxidase-conjugated donkey
anti-rabbit IgG (1:2000) (CWBio, Taizhou, China) are the secondary antibodies used. After
incubation, the membrane was colored with horseradish peroxidase chemiluminescence
detection kit (Beyotime, CGO, China), and the expression of related proteins was detected
with protein imaging system (Bio-Rad, CA, USA).

2.4. Immunocytochemistry

The expression of extracellular matrix proteins and muscle protein in SMCs was
measured by immunofluorescence technique. At first, the two-dimensional cultured cells
were fixed with 4% paraformaldehyde at 4 ◦C, and the samples were preserved at 4 ◦C.
After the fixative is removed, the cells are cleaned three times with PBS, and the action
should be gentle. And then cells were perfused with 0.5% Triton X-100 (PBS configuration)
at room temperature for 15 min. After the transparency is completed, the cells were
cleaned again and then incubated with primary antibody (actin, collagen III, DAPI) at 4 ◦C
overnight. After the incubation of the primary antibody, the antibodies were recovered and
washed with PBS five times. And then the cells were incubated with Goat anti-rabbit IgG
secondary antibody (1:1000) (British Abcam, EGSC) and Goat anti-mouse IgG secondary
antibody (1:1000) for 1 h at room temperature (Leica TCS sp8x, Weztlar, Germany).

2.5. Sirius Red Staining

The two-dimensional cultured cells were washed three times with PBS and fixed with 4%
paraformaldehyde. The fixed sample was washed three times with PBS and then incubated
with Sirius red staining solution for one hour away from light at room temperature. The
incubated samples were washed three times with ultra-pure water and observed directly by
microscopy. The image was taken with a microscope (Olympus, TKY, Japan).

2.6. Transcriptomics

The sample processing and collection methods of transcriptomics were performed
according to Bonardi [33] with slight modification. When the cells were cultured to 80%
confluence, the medium was drained, and the cells were washed three times with PBS.
After PBS was dried, TRIzol reagent (Ambion, TX, USA) was added to collect RNA samples.
Then, the total RNA of SMCs was collected and extracted according to the instructions.
Nano Drop2000 (Agilent Technologies, CA, USA) was used to determine the integrity and
amount of RNA prior to sending RNA sequencing. Passage 2 and passage 12 SMCs were
used for cell RNA sample collection.

2.7. Proteomics

Proteomic sample processing and collection was conducted as required by the se-
quencing company. After removing the medium, the cells in the culture dish were cleaned
three times with PBS, and then the appropriate amount of PBS was added to hang the cells
down with the cell scraper and collect them into the centrifuge tube. Collected cell samples
were stored in a −80 ◦C refrigerator until sequencing.

2.8. Statistical Analysis

The statistical analysis used SAS 8.0 (SAS Institute Inc., Cary, NC, USA), and graph
production used GraphPad Prism 5. The t-test and one-way ANOVA were used to calculate
the difference between different treatments. The data were considered significantly different
if p < 0.05.
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3. Results and Discussion
3.1. Effect of Long-Term Subculture on SMCs Function In Vitro

Cultured meat companies need to expand their production scale to further com-
mercialize. The expansion of cell culture is an important point to further promote the
commercialization of cultured meat. This means that cells need to be cultured on a large
scale in vitro. At present, the containers used to culture cells in vitro mainly include two-
dimensional Petri dishes and three-dimensional microcarriers, but their surface areas are
limited, so cells must be passaged to harvest more cells [34–36]. Therefore, we further
studied the damage of long-term subculture on SMCs function and mastered the growth
rhythm of SMCs during culture in vitro to provide theoretical support for the use of SMCs
to produce cultured meat. The changes of SMCs morphology, multiplication factor, gene
expression and protein expression after long-term culture are shown in Figure 1. The cell
bright field diagram (Figure 1a) revealed that with the increase of cell passage times, the
morphology of cells in the early stage of passage was mostly small in area and clear in edge
outline, while in the late stage of passage, cells began to spread out in a larger area and the
edge outline was not clear. From the point of view of cell morphology, we believe that cells
with smaller area in the early stage of passage are in better condition, while cells in the late
stage of passage are more damaged in vitro, so they show the state of aging cells with an
unclear edge contour [37]. Then, the trypan blue counting method was used to measure
the proliferation ability of SMCs in the process of cell passage (Figure 1b). It was found
that the proliferation ability of SMCs decreased significantly (p < 0.05) with the increase of
passage times, and the proliferation of SMCs basically did not occur at passage 14. This
suggests that long term subculture in vitro may cause partial cell damage and decrease
the proliferation ability of SMCs. The gene expression of phenotypic proteins of SMCs
and the extracellular matrix protein in SMCs during the passage was further measured
(Figure 1c,d). The results showed that the gene expression of MyHC was significantly
up-regulated in SMCs at the later stage of passage, the gene expression of elastin was
significantly up-regulated and then decreased, and the initial expression of passage 10 was
no different from that of the previous generation (p < 0.05). The effect of passage on the
expression of muscle protein and extracellular matrix protein in SMCs was determined.
The results of Western blotting (Figure 1e) showed that with the increase of passage times,
the expression of smoothelin decreased and the expression of actin and MyHC increased
significantly, which means that continuous long-term passage caused SMCs to lose their
contractile phenotype and change into a synthetic phenotype [38], accompanied by the
secretion of large amounts of collagen. However, after cell passage to passage 14, synthetic
SMCs produced a large amount of contractility protein, and collagen expression decreased
again. This proved that SMCs became the synthetic phenotype at the initial stage of in vitro
culture, and continued passage of SMCs with this phenotype would damage part of its
function. The above results showed that the functional properties of the cells declined after
long-term culture in vitro, and the same phenomenon was observed in other seed cells of
cultured meat [39]. In addition, during the process of cell culture in vitro, the function of
cells will be damaged due to experimental operations such as pancreatic enzyme action
during multiple passages, fluid shear force during centrifugation, and the temperature
effect of cell cryopreservation and recovery. Cultured meat products are mainly made from
cells and cell products, and the total amount of cells and cell products determines the yield
of cultured meat [40]. The decline in the function of seed cells during culture means that the
production of animal protein decreases, thus reducing the yield of cultured meat products.
Therefore, improving the protein production of cells during in vitro culture is also one of
the focuses of research.
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Figure 1. Effect of long-term subculture on functional characteristics of SMCs. (a) Bright field
diagram of smooth muscle cells during passage. (b) Proliferation rate of smooth muscle cells in vitro.
(c,d) Gene expression of phenotypic proteins and extracellular matrix proteins in smooth muscle cells
during passage. (e) Protein expression levels of phenotypic proteins and extracellular matrix proteins
in smooth muscle cells during passage. The length of scale in the bright field diagram is 100 µm. In
the statistical results, * represents p < 0.05, ** represents p < 0.01, and *** represents p < 0.001.

3.2. Transcriptomic Analysis of the Effect of Long Passage on SMCs

In order to explore the specific pathway through which long-term subculture damages
SMCs in vitro, we conducted transcriptomic analysis of cells in the early and late stages
of passage. The results in Figure 2 showed that the transcriptomic samples had good
repeatability, with a total of 2319 differential genes, of which 1136 genes were up-regulated
and 1183 genes were down-regulated. KEGG enrichment analysis of differential proteins
revealed that differential genes were mainly concentrated in aging related signaling path-
ways, among which PI3K-Akt and MAPK signaling pathways were the most enriched
genes [41]. The heat map and signal path map (Figure 3a,b) of MAPK pathway differential
gene enrichment showed that the gene expressions of MAPK pathway receptor proteins
RAS and TGF-β were up-regulated. Aging causes and is associated with abnormal func-
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tion of multiple signaling pathways and many factors that maintain cell health [42]. The
activation of mTOR increases the protein synthesis of MKK6 and enhances the activation
of the p38 MAPK-p53 pathway leading to cell senescence [43,44]. Aging cells form oxida-
tive stress due to the accumulation of reactive oxygen species, thus activating PI3K and
mTOR and forming aging-related secretion phenotypes through the PI3K/mTOR signaling
pathway [45,46]. This indicates that SMCs cultured in vitro with synthetic phenotype will
also cause cell senescence after long-term passage. Meanwhile, some up-regulated genes
were enriched in the ECM-receptor interaction pathway. Heat maps and pathway maps of
ECM pathway (Figure 4a,b) enriched genes also showed down-regulated expression of the
collagen receptor response factor gene in SMCs at the later stage of passage senescent cells
when they begin to secrete some inflammatory proteins, showing a secretory senescence
phenotype, and produce fewer extracellular matrix proteins [47]. The cells lose rigidity and
become borderless. This is mainly due to increased activity of matrix metalloproteinases
and impaired signaling of TGF-β induced by reactive oxygen species produced during
aging [48–50]. Therefore, the results of transcriptomics suggest that long-term passage
activates the senescence related pathways of SMCs and down-regulates the gene expression
of extracellular matrix proteins. The possible reason is that oxidative stress of aging cells
affects the signaling of the TGF-β pathway, which provides direction for improving the
ability of SMCs to secret extracellular matrix proteins in the late passage.

3.3. TGF-β1 Promotes the Ability of SMCs to Secrete Collagen in Late Passage

The proliferation of SMCs slowed down at the later stage of passage; the production of
collagen did not change after the induction of low serum; and the plasticity of cells declined.
Research evidence confirms that TGF-β1 is a major regulator of ECM accumulation and
therefore may be key to ameliorating the decline in extracellular matrix proteins secreted
by aging SMCs in late passage [51]. In order to improve the secretion capacity of SMCs in
late passage, TGF-β1 was added at the differentiation stage in order to make the cells in late
passage secret more collagen to achieve the purpose of improving the texture of cultured
meat in the production process. The results in Figure 5 showed that TGF-β1 treatment did
not increase the proliferation rate of SMCs in the late passage stage. Real-time quantitative
PCR and Western blotting were used to determine the effect of TGF-β1 on gene and protein
expression of muscle proteins and extracellular matrix proteins in SMCs at the later stage of
passage. The results of RT-qPCR (Figure 5b,c) showed that TGF-β1 significantly promoted
the gene expression of actin, myosin and elastin in SMCs. The quantitative results of protein
(Figure 5d) also showed that TGF-β1 promoted the protein expression of myosin, collagen
type I and collagen type III. This means that the ability to secrete extracellular matrix proteins
increased after SMCs were treated with TGF-β1 at the differentiation stage, as well as the
expression of muscle proteins. Meanwhile, the addition of TGF-β1 significantly promoted
the expression of smoothelin in the differentiation stage. Smoothelin was found only in fully
differentiated contractile SMCs. They are increasingly used to monitor the process by which
SMCs differentiate into systolic or synthetic phenotypes [52]. This means that SMCs in the
late passage may change from synthetic phenotype to contractile phenotype in response
to TGF-β1 and also express more phenotypic proteins that can be named muscle proteins.
The results of Sirius red staining (Figure 5e) and immunofluorescence staining (Figure 5f)
were found to be consistent with the results of protein Western blotting. The fluorescence
intensity of collagen staining in the TGF-β1 treated group was stronger than that in the
control group. In conclusion, TGF-β1 can not only promote the secretion of collagen in
SMCs at the late stage of passage but also promote the expression of muscle proteins. The
structure of traditional meat is made up of muscle fibers, adipose tissue and a network
of connective tissue. Collagen is the main component of connective tissue in traditional
meat, giving it its background toughness. This property of TGF-β1 that promotes SMCs to
produce more collagen can be applied to produce cultured meat with customized texture
using SMCs. In order to further mimic the natural structure of meat, muscle stem cells, fat
cells and ECM protein-producing cells (such as fibroblasts, smooth muscle cells, etc.) may
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be co-cultured to produce products with structure and sensory flavor closer to traditional
meat [14]. Moreover, TGF-β1 promotes the secretion of collagen in SMCs, which in the
co-culture system containing SMCs and muscle stem cells can further promote the adhesion,
migration and growth of other cells such as muscle stem cells. Therefore, for the cultured
meat product itself, the study of TGF-β1 promoting production of collagen in SMCs can
also be further applied to co-culture systems.
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Figure 5. Effect of TGF-β1 on smooth muscle cells in late passage. (a) The proliferation rate of smooth
muscle cells treated with TGF-β1 during the proliferative stage. (b,c) Gene expression of phenotypic
proteins and extracellular matrix proteins in smooth muscle cells treated with TGF-β1 during the
differentiation stage. (d) Protein expression levels of phenotypic proteins and extracellular matrix
proteins in smooth muscle cells treated with TGF-β1 during the differentiation stage. (e) Sirius
red staining of smooth muscle cells. (f) Immunofluorescence image of smooth muscle cells. In the
statistical results, * represents p < 0.05, and *** represents p < 0.001.

3.4. Proteomic Analysis of the Effect of TGF-β1 on SMCs

Senescent cells begin to secrete a large number of inflammatory and proteolytic factors
and appear a state of functional damage [53–55]. The research shows that TGF-β1 is also
involved in regulating complex inflammation and generally considered to be an inhibitor of
excessive inflammation [56–58]. Therefore, what way TGF-β1 promotes collagen secretion
of SMCs at the later stage of passage was further analyzed by proteomics technology. The
results of proteomics (Figure 6b) showed that there were 75 different proteins, of which
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35 proteins were up-regulated and 40 proteins were down-regulated. Then, GO enrichment
analysis (Figure 6c) was performed for differential proteins, and the results showed that
differential proteins were mainly enriched in extracellular region, collagen-containing
extracellular matrix proteins, extracellular matrix proteins and filamentous actin and other
proteins. This result supports our previous conclusion that TGF-β1 can promote not only
extracellular matrix protein secretion of SMCs in the late passage but also secretion of
muscle protein. Then, KEGG pathway enrichment analysis (Figure 6d) was used to further
analyze the differential proteins, and the results proved that these differential proteins
were mainly enriched in cell adhesion molecules, insulin resistance, the Hippo signaling
pathway, the Apelin signaling pathway and the HIF-1 signaling pathway. These results
indicated that TGF-β1 greatly promoted the expression of extracellular matrix proteins
mainly through the activation of cell adhesion molecular pathways. In addition, the Hippo
pathway affects transcriptional programs important for cell proliferation, survival and
migration through YAP/TAZ phosphorylation activation and YAP/TAZ dephosphoryla-
tion shutdown [59–61]. It has been reported that YAP/TAZ also increases miR-130/301
expression in pulmonary vascular cells to induce collagen deposition and Lox-dependent
matrix remodeling [62]. Therefore, this indicated that TGF-β1 promoted Hippo pathway
activation and inhibited cell proliferation and may further affect collagen formation through
the Hippo pathway. Similarly, hypoxia-inducing factor-1α (HIF-1α) is thought to promote
fibroblast differentiation and extracellular matrix protein deposition [63]. These results
indicate that TGF-β1 treatment can promote the expression of cell adhesion molecules
which activate the Hippo signaling pathway and HIF-1 signaling pathway and further
promote the production of extracellular matrix proteins.
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4. Conclusions

This study aimed to explore the effect of long-term passage in vitro on porcine SMCs
and the effect of TGF-β1 on porcine SMCs in the late passage, and further proteomic
techniques were used to explore the potential mechanism of TGF-β1 action on SMCs.
These works have proved that multiple passages would decrease the proliferation rate
and differentiation ability of SMCs during the proliferation stage and differentiation stage.
Long-term passage activates the senescence related pathways of SMCs and down-regulates
the gene expression of extracellular matrix proteins. In addition, TGF-β1 can promote the
secretion of collagen and muscle proteins in SMCs at the late stage of passage. The results
of proteomics imply that TGF-β1 can promote the expression of cell adhesion molecules
which activate the Hippo signaling pathway and the HIF-1 signaling pathway and further
promote the production of extracellular matrix proteins. These results provide theoretical
support for SMCs to be better used as seed cells of cultured meat, so as to better help the
industrial production of cultured meat.
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