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Abstract: Perfluoroalkyl substances (PFASs) have been widely used in different types of consumer and
industrial applications such as surfactants, household cleaning products, textiles, carpets, cosmetics,
firefighting foams, and food packaging because of their good stability and special physicochemical
properties of hydrophobicity, oleophobicity, high temperature resistance, etc. Meanwhile, PFASs are
considered an emerging organic pollutant due to their persistence and potential toxicity to human
health. PFASs occur in edible oil, an important component of the global diet, mainly in three ways:
raw material contamination, process contamination, and migration from oil contact materials. Thus,
the occurrence of PFAS in edible oils has drawn more and more attention in recent years. In this work,
the pertinent literature of the last two decades from the Web of Science database was researched. This
review systematically addressed the potential sources, the contamination levels, and the progress of
the determination of PFASs in edible oil. It aims to provide a relatively whole profile of PFASs in
edible oil, render assistance to minimise human exposure to PFASs, and standardise the detection
methods of perfluoroalkyl substances in edible oil.
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1. Introduction

Since the 1930s, the fluorine chemical industry has grown, resulting in the production
and use of perfluoroalkyl substances (PFASs), which are a vast range of man-made aliphatic
chemicals. The production of perfluorooctanoic acid (PFOA) by 3M Co. in the 1950s has
been the starting point for the development of PFASs, with over 5000 compounds being
created in the past 70 years [1–3]. PFASs tend to be persistent and toxic under normal
environmental conditions because of their strong carbon-fluorine covalent bond [4,5].
A recently published article has suggested that PFAS should be treated as a unified group
due to the fact that their perfluorocarbon components are not easily decomposed or take a
long time to do so under natural conditions [6].

There have been plenty of published works confirming the toxicological effects of
PFASs. PFASs have been confirmed to have genotoxicity [7,8], liver toxicity [9,10], male
reproductive toxicity [11,12], as well as neurotoxicity [13,14], developmental toxicity [15,16],
immunotoxicity [17,18], endocrine disruption [19–21], and other toxicity [22,23]. PFAS
exposure has been shown to significantly increase incident mortality for liver cancer, kidney
cancer, and testicular cancer [24–26]. A higher presence of plasma-PFAS, particularly
perfluorobutanoic acid (PFBA), was linked to a more severe COVID-19 prognosis, and
this association was still evident even when taking into account variables [27,28]. As an
emerging organic pollutant, PFASs have potential risks to human health.

Dietary intake is considered to be the main route of human exposure to PFASs, partic-
ularly the consumption of foods with a high protein content because they easily bind to
protein [29]. Edible oils (refer to both animal fats and vegetable oils in this paper) of animal
origin typically come from high protein sources such as meat and fat, whereas those of

Foods 2023, 12, 2624. https://doi.org/10.3390/foods12132624 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods12132624
https://doi.org/10.3390/foods12132624
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0001-9160-1511
https://doi.org/10.3390/foods12132624
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods12132624?type=check_update&version=2


Foods 2023, 12, 2624 2 of 23

plant origin are typically extracted from oil crops. Some oil crops, like soybean, sunflower,
and rapeseed, are relatively high in protein (40% for soybean, 21% for sunflower, and
rapeseed) [30]. Thus, the raw materials for edible oil can be contaminated with PFAS. PFAS
contamination can also be introduced during the processing of edible oils [30]. Furthermore,
oil-contact materials such as plastic containers, cookware, or baking paper could lead to
PFAS migration to oil [31]. According to the information provided by the U.S. Department
of Agriculture, the production volume of edible plant oil, which is an important dietary
component, was close to 203 million tonnes in 2019 [32]. Thus, great attention should be
paid to the contamination of edible oil with PFAS.

Recently, researchers have been focusing on the potential for PFASs to accumulate in
edible oil and the implications this may have on food safety, as well as the behaviour of
these compounds in the food supply chain. The findings of the studies demonstrate that
these substances are highly persistent in the environment and can accumulate in the body
over time, leading to a range of adverse effects [2]. Hence, it is imperative to monitor PFAS
levels in edible oils in order to safeguard the health of consumers. To guarantee the safety
of edible oils, food manufacturers and regulatory authorities must take steps to reduce the
presence of PFASs and other contaminants in their products. This includes proper testing,
storage, and handling procedures to ensure that edible oils remain safe for consumption.
The determination of PFAS in edible oils is a complex process due to the various factors
involved. A suitable pre-treatment of samples and highly sensitive analytical techniques
are needed to minimise matrix interference and ensure accurate and reliable results [33,34].
Additionally, the fatty acids abundant in edible oil with a similar carbon skeleton to PFASs
can also cause misidentification [35]. These challenges must be taken into consideration
in order to ensure accurate and reliable results of the investigation and risk assessment of
PFAS contamination in edible oil.

Currently, there are very few reviews on PFAS studies in edible oil. This paper aims
to review the categories of PFASs, related legislation, the sources of PFASs in edible oil,
and analytical methods for PFASs in edible oil. The current progress and developing trend
of PFAS detection techniques in edible oil will also be addressed. The findings of this
review would provide insights into strategies to reduce human exposure to these harmful
chemicals and provide information for subsequent research and risk assessment.

2. Classification

PFASs consist of a chain of varying carbon length, on which all of the hydrogen atoms
bound to the carbon chain in the non-fluorinated substances have been replaced by fluorine
atoms [36]. Their chemical structure also contains a charged functional group attached at
one end [37]. Depending on the different functional groups of substitutes, PFASs can be
classified into ionic PFASs and neutral/non-ionic PFASs [38,39], as shown in Table 1. At am-
bient pH, ionic PFASs, including perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane
sulfonic acids (PFSAs), perfluoroalkane sulfinic acids (PFSIAs), perfluoroalkyl phosphonic
acids (PFPAs), perfluoroalkyl phosphinic acids (PFPIAs), and perfluoroalkane sulfonamides
(FASAs), are generally negatively charged. Neutral PFASs, usually as precursors of PFASs,
remain neutral at pH in water and remain in a non-dissociated state, including perfluo-
roalkane sulfonyl fluorides (PASFs), perfluoroalkanoyl fluorides (PAFs), perfluoroalkyl
iodides (PFAIs), perfluoroalkyl aldehydes (PFALs), perfluoroalkyl esters (PFEs), and fluo-
rotelomer alcohol (FTOHs). The chemical formula of PFASs can be expressed as CnF2n+1-R,
where R is a hydrophilic group that substitutes hydrogen atoms.

It is important to recognise that perfluoroalkane sulfonamido derivatives containing
an H atom on the N atom are acidic and can break down into amide anions, the extent
of which is determined by the surrounding environment or physiological conditions [36].
Many studies assert that non-ionic PFASs are commonly regarded as precursors of ionic
PFASs, and they can be biodegraded and metabolised to PFCAs [39,40].



Foods 2023, 12, 2624 3 of 23

Table 1. Classification of PFASs.

PFASs Classification R Examples Structural Formula CAS

Ionic
PFASs

Perfluoroalkyl
carboxylic acid,

PFCAs
–COOH Pentadecafluorooctanoic

acid, PFOA

Foods 2023, 12, x FOR PEER REVIEW 3 of 24 
 

 

Table 1. Classification of PFASs. 

PFASs Classification  R Examples Structural Formula CAS 

Ionic 
PFASs 

Perfluoroalkyl 
carboxylic acid, 

PFCAs 
–COOH 

Pentade-
cafluorooc-
tanoic acid, 

PFOA 
 

335-67-1 

Perfluoroalkane 
sulfonic acids, 

PFSAs 
–SO3H 

Perfluorooc-
tane sulfonic 
acid, PFOS 

 

1763-23-1 

Perfluoroalkane 
sulfinic acids, 

PFSIAs 
–SO2H 

Perfluorooc-
tane sulfinic 

acid 

 

647-29-0 

Perfluoroalkyl 
phosphonic ac-

ids, 
PFPAs 

–
P(=O)(OH)2 

Perfluorooc-
tyl phos-

phonic acid, 
PFOPA 

40143-78-0 

Perfluoroalkyl 
phosphinic ac-

ids, PFPIAs 

–
P(=OH)(Cn

F2n+1) 

Bis(heptade-
cafluorooc-
tyl) phos-

phinic acid   

500776-69-2 

Perfluoroalkane 
sulfonamides, 

FASAs 
–SO2NH2 

Perfluorooc-
tane sulfona-
mide, FOSA 

754-91-6 

Non-
Ionic 

PFASs 

Perfluoroalkane 
sulfonyl fluo-
rides, PASFs 

–SO2F 

Perfluorooc-
tane sulfonyl 

fluoride, 
PFOSF 

 

307-35-7 

Perfluoroalka-
noyl fluorides,  

PAFs 
–COF 

Perfluorooc-
tanoyl fluo-

ride 

 

335-66-0 

Perfluoroalkyl 
iodides, 
PFAIs 

–I 
Perfluorooc-

tyl iodide, 
PFOI 

 

507-63-1 

FF

F F

F FF F

F F F F
F

F

F
S

F F

OH

O

FF

F F

F FF F

F F F F
F

F

F
I

F F

335-67-1

Perfluoroalkane
sulfonic acids,

PFSAs
–SO3H Perfluorooctane

sulfonic acid, PFOS

Foods 2023, 12, x FOR PEER REVIEW 3 of 24 
 

 

Table 1. Classification of PFASs. 

PFASs Classification  R Examples Structural Formula CAS 

Ionic 
PFASs 

Perfluoroalkyl 
carboxylic acid, 

PFCAs 
–COOH 

Pentade-
cafluorooc-
tanoic acid, 

PFOA 
 

335-67-1 

Perfluoroalkane 
sulfonic acids, 

PFSAs 
–SO3H 

Perfluorooc-
tane sulfonic 
acid, PFOS 

 

1763-23-1 

Perfluoroalkane 
sulfinic acids, 

PFSIAs 
–SO2H 

Perfluorooc-
tane sulfinic 

acid 

 

647-29-0 

Perfluoroalkyl 
phosphonic ac-

ids, 
PFPAs 

–
P(=O)(OH)2 

Perfluorooc-
tyl phos-

phonic acid, 
PFOPA 

40143-78-0 

Perfluoroalkyl 
phosphinic ac-

ids, PFPIAs 

–
P(=OH)(Cn

F2n+1) 

Bis(heptade-
cafluorooc-
tyl) phos-

phinic acid   

500776-69-2 

Perfluoroalkane 
sulfonamides, 

FASAs 
–SO2NH2 

Perfluorooc-
tane sulfona-
mide, FOSA 

754-91-6 

Non-
Ionic 

PFASs 

Perfluoroalkane 
sulfonyl fluo-
rides, PASFs 

–SO2F 

Perfluorooc-
tane sulfonyl 

fluoride, 
PFOSF 

 

307-35-7 

Perfluoroalka-
noyl fluorides,  

PAFs 
–COF 

Perfluorooc-
tanoyl fluo-

ride 

 

335-66-0 

Perfluoroalkyl 
iodides, 
PFAIs 

–I 
Perfluorooc-

tyl iodide, 
PFOI 

 

507-63-1 

FF

F F

F FF F

F F F F
F

F

F
S

F F

OH

O

FF

F F

F FF F

F F F F
F

F

F
I

F F

1763-23-1

Perfluoroalkane
sulfinic acids,

PFSIAs
–SO2H Perfluorooctane sulfinic

acid

Foods 2023, 12, x FOR PEER REVIEW 3 of 24 
 

 

Table 1. Classification of PFASs. 

PFASs Classification  R Examples Structural Formula CAS 

Ionic 
PFASs 

Perfluoroalkyl 
carboxylic acid, 

PFCAs 
–COOH 

Pentade-
cafluorooc-
tanoic acid, 

PFOA 
 

335-67-1 

Perfluoroalkane 
sulfonic acids, 

PFSAs 
–SO3H 

Perfluorooc-
tane sulfonic 
acid, PFOS 

 

1763-23-1 

Perfluoroalkane 
sulfinic acids, 

PFSIAs 
–SO2H 

Perfluorooc-
tane sulfinic 

acid 

 

647-29-0 

Perfluoroalkyl 
phosphonic ac-

ids, 
PFPAs 

–
P(=O)(OH)2 

Perfluorooc-
tyl phos-

phonic acid, 
PFOPA 

40143-78-0 

Perfluoroalkyl 
phosphinic ac-

ids, PFPIAs 

–
P(=OH)(Cn

F2n+1) 

Bis(heptade-
cafluorooc-
tyl) phos-

phinic acid   

500776-69-2 

Perfluoroalkane 
sulfonamides, 

FASAs 
–SO2NH2 

Perfluorooc-
tane sulfona-
mide, FOSA 

754-91-6 

Non-
Ionic 

PFASs 

Perfluoroalkane 
sulfonyl fluo-
rides, PASFs 

–SO2F 

Perfluorooc-
tane sulfonyl 

fluoride, 
PFOSF 

 

307-35-7 

Perfluoroalka-
noyl fluorides,  

PAFs 
–COF 

Perfluorooc-
tanoyl fluo-

ride 

 

335-66-0 

Perfluoroalkyl 
iodides, 
PFAIs 

–I 
Perfluorooc-

tyl iodide, 
PFOI 

 

507-63-1 

FF

F F

F FF F

F F F F
F

F

F
S

F F

OH

O

FF

F F

F FF F

F F F F
F

F

F
I

F F

647-29-0

Perfluoroalkyl
phosphonic

acids,
PFPAs

–P(=O)(OH)2

Perfluorooctyl
phosphonic acid,

PFOPA

Foods 2023, 12, x FOR PEER REVIEW 3 of 24 
 

 

Table 1. Classification of PFASs. 

PFASs Classification  R Examples Structural Formula CAS 

Ionic 
PFASs 

Perfluoroalkyl 
carboxylic acid, 

PFCAs 
–COOH 

Pentade-
cafluorooc-
tanoic acid, 

PFOA 
 

335-67-1 

Perfluoroalkane 
sulfonic acids, 

PFSAs 
–SO3H 

Perfluorooc-
tane sulfonic 
acid, PFOS 

 

1763-23-1 

Perfluoroalkane 
sulfinic acids, 

PFSIAs 
–SO2H 

Perfluorooc-
tane sulfinic 

acid 

 

647-29-0 

Perfluoroalkyl 
phosphonic ac-

ids, 
PFPAs 

–
P(=O)(OH)2 

Perfluorooc-
tyl phos-

phonic acid, 
PFOPA 

40143-78-0 

Perfluoroalkyl 
phosphinic ac-

ids, PFPIAs 

–
P(=OH)(Cn

F2n+1) 

Bis(heptade-
cafluorooc-
tyl) phos-

phinic acid   

500776-69-2 

Perfluoroalkane 
sulfonamides, 

FASAs 
–SO2NH2 

Perfluorooc-
tane sulfona-
mide, FOSA 

754-91-6 

Non-
Ionic 

PFASs 

Perfluoroalkane 
sulfonyl fluo-
rides, PASFs 

–SO2F 

Perfluorooc-
tane sulfonyl 

fluoride, 
PFOSF 

 

307-35-7 

Perfluoroalka-
noyl fluorides,  

PAFs 
–COF 

Perfluorooc-
tanoyl fluo-

ride 

 

335-66-0 

Perfluoroalkyl 
iodides, 
PFAIs 

–I 
Perfluorooc-

tyl iodide, 
PFOI 

 

507-63-1 

FF

F F

F FF F

F F F F
F

F

F
S

F F

OH

O

FF

F F

F FF F

F F F F
F

F

F
I

F F

40143-78-0

Perfluoroalkyl
phosphinic acids,

PFPIAs
–P(=OH)(CnF2n+1) Bis(heptadecafluorooctyl)

phosphinic acid

Foods 2023, 12, x FOR PEER REVIEW 3 of 24 
 

 

Table 1. Classification of PFASs. 

PFASs Classification  R Examples Structural Formula CAS 

Ionic 
PFASs 

Perfluoroalkyl 
carboxylic acid, 

PFCAs 
–COOH 

Pentade-
cafluorooc-
tanoic acid, 

PFOA 
 

335-67-1 

Perfluoroalkane 
sulfonic acids, 

PFSAs 
–SO3H 

Perfluorooc-
tane sulfonic 
acid, PFOS 

 

1763-23-1 

Perfluoroalkane 
sulfinic acids, 

PFSIAs 
–SO2H 

Perfluorooc-
tane sulfinic 

acid 

 

647-29-0 

Perfluoroalkyl 
phosphonic ac-

ids, 
PFPAs 

–
P(=O)(OH)2 

Perfluorooc-
tyl phos-

phonic acid, 
PFOPA 

40143-78-0 

Perfluoroalkyl 
phosphinic ac-

ids, PFPIAs 

–
P(=OH)(Cn

F2n+1) 

Bis(heptade-
cafluorooc-
tyl) phos-

phinic acid   

500776-69-2 

Perfluoroalkane 
sulfonamides, 

FASAs 
–SO2NH2 

Perfluorooc-
tane sulfona-
mide, FOSA 

754-91-6 

Non-
Ionic 

PFASs 

Perfluoroalkane 
sulfonyl fluo-
rides, PASFs 

–SO2F 

Perfluorooc-
tane sulfonyl 

fluoride, 
PFOSF 

 

307-35-7 

Perfluoroalka-
noyl fluorides,  

PAFs 
–COF 

Perfluorooc-
tanoyl fluo-

ride 

 

335-66-0 

Perfluoroalkyl 
iodides, 
PFAIs 

–I 
Perfluorooc-

tyl iodide, 
PFOI 

 

507-63-1 

FF

F F

F FF F

F F F F
F

F

F
S

F F

OH

O

FF

F F

F FF F

F F F F
F

F

F
I

F F

500776-69-2

Perfluoroalkane
sulfonamides,

FASAs
–SO2NH2

Perfluorooctane
sulfonamide, FOSA

Foods 2023, 12, x FOR PEER REVIEW 3 of 24 
 

 

Table 1. Classification of PFASs. 

PFASs Classification  R Examples Structural Formula CAS 

Ionic 
PFASs 

Perfluoroalkyl 
carboxylic acid, 

PFCAs 
–COOH 

Pentade-
cafluorooc-
tanoic acid, 

PFOA 
 

335-67-1 

Perfluoroalkane 
sulfonic acids, 

PFSAs 
–SO3H 

Perfluorooc-
tane sulfonic 
acid, PFOS 

 

1763-23-1 

Perfluoroalkane 
sulfinic acids, 

PFSIAs 
–SO2H 

Perfluorooc-
tane sulfinic 

acid 

 

647-29-0 

Perfluoroalkyl 
phosphonic ac-

ids, 
PFPAs 

–
P(=O)(OH)2 

Perfluorooc-
tyl phos-

phonic acid, 
PFOPA 

40143-78-0 

Perfluoroalkyl 
phosphinic ac-

ids, PFPIAs 

–
P(=OH)(Cn

F2n+1) 

Bis(heptade-
cafluorooc-
tyl) phos-

phinic acid   

500776-69-2 

Perfluoroalkane 
sulfonamides, 

FASAs 
–SO2NH2 

Perfluorooc-
tane sulfona-
mide, FOSA 

754-91-6 

Non-
Ionic 

PFASs 

Perfluoroalkane 
sulfonyl fluo-
rides, PASFs 

–SO2F 

Perfluorooc-
tane sulfonyl 

fluoride, 
PFOSF 

 

307-35-7 

Perfluoroalka-
noyl fluorides,  

PAFs 
–COF 

Perfluorooc-
tanoyl fluo-

ride 

 

335-66-0 

Perfluoroalkyl 
iodides, 
PFAIs 

–I 
Perfluorooc-

tyl iodide, 
PFOI 

 

507-63-1 

FF

F F

F FF F

F F F F
F

F

F
S

F F

OH

O

FF

F F

F FF F

F F F F
F

F

F
I

F F

754-91-6

Non-
Ionic

PFASs

Perfluoroalkane
sulfonyl

fluorides, PASFs
–SO2F

Perfluorooctane
sulfonyl fluoride,

PFOSF

Foods 2023, 12, x FOR PEER REVIEW 3 of 24 
 

 

Table 1. Classification of PFASs. 

PFASs Classification  R Examples Structural Formula CAS 

Ionic 
PFASs 

Perfluoroalkyl 
carboxylic acid, 

PFCAs 
–COOH 

Pentade-
cafluorooc-
tanoic acid, 

PFOA 
 

335-67-1 

Perfluoroalkane 
sulfonic acids, 

PFSAs 
–SO3H 

Perfluorooc-
tane sulfonic 
acid, PFOS 

 

1763-23-1 

Perfluoroalkane 
sulfinic acids, 

PFSIAs 
–SO2H 

Perfluorooc-
tane sulfinic 

acid 

 

647-29-0 

Perfluoroalkyl 
phosphonic ac-

ids, 
PFPAs 

–
P(=O)(OH)2 

Perfluorooc-
tyl phos-

phonic acid, 
PFOPA 

40143-78-0 

Perfluoroalkyl 
phosphinic ac-

ids, PFPIAs 

–
P(=OH)(Cn

F2n+1) 

Bis(heptade-
cafluorooc-
tyl) phos-

phinic acid   

500776-69-2 

Perfluoroalkane 
sulfonamides, 

FASAs 
–SO2NH2 

Perfluorooc-
tane sulfona-
mide, FOSA 

754-91-6 

Non-
Ionic 

PFASs 

Perfluoroalkane 
sulfonyl fluo-
rides, PASFs 

–SO2F 

Perfluorooc-
tane sulfonyl 

fluoride, 
PFOSF 

 

307-35-7 

Perfluoroalka-
noyl fluorides,  

PAFs 
–COF 

Perfluorooc-
tanoyl fluo-

ride 

 

335-66-0 

Perfluoroalkyl 
iodides, 
PFAIs 

–I 
Perfluorooc-

tyl iodide, 
PFOI 

 

507-63-1 

FF

F F

F FF F

F F F F
F

F

F
S

F F

OH

O

FF

F F

F FF F

F F F F
F

F

F
I

F F

307-35-7

Perfluoroalkanoyl
fluorides,

PAFs
–COF Perfluorooctanoyl

fluoride

Foods 2023, 12, x FOR PEER REVIEW 3 of 24 
 

 

Table 1. Classification of PFASs. 

PFASs Classification  R Examples Structural Formula CAS 

Ionic 
PFASs 

Perfluoroalkyl 
carboxylic acid, 

PFCAs 
–COOH 

Pentade-
cafluorooc-
tanoic acid, 

PFOA 
 

335-67-1 

Perfluoroalkane 
sulfonic acids, 

PFSAs 
–SO3H 

Perfluorooc-
tane sulfonic 
acid, PFOS 

 

1763-23-1 

Perfluoroalkane 
sulfinic acids, 

PFSIAs 
–SO2H 

Perfluorooc-
tane sulfinic 

acid 

 

647-29-0 

Perfluoroalkyl 
phosphonic ac-

ids, 
PFPAs 

–
P(=O)(OH)2 

Perfluorooc-
tyl phos-

phonic acid, 
PFOPA 

40143-78-0 

Perfluoroalkyl 
phosphinic ac-

ids, PFPIAs 

–
P(=OH)(Cn

F2n+1) 

Bis(heptade-
cafluorooc-
tyl) phos-

phinic acid   

500776-69-2 

Perfluoroalkane 
sulfonamides, 

FASAs 
–SO2NH2 

Perfluorooc-
tane sulfona-
mide, FOSA 

754-91-6 

Non-
Ionic 

PFASs 

Perfluoroalkane 
sulfonyl fluo-
rides, PASFs 

–SO2F 

Perfluorooc-
tane sulfonyl 

fluoride, 
PFOSF 

 

307-35-7 

Perfluoroalka-
noyl fluorides,  

PAFs 
–COF 

Perfluorooc-
tanoyl fluo-

ride 

 

335-66-0 

Perfluoroalkyl 
iodides, 
PFAIs 

–I 
Perfluorooc-

tyl iodide, 
PFOI 

 

507-63-1 

FF

F F

F FF F

F F F F
F

F

F
S

F F

OH

O

FF

F F

F FF F

F F F F
F

F

F
I

F F

335-66-0

Perfluoroalkyl
iodides,
PFAIs

–I Perfluorooctyl iodide,
PFOI

Foods 2023, 12, x FOR PEER REVIEW 3 of 24 
 

 

Table 1. Classification of PFASs. 

PFASs Classification  R Examples Structural Formula CAS 

Ionic 
PFASs 

Perfluoroalkyl 
carboxylic acid, 

PFCAs 
–COOH 

Pentade-
cafluorooc-
tanoic acid, 

PFOA 
 

335-67-1 

Perfluoroalkane 
sulfonic acids, 

PFSAs 
–SO3H 

Perfluorooc-
tane sulfonic 
acid, PFOS 

 

1763-23-1 

Perfluoroalkane 
sulfinic acids, 

PFSIAs 
–SO2H 

Perfluorooc-
tane sulfinic 

acid 

 

647-29-0 

Perfluoroalkyl 
phosphonic ac-

ids, 
PFPAs 

–
P(=O)(OH)2 

Perfluorooc-
tyl phos-

phonic acid, 
PFOPA 

40143-78-0 

Perfluoroalkyl 
phosphinic ac-

ids, PFPIAs 

–
P(=OH)(Cn

F2n+1) 

Bis(heptade-
cafluorooc-
tyl) phos-

phinic acid   

500776-69-2 

Perfluoroalkane 
sulfonamides, 

FASAs 
–SO2NH2 

Perfluorooc-
tane sulfona-
mide, FOSA 

754-91-6 

Non-
Ionic 

PFASs 

Perfluoroalkane 
sulfonyl fluo-
rides, PASFs 

–SO2F 

Perfluorooc-
tane sulfonyl 

fluoride, 
PFOSF 

 

307-35-7 

Perfluoroalka-
noyl fluorides,  

PAFs 
–COF 

Perfluorooc-
tanoyl fluo-

ride 

 

335-66-0 

Perfluoroalkyl 
iodides, 
PFAIs 

–I 
Perfluorooc-

tyl iodide, 
PFOI 

 

507-63-1 

FF

F F

F FF F

F F F F
F

F

F
S

F F

OH

O

FF

F F

F FF F

F F F F
F

F

F
I

F F

507-63-1

Perfluoroalkyl
aldehydes,

PFALs
–CHO (Perfluorooctane)-1-

carbaldehydle

Foods 2023, 12, x FOR PEER REVIEW 4 of 24 
 

 

Perfluoroalkyl 
aldehydes, 

PFALs 
–CHO 

(Perfluo-
rooctane)-1-

carbalde-
hydle 

 

63967-40-8 

Perfluoroalkyl 
esters, 
PFEs 

–COOR 
Perfluorooc-
tanoic acid 

methyl ester 

 

376-27-2 

Fluorotelomer 
alcohol, 
FTOHs 

–OH 

1H,1H,2H,2
H-Perfluo-
rooctanol, 
6:2 FTOH 

 

647-42-7 

It is important to recognise that perfluoroalkane sulfonamido derivatives containing 
an H atom on the N atom are acidic and can break down into amide anions, the extent of 
which is determined by the surrounding environment or physiological conditions [36]. 
Many studies assert that non-ionic PFASs are commonly regarded as precursors of ionic 
PFASs, and they can be biodegraded and metabolised to PFCAs [39,40]. 

3. Legislation 
PFOA, as the first man-made PFAS, was successfully synthesised by 3M Co. of the 

United States in the 1950s [1]. Subsequently, 3M’s epidemiological research found that 
those exposed to PFOA had an elevated risk of death from prostate cancer, and another 
study revealed that perfluorooctane sulfonate (PFOS) exposure was linked to an increased 
risk of death from bladder cancer [41]. When it was discovered that PFOA and PFOS ac-
cumulated in people and the environment, 3M took preventative action and voluntarily 
started to phase out production of PFOS, PFOA, and PFOS-related products in 2000 [42]. 
3M ceased its global production of PFOS, PFOA, and PFOS-related products and replaced 
them with short-chain PFASs such as perfluorobutanesulfonic acid (PFBS) and PFBA in 
2002–2003 [42,43]. 

To mitigate the health risks of PFASs, governments and industries have strengthened 
legislation and control measures in recent years by emphasising source control and 
strengthening product risk management. Some important legislation and policies 
launched during the last two decades are listed in Table 2. The Stockholm Convention on 
Persistent Organic Pollutants (POPs) has included PFOS, PFOA, perfluorohexanesul-
phonic acid (PFHxS), their salts, and associated compounds in its catalogue of controlled 
substances from 2009 to 2022 [44–46]. Significantly, the European Food Safety Authority 
(EFSA) has changed its PFOA and PFOS tolerance limits multiple times between 2008 and 
2020, which indicates that there is growing concern over the health effects of PFASs in 
Europe [47–49]. The maximum levels for the sum of PFOS, PFOA, PFNA, and PFHxS in 
meat and eggs were set to be 1.3–45 μg kg−1 wet weight by the European Union (EU) in 
2023 [50]. Similarly, the United States Environmental Protection Agency (USEPA) is also 
adjusting downward the drinking water health advisories for PFOA and PFOS; hex-
afluoropropylene oxide dimer acid (GenX) and PFBS (as alternatives to traditional PFASs) 
were first given the health advisories in 2022 [51–53]. The Toxics in Packaging Clearing-
house (TPCH) has proclaimed that packing materials and their components must not in-
corporate PFASs in 2021 [54]. The Food and Drug Administration (FDA) declared it would 
phase out certain short-chain PFASs in the food market by 2024 [55]. In Asia, the Ministry 
of Ecology and Environment of the People’s Republic of China (MEPC) ranks PFOS, its 

FF

F F

F FF F

F F
F

F

F

F F

F F

O

FF

F F

F FF F

F F
F

F

F

O

O
CH3

F F
FF

F F

F FF F

F F
F

F

F
OH

63967-40-8

Perfluoroalkyl
esters,
PFEs

–COOR Perfluorooctanoic acid
methyl ester

Foods 2023, 12, x FOR PEER REVIEW 4 of 24 
 

 

Perfluoroalkyl 
aldehydes, 

PFALs 
–CHO 

(Perfluo-
rooctane)-1-

carbalde-
hydle 

 

63967-40-8 

Perfluoroalkyl 
esters, 
PFEs 

–COOR 
Perfluorooc-
tanoic acid 

methyl ester 

 

376-27-2 

Fluorotelomer 
alcohol, 
FTOHs 

–OH 

1H,1H,2H,2
H-Perfluo-
rooctanol, 
6:2 FTOH 

 

647-42-7 

It is important to recognise that perfluoroalkane sulfonamido derivatives containing 
an H atom on the N atom are acidic and can break down into amide anions, the extent of 
which is determined by the surrounding environment or physiological conditions [36]. 
Many studies assert that non-ionic PFASs are commonly regarded as precursors of ionic 
PFASs, and they can be biodegraded and metabolised to PFCAs [39,40]. 

3. Legislation 
PFOA, as the first man-made PFAS, was successfully synthesised by 3M Co. of the 

United States in the 1950s [1]. Subsequently, 3M’s epidemiological research found that 
those exposed to PFOA had an elevated risk of death from prostate cancer, and another 
study revealed that perfluorooctane sulfonate (PFOS) exposure was linked to an increased 
risk of death from bladder cancer [41]. When it was discovered that PFOA and PFOS ac-
cumulated in people and the environment, 3M took preventative action and voluntarily 
started to phase out production of PFOS, PFOA, and PFOS-related products in 2000 [42]. 
3M ceased its global production of PFOS, PFOA, and PFOS-related products and replaced 
them with short-chain PFASs such as perfluorobutanesulfonic acid (PFBS) and PFBA in 
2002–2003 [42,43]. 

To mitigate the health risks of PFASs, governments and industries have strengthened 
legislation and control measures in recent years by emphasising source control and 
strengthening product risk management. Some important legislation and policies 
launched during the last two decades are listed in Table 2. The Stockholm Convention on 
Persistent Organic Pollutants (POPs) has included PFOS, PFOA, perfluorohexanesul-
phonic acid (PFHxS), their salts, and associated compounds in its catalogue of controlled 
substances from 2009 to 2022 [44–46]. Significantly, the European Food Safety Authority 
(EFSA) has changed its PFOA and PFOS tolerance limits multiple times between 2008 and 
2020, which indicates that there is growing concern over the health effects of PFASs in 
Europe [47–49]. The maximum levels for the sum of PFOS, PFOA, PFNA, and PFHxS in 
meat and eggs were set to be 1.3–45 μg kg−1 wet weight by the European Union (EU) in 
2023 [50]. Similarly, the United States Environmental Protection Agency (USEPA) is also 
adjusting downward the drinking water health advisories for PFOA and PFOS; hex-
afluoropropylene oxide dimer acid (GenX) and PFBS (as alternatives to traditional PFASs) 
were first given the health advisories in 2022 [51–53]. The Toxics in Packaging Clearing-
house (TPCH) has proclaimed that packing materials and their components must not in-
corporate PFASs in 2021 [54]. The Food and Drug Administration (FDA) declared it would 
phase out certain short-chain PFASs in the food market by 2024 [55]. In Asia, the Ministry 
of Ecology and Environment of the People’s Republic of China (MEPC) ranks PFOS, its 

FF

F F

F FF F

F F
F

F

F

F F

F F

O

FF

F F

F FF F

F F
F

F

F

O

O
CH3

F F
FF

F F

F FF F

F F
F

F

F
OH

376-27-2

Fluorotelomer
alcohol,
FTOHs

–OH
1H,1H,2H,2H-

Perfluorooctanol,
6:2 FTOH

Foods 2023, 12, x FOR PEER REVIEW 4 of 24 
 

 

Perfluoroalkyl 
aldehydes, 

PFALs 
–CHO 

(Perfluo-
rooctane)-1-

carbalde-
hydle 

 

63967-40-8 

Perfluoroalkyl 
esters, 
PFEs 

–COOR 
Perfluorooc-
tanoic acid 

methyl ester 

 

376-27-2 

Fluorotelomer 
alcohol, 
FTOHs 

–OH 

1H,1H,2H,2
H-Perfluo-
rooctanol, 
6:2 FTOH 

 

647-42-7 

It is important to recognise that perfluoroalkane sulfonamido derivatives containing 
an H atom on the N atom are acidic and can break down into amide anions, the extent of 
which is determined by the surrounding environment or physiological conditions [36]. 
Many studies assert that non-ionic PFASs are commonly regarded as precursors of ionic 
PFASs, and they can be biodegraded and metabolised to PFCAs [39,40]. 

3. Legislation 
PFOA, as the first man-made PFAS, was successfully synthesised by 3M Co. of the 

United States in the 1950s [1]. Subsequently, 3M’s epidemiological research found that 
those exposed to PFOA had an elevated risk of death from prostate cancer, and another 
study revealed that perfluorooctane sulfonate (PFOS) exposure was linked to an increased 
risk of death from bladder cancer [41]. When it was discovered that PFOA and PFOS ac-
cumulated in people and the environment, 3M took preventative action and voluntarily 
started to phase out production of PFOS, PFOA, and PFOS-related products in 2000 [42]. 
3M ceased its global production of PFOS, PFOA, and PFOS-related products and replaced 
them with short-chain PFASs such as perfluorobutanesulfonic acid (PFBS) and PFBA in 
2002–2003 [42,43]. 

To mitigate the health risks of PFASs, governments and industries have strengthened 
legislation and control measures in recent years by emphasising source control and 
strengthening product risk management. Some important legislation and policies 
launched during the last two decades are listed in Table 2. The Stockholm Convention on 
Persistent Organic Pollutants (POPs) has included PFOS, PFOA, perfluorohexanesul-
phonic acid (PFHxS), their salts, and associated compounds in its catalogue of controlled 
substances from 2009 to 2022 [44–46]. Significantly, the European Food Safety Authority 
(EFSA) has changed its PFOA and PFOS tolerance limits multiple times between 2008 and 
2020, which indicates that there is growing concern over the health effects of PFASs in 
Europe [47–49]. The maximum levels for the sum of PFOS, PFOA, PFNA, and PFHxS in 
meat and eggs were set to be 1.3–45 μg kg−1 wet weight by the European Union (EU) in 
2023 [50]. Similarly, the United States Environmental Protection Agency (USEPA) is also 
adjusting downward the drinking water health advisories for PFOA and PFOS; hex-
afluoropropylene oxide dimer acid (GenX) and PFBS (as alternatives to traditional PFASs) 
were first given the health advisories in 2022 [51–53]. The Toxics in Packaging Clearing-
house (TPCH) has proclaimed that packing materials and their components must not in-
corporate PFASs in 2021 [54]. The Food and Drug Administration (FDA) declared it would 
phase out certain short-chain PFASs in the food market by 2024 [55]. In Asia, the Ministry 
of Ecology and Environment of the People’s Republic of China (MEPC) ranks PFOS, its 

FF

F F

F FF F

F F
F

F

F

F F

F F

O

FF

F F

F FF F

F F
F

F

F

O

O
CH3

F F
FF

F F

F FF F

F F
F

F

F
OH 647-42-7



Foods 2023, 12, 2624 4 of 23

3. Legislation

PFOA, as the first man-made PFAS, was successfully synthesised by 3M Co. of the
United States in the 1950s [1]. Subsequently, 3M’s epidemiological research found that
those exposed to PFOA had an elevated risk of death from prostate cancer, and another
study revealed that perfluorooctane sulfonate (PFOS) exposure was linked to an increased
risk of death from bladder cancer [41]. When it was discovered that PFOA and PFOS
accumulated in people and the environment, 3M took preventative action and voluntarily
started to phase out production of PFOS, PFOA, and PFOS-related products in 2000 [42].
3M ceased its global production of PFOS, PFOA, and PFOS-related products and replaced
them with short-chain PFASs such as perfluorobutanesulfonic acid (PFBS) and PFBA in
2002–2003 [42,43].

To mitigate the health risks of PFASs, governments and industries have strengthened
legislation and control measures in recent years by emphasising source control and strength-
ening product risk management. Some important legislation and policies launched during
the last two decades are listed in Table 2. The Stockholm Convention on Persistent Organic
Pollutants (POPs) has included PFOS, PFOA, perfluorohexanesulphonic acid (PFHxS), their
salts, and associated compounds in its catalogue of controlled substances from 2009 to
2022 [44–46]. Significantly, the European Food Safety Authority (EFSA) has changed its
PFOA and PFOS tolerance limits multiple times between 2008 and 2020, which indicates
that there is growing concern over the health effects of PFASs in Europe [47–49]. The maxi-
mum levels for the sum of PFOS, PFOA, PFNA, and PFHxS in meat and eggs were set to be
1.3–45 µg kg−1 wet weight by the European Union (EU) in 2023 [50]. Similarly, the United
States Environmental Protection Agency (USEPA) is also adjusting downward the drinking
water health advisories for PFOA and PFOS; hexafluoropropylene oxide dimer acid (GenX)
and PFBS (as alternatives to traditional PFASs) were first given the health advisories in
2022 [51–53]. The Toxics in Packaging Clearinghouse (TPCH) has proclaimed that packing
materials and their components must not incorporate PFASs in 2021 [54]. The Food and
Drug Administration (FDA) declared it would phase out certain short-chain PFASs in
the food market by 2024 [55]. In Asia, the Ministry of Ecology and Environment of the
People’s Republic of China (MEPC) ranks PFOS, its salts, perfluorooctane sulfonyl fluoride
(PFOSF), PFOA, its salts, PFOA-related compounds, PFHxS, its salts, and PFHxS-related
compounds as key regulated new pollutants in 2023 [56]. The Chemical Substances Control
Law (CSCL) of Japan announced that PFOA and its salts were added to the list of Class I
Specified Chemical Substances (the import, manufacture, or sale of products containing
Class I substances is prohibited) [57].

It can be seen that PFASs are becoming a global concern. However, much of the
PFAS legislation is centred on environmental contamination, whereas comparatively fewer
regulations address food safety.

Table 2. Important legislation and policies on PFAS launched during the last two decades.

District Year Regulation Restriction Reference

Global

2009 Stockholm Convention
on POPs PFOS and its salts were listed in Annex B (restriction). [44]

2019 Stockholm Convention
on POPs

PFOA, its salts, and PFOA-related compounds were
listed in Annex A (elimination). [45]

2022 Stockholm Convention
on POPs

PFHxS, its salts, and PFHxS-related compounds were
listed in Annex A (elimination). [46]
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Table 2. Cont.

District Year Regulation Restriction Reference

Europe

2008 EFSA
The tolerable daily intake (TDI) of 150 ng kg−1 bw.d−1

(body weight/day) for PFOS and 1500 ng kg−1 bw.d−1

for PFOA was established.
[47]

2018 EFSA
The tolerable weekly intake (TWI) for PFOS is

13 ng kg−1 bw. wk−1 (body weight/per week) and for
PFOA is 6 ng kg−1 bw. wk −1.

[48]

2020 EFSA
The TWI of 4.4 ng kg−1 b.w. for the sum of PFOA,

perfluorononanoic acid (PFNA), PFHxS, and PFOS was
suggested.

[49]

2023 EU
The maximum levels for the sum of PFOS, PFOA,

PFNA, and PFHxS in meat and eggs were set to be
1.3–45 µg kg−1 wet weight.

[50]

USA

2009 USEPA The minimum risk levels of PFOA and PFOS in
drinking water were set to be 0.4 and 0.2 µg L−1. [51]

2015 USEPA

The minimum risk levels of PFOA and PFOS in
drinking water were set to be 0.07 µg L−1. When both

PFOA and PFOS are found in drinking water, the
combined concentrations of PFOA and PFOS should be

below 0.07 µg L−1.

[52]

2021 TPCH TPCH has proclaimed that packing materials and their
components must not incorporate PFASs. [54]

2021 FDA The FDA declared it would phase out certain
short-chain PFASs in the food market by 2024. [55]

2022 USEPA
The minimum risk levels of PFOA, PFOS, GenX

chemicals, and PFBS in drinking water were advised to
be 0.000004, 0.00002, 0.01, and 2 µg L−1.

[53]

2023 USEPA

The USEPA announced the proposed action of PFOS,
PFOA, PFHxS, PFNA, GenX chemicals, and PFBS into

the National Primary Drinking Water Regulation
(NPDWR).

[58]

Asia

2019 MEPC
Prohibit the production, circulation, use, and import or

export of PFOS, its salts, and PFOSF except for
acceptable uses.

[59]

2023 MEPC

PFOS, its salts, PFOSF, PFOA, its salts, PFOA-related
compounds, PFHxS, its salts, and PFHxS-related

compounds were included in the list of key regulated
new pollutants (version 2023).

[56]

2021 CSCL

PFOA and its salts were added to the list of Class I
Specified Chemical Substances (the import,

manufacture, or sale of products containing Class I
substances is prohibited).

[57]

4. Sources of PFASs in Edible Oil

Given the heightened awareness of PFASs globally, it is especially critical to identify
the sources of PFAS pollution in edible oils. Having a thorough knowledge of the causes of
PFAS pollution in edible oils can assist in precisely pinpointing the sources of contamination
and taking the necessary steps to decrease PFAS contamination and thereby safeguard
human health. By recognising the sources of contamination, it is possible to enhance the
effectiveness of pollution control, avoid superfluous investments, save resources, and
advance sustainable environmental progress.

4.1. PFAS Accumulation in Oil Crops

As previously mentioned, PFASs are easily accumulated in protein-rich food matrices.
Most of the contamination of oil crops occurred during their growth stage, which will
severely affect the safety of edible plant oil [32]. Edible plant oil can be derived from a
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variety of oil crops such as rapeseed, soybean, peanut, and sesame. Additionally, the protein
concentration in soybeans and peanuts was approximately 40% and 28%, respectively,
which was even more than that in milk [60]. The PFAS life cycle begins with the primary
producer and progresses to the commercial user, consumer, and eventually disposal, all
of which involve the release of chemicals into the atmosphere and water and the storage
of PFASs in soils for a prolonged period of time [61]. The presence of PFASs in soils has
been reported worldwide [62–64], while PFOA constituted the main component of PFASs
in soil and plants due to its high solubility in water [65]. The accumulation of PFASs
could lead to acute toxic effects on growth and development in plant communities [66].
It was reported that soybean and rape can absorb PFOS-K and PFOA from soil by root and
transfer them to the stem and leaf; the concentrations of PFOS-K and PFOA in root, stem,
and leaf were positively correlated with the concentrations in soil [67], which is consistent
with the published result that PFASs could be absorbed and accumulated via plant root
from soil and water [65]. Moreover, Tian et al. also confirmed that airborne PFASs and
homologs presented in vapour and particulate form could be adsorbed into plants by aerial
parts such as foliage and bark [68]. Furthermore, the transport/distribution of PFASs by
the plant from the root to above-ground tissues is mostly related to the chain length; the
longer-chain PFASs prefer to accumulate in the root, while the shorter-chain compounds
prefer to transport to other tissues [65]. As mentioned above, oil crops absorb PFASs from
the environment (soil, water, and atmosphere) readily and eventually transfer them to oil
products [69].

4.2. PFAS Accumulation in Animal Edible Oil Raw Materials

In addition to edible plant oils, edible oils of animal origin are also widely used
because of their rich nutrients, such as lard, butter, fish oil, cod liver oil, etc. However,
studies conducted both in the field and in the laboratory have revealed that certain PFASs
can accumulate in the bodies of predators in wildlife, water, and land environments, as well
as in humans [70]. As opposed to lipophilic-bioaccumulative POPs, PFASs are involved in a
protein-associated bioaccumulative pathway [71]. PFASs can attach to proteins in the serum
of the blood, resulting in high concentrations of these chemicals in both the blood and the
blood meals [72]. Therefore, PFASs could enter the food chain through various pathways,
mainly through PFAS contamination in animal living environments and feed additives.

Aquatic edible animals from a river-estuary-sea environment that were affected by the
fluorochemical industry have been widely reported around the world [73–75]. The research
conducted in China to investigate the PFCA levels in the edible tissues of 40 aquatic species
from the river-estuary-sea environment, affected by a large fluorochemical industrial area,
revealed that PFOA was the major contaminant, with concentrations as high as 2161 ng g−1

wet weight (found in the freshwater winkle) [75]. Of the 200 North East Arctic cod liver
samples tested for 16 PFASs, PFOS was present in the majority of the samples (72%) at
concentrations above the limit of quantitation (LOQ) (1.5 µg kg−1 wet weight), with the
highest level detected being 21.8 µg kg−1 wet weight [76]. This is in good accordance with
the fact that PFOS and PFCAs are prone to accumulate in the liver [77,78]. However, the
PFSAs in cod liver oil are not under supervision, and little is known about them. PFOA
and PFOS were also detected in fish samples collected from a local supermarket in Sweden
at concentrations of 4.15 pg g−1 and 55.3 pg g−1, respectively [79].

The consumption of terrestrial animals, such as dairy and meat products, is a major
source of edible animal-based oils. The contamination of PFASs in milk (butter-making raw
materials) and meat (animal oil-making raw materials) was also frequently reported [80,81].
PFOS and PFOA were detected in milk samples from Greece. Concentrations of PFOS var-
ied from <LOQ to 730 pg g−1 and PFOA from <LOQ to 570 pg g−1 (LOQ: 500 pg g−1) [82].
Analysis of milk samples from Turkey indicated that PFOA was not detected at levels above
the reported LOQ of 38 pg g−1, yet PFOS was present at concentrations between 544 and
828 pg g−1 [83]. Researchers studied the concentrations of seven PFCAs and three PFSAs
in milk and milk products from Poland. The most commonly detected was PFOA, followed
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by PFBA and perfluorohexane sulfonate, on par with perfluorooctane sulfonate. PFBA
was the most prominent PFAS present in the studied food items, and it had an average
concentration of 13.34 ng g−1 [84]. PFOS and PFOA were 100% detected in cow milk, butter,
beef, and chicken meat samples; the highest PFOA and PFOS concentrations were found in
butter at 9.4 pg g−1 and 114 pg g−1 [79].

PFASs have also been found in feed and animal-derived food, as well as in the transfer
of PFASs through the “feed-to-food” chain [85,86]. Hence, PFAS contamination in animal
feed should be taken into consideration. Ninety-two commercial fishmeal samples from the
most important fishmeal-producing countries were collected for evaluating PFAS levels,
and the results showed that Σ16 PFCAs ranged from 6.29 to 84.5, 1.42–52.0, 2.47–45.3,
1.06–42.1, and 1.02–38.8 ng g−1 in the U.S., China, Europe, South America, and Southeast
Asia, respectively. Noteworthy, the presence of short-chain PFCAs (e.g., PFBA and PFBS)
in fishmeal was found for the first time in the study [85]. Researchers from the same group
also collected the most commonly used animal protein supplement feeds (blood meal,
meat meal, feather meal, soybean meal, and dried grains with solubles), with concentra-
tions of Σ16 PFCAs ranging from undetectable to 37.1 ng g−1 dw (dry weight) (average:
7.23 ng g−1 dw) [72]. The investigation of the occurrence of PFASs in cow feed samples
from nine Chinese provinces revealed concentrations in the range of 0.99–144 ng g−1 dw
(7.68 ng g−1 dw) and the PFBA dominating 34.0% of PFASs in feed [87]. In eighteen dif-
ferent lab animal feeding materials, PFOS, PFHxS, PFOA, and short-chain PFCAs (C < 6)
had the highest detection levels and frequencies across all samples. PFAS levels found in
feed were as high as 215.6 µg kg−1 dw [88]. It is of great concern that feed exposure to
PFASs has not drawn enough attention. Meanwhile, investigations conducted recently
have revealed an increase in the amount of short-chain PFCAs and PFSAs found in the
environment, which may be due to the restriction of long-chain PFASs, causing a reduction
in the use of long-chain PFASs and a heightened focus on short-chain PFASs.

4.3. Contamination of PFASs during Edible Oil Production

Most common edible oils are plant-derived through intricate manufacturing steps,
which increases the risk of PFAS contamination. The primary emphasis here is on the PFAS
pollution that occurs during plant-derived oil production. The production of edible oil
mainly includes three parts: extraction, refining, and filtering [89], as shown in Figure 1.
High temperatures can cause the breakdown of PFAS-containing materials, releasing more
of these chemicals into the solvent, which in turn can dissolve in numerous organic solvents
and ultimately into the product. Therefore, PFASs are easily introduced during extraction
and refining processes involving high temperatures and organic solvents. The unrefined oil
produced by mechanical pressing or solvent extraction of oil crops is called crude oil, which
is not edible. During the pressing process, physical processes such as high-temperature
baking and crushing may increase the concentration of environmental pollutants in oil
products caused by the grinding machine being contaminated with PFAS-made detergent
and lubricant, as well as PFASs from the plastic interface of the grinding machine. The
solvent extraction is to extract the oil raw material by soaking it in organic solvent oil,
which could also introduce PFASs [90]. It has been suggested that the higher concentration
of C8-chain-length PFASs detected in the crude oil may be caused by the degradation of
the precursor material into stable C8-chain-length PFASs and by the contamination of the
crude oil by the processing apparatus [91].

The refining process of edible oil mainly includes degumming, deacidification, decol-
orization and deodorization (Figure 1) [92,93]. PFASs are used in the production of various
chemicals that are commonly used in the edible oil industry, such as surfactants and emul-
sifiers. Surfactants and emulsifiers are usually added to the oil during the refining process
to improve its texture, taste, and appearance [94–96]. Furthermore, both deacidification
and decolorization are performed at higher temperatures, which may also increase the
possibility that PFASs dissolve in edible oil products.
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The lack of research on the introduction of PFAS in the manufacturing of edible oils
makes additional investigations necessary.

4.4. Migration from Oil Contact Materials to Edible Oil

A broad range of PFASs are used in paper and plastic, and they are commonly used to
package high-fat content and convenience foods nowadays due to their non-hydrophilic
and non-lipophilic properties [97]. Direct contact between the food contact materials and
food could facilitate the migration of these PFASs into food products [98–100]. The migra-
tion of PFASs from contact materials to edible oil products occurs in the following two ways.
First, oil-contact packaging, storage, and transport processing [90,101,102], particularly the
use of plastic containers, can allow contaminants to leach into oil products depending on
the contact time with the packaging materials [103,104]. Second, the product oil is usually
ingested after being heated in contact with fluorocarbon resin-coated frying pans, baking
utensils, and non-stick baking papers [31]. Research revealed that the concentration of
PFOA in empty cooking pans increased up to 75 µg kg−1 after heat treatment [90]. The
presence of PFOA and PFOS was determined in polytetrafluoroethylene (PTFE)-coated
non-stick cookware sold in Turkey [105]. It was noted that FTOHs could migrate from
paper bowls to oil, with migration efficiencies ranging from 0.04 to 2.28%; however, the
efficiency of migration decreased as the carbon chain length of the FTOHs increased [106].
Therefore, routine monitoring and risk assessment of PFAS in oil are necessary.

It is essential to take the PFAS life cycle into account. These compounds are long-
lasting in the environment, entering it through production and manufacturing processes,
consumer use, and disposal. Once introduced to the environment, PFASs can remain in
the atmosphere, aquifers, and the ground and can become concentrated in the tissues of
living organisms, which could potentially be used as sources of edible oil. Edible oils are
unavoidably contaminated with PFAS as a result of the use of fluorinated consumer prod-
ucts at the manufacturing, processing, and packaging stages, thus raising the probability of
human exposure. The flow of PFASs from the primary producer to the product oil and the
human body is shown in Figure 2.
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5. PFAS Contamination in Edible Oil

Plenty of the published literature reports PFAS contamination in food as the major
exposure pathway for the general population [107], especially for potable water, vegetables,
fruits, milk, seafood, and meat [61,81,108]. Research into the effects of PFASs in edible oils
has been ongoing for several years due to the possibility that edible oils could introduce
PFAS contamination via various pathways and as an important route of human exposure
to PFASs. Table 3 shows the concentrations of selected PFASs in various edible oils from
several countries. The selected PFASs were mainly ionic PFASs; only isolated studies
showed detectable levels of non-ionic PFASs.

A total of sixteen different PFASs were determined in margarine sold in the Norwegian
market, and six PFASs, namely PFHxS, PFOS, PFBA, perfluorovaleric acid (PFPeA), perflu-
orohexanoic acid (PFHxA), and PFOA, were identified at concentrations above the LOQ.
The highest concentrations of 51, 51, and 12 pg g−1 were observed in PFBA, PFPeA, and
PFOA, respectively. The concentrations of other selected PFASs were below the given limit
of detection (LOD). The LODs for that investigation were comparatively low, ranging from
1.6 pg g−1 (PFBS) to 13 pg g−1 (perfluoroundecanoic acid (PFUnDA)/perfluorododecanoic
acid (PFDoDA)). The study showed PFOA to be more concentrated than PFOS (2.3 pg g−1),
which was contrary to what other research had suggested [109].

A total of 14 PFASs were measured in vegetable oil and butter, which were sold in
Dutch retail store chains with nationwide coverage. For butter, PFHxA, perfluoroheptanoic
acid (PFHpA), PFOA, PFNA, perfluorodecanoic acid (PFDA), PFDoDA, PFHxS, and PFOS
were detected between LODs and LOQs; PFOS showed the highest concentrations of
33 pg g−1. In vegetable oil, only PFHpA was detected above LOD at 1 pg g−1 [110].
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Table 3. Content of PFSAs and PFCAs in edible oils (pg g−1).

District Matrix
PFSAs PFCAs

Reference
C4a C6a C7a C8a C4b C5 C6b C7b C8b C9 C10 C11 C12 C13 C14 C16 C18

Norway Margarine <1.6 1.3 - 2.3 51 51 2.5 <5.6 12 <13 <8.6 <16 <16 - - - - [109]

Netherlands
Vegetable oil <0.9 <2 - <3 <32 <28 <3 1 <3 <0.1 <0.6 <2 <1 - - - -

[110]
Butter <3 16 - 33 <31 <43 20 5 16 2 6 <3 2 - - - -

Spain Sunflower oil - ND - ND ND - ND - ND ND ND ND - - - - - [111]

Olive oil <1.2 <0.7 - 1.1 <43 <5.9 <14 <140 <140 <38 <3.8 <14 <4.2 <6.1 <6.2 <48 <41 [112]

Finland Fish oil - - - ND - - - - ND - - ND - ND ND - - [113]

Sweden

Fats (butter,
margarine,

cooking oil, and
mayonnaise)

- <2.3 - 13 - - 4.3 <2.3 <5.4 <3.0 <3.6 5.8 <2.3 <2.3 <2.3 - - [114]

Butter - 2.6–
18 - 8.1–21.3 - - - - 8.1–56 - - - - - - - - [79]

Italy Olive oil - - - <500 - - - - <500 - - - - - - - -
[115]

Peanut oil - - - <500 - - - - <500 - - - - - - - -

Czech
Republic

Edible oils ND-
1600

ND-
1800 - ND-1700 - - ND-1400 ND-

2700 ND-1500 ND-2400 ND-1700 ND-
1700

ND-
2100 - - - -

[116]
Butter ND-

1600
ND-
1800 - ND-1700 - - ND-1400 ND-

2700 ND-1500 ND-2400 ND-1700 ND-
1700

ND-
2100 - - - -

China
Guangzhou Cooking oil - - - ND-20 pg

mL−1 - - - - ND-20 pg
mL−1 - - - - - - - - [117]

China
Guiyang

Rapeseed oil - 140 ND 390 130 120 - - 90 940 - - 90 - - 100 160

[69]

Blended oil - 240 ND 450 110 ND - - 80 1770 - - ND - - ND ND

Peanut oil - 170 ND 290 ND ND - - ND ND - - ND - - ND ND

Corn oil - 120 ND 210 ND ND - - ND ND - - ND - - 110 140

Sunflower oil - ND ND 220 ND ND - - ND ND - - ND - - ND ND

Lard oil - 230 210 330 ND ND - - - 710 - - 90 - - 100 ND

Beef tallown - 130 ND 290 ND ND - - - ND - - ND - - 110 ND
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Table 3. Cont.

District Matrix
PFSAs PFCAs

Reference
C4a C6a C7a C8a C4b C5 C6b C7b C8b C9 C10 C11 C12 C13 C14 C16 C18

China
Beijing

Blended oil - - ND - - - ND-60 ND ND-430 ND-4640 ND - - - - - -

[60]

Soybean oil - - ND-20 - - - ND-440 ND-40 130–160 20–470 ND-40 - - - - - -

Peanut oil - - ND - - - 80–100 ND 180–240 ND ND - - - - - -

Sesame oil - - 20–30 - - - ND-490 50–80 150–500 30–1060 160–510 - - - - - -

Corn oil - - ND - - - ND-450 ND 150–170 ND-20 ND-40 - - - - - -

Sunflower oil - - ND - - - 400–500 ND 400–500 ND 400–600 - - - - - -

Olive oil - - - <1.6 - ND - ND - ND - ND

[35]

Sesame oil - - - 405 - 112 - 2018 - 2458 - 1841

Corn oil - - - ND - ND - <0.5 - 17 - 7

Camellia seed oil - - - <1.6 - 57 - 21 - 9 - 5

Soybean oil - - - ND - ND - ND - 8 - 7

Blended oil (80%
Corn; 20%
sesame)

- - - 432 - ND - 8 - ND - ND

Blended oil (70%
Corn; 30%
sesame)

- - - 588 - 37 - 21 - 6 - <0.3

Vegetable oil - - - ND - ND - <0.5 - ND - ND

China
Shandong

Cod liver oil - - - - - - ND 2100–
6200 40,000 9000 8200 3400–

5800
3400–
6300 [118]

Fish Oil - - - - - - ND ND ND ND ND ND ND - - - -

Poland

Sunflower oil ND ND - ND 1062 ND ND ND 640 565 ND - - - - - -

[30]

Rapeseed oil 3 ND - 16 ND ND ND 250 110 ND ND - - - - - -

Olive oil ND ND - ND 962 ND 49 ND 27 ND ND - - - - - -

Margarine ND ND - ND ND ND ND ND 250 ND ND - - - - - -

Mix of margarine
and butter ND ND - ND ND ND ND ND 270 ND ND - - - - - -

C4a: PFBS; C6a: PFHxS; C7a: PFHpS; C8a: PFOS; C4b: PFBA; C5: PFPeA; C6b: PFHxA; C7b: PFHpA; C8b: PFOA; C9: PFNA; C10: PFDA; C11: PFUnDA; C12: PFDoDA; C13: PFTrDA;
C14: PFTeDA; C16: PFHxDA; and C18: PFOcDA; Bold: concentrations above LOQ; Italic: concentrations above LOD but below LOQ; <: concentration below the given LOD; ND: not
detectable; and -: not tested.
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The presence of 18 PFASs in the olive oil purchased in Catalonia, Spain, was assessed.
PFOS was the only PFAS detected at a concentration of 1.1 pg g−1 amongst the 18 PFASs,
while the others were detected at levels below the LODs, ranging from 0.22 (PFDS) to
140 pg g−1 (PFHpA and PFOA) [112].

Swedish researchers established disparities in the levels of PFASs (PFCAs and PFASs)
in fatty food items obtained from a Swedish food market between 1999, 2005, and 2010.
The findings indicated similar levels of concentration with minimal variation between
years. Results from the year 2010 indicated that PFOS, PFHxA, and PFUnDA were present
at concentrations of 13, 4.3, and 5.8 pg g−1, respectively. The concentration of other
compounds was below the LOD, with a range from 2.3 pg g−1 (PFHpA) to 3.9 pg g−1

(PFHxA) [114]. The butter samples obtained from Sweden also applied for PFHxS, PFOA,
and PFOS detection; the concentrations ranged from 2.6 to 18 pg g−1, 6.8–56 pg g−1, and
8.1–21.3 pg g−1, respectively [79].

PFOA and PFOS were measured in olive and peanut oils sold in the supermarket in
Siena (central Italy). The result revealed that the concentration of PFOA and PFOS was
below the LOD of 500 pg g−1 [115]. Similarly, no analysed PFASs were identified in the
edible oils and butter from the Czech Republic that exceeded the LOQ values (1400 pg g−1

for PFHxA and 2700 pg g−1 for PFHpA) [116].
The presence of 10 selected PFASs (seven PFCAs and three PFSAs) was measured in

commonly consumed fats and oil samples (sunflower oil, rapeseed oil, margarine, and a mix
of margarine and butter) collected from the Polish market, and all ten PFASs tested were
detected. PFOA was found with the highest (100%) detection frequency in the analysed
PFCAs. For the PFSA family, PFOS was the most commonly detected. The concentration
of PFOA ranged from 53 pg g−1 in olive oil to 1962 pg g−1 in sunflower oil, while the
concentration of PFOS was below 51 pg g−1, as specified for the olive oil sample. PFBS was
found only in rapeseed oil samples, with concentrations ranging from 3.0 to 5.0 pg g−1 [30].

To date, the research project on edible oil in China encompasses four areas, including
Guangzhou, Guizhou, Shandong, and Beijing. PFOA was detected but could not be quanti-
fied, and PFOS was not detected in the oil samples (peanut oil and mixed vegetable oil)
sold in Guangzhou, China [117]. A total of 18 PFASs were analysed in different types of
commercial edible oils purchased from local supermarkets in Guiyang, China. PFOS, PFNA,
PFHxS, and PFOA were the predominant pollutants among the 18 PFASs at concentrations
of 1.93 ng g−1, 6.76 ng g−1, 0.36 ng g−1, and 0.15 ng g−1, respectively [69]. A total of seven
PFCAs (C6–C12) were detected in all three cod liver oils obtained from the Shandong local
market, with concentrations that ranged from 2.1 to 40 µg L−1 [118]. The contamination
of five PFCAs in different edible vegetable oils sold in Beijing, China, was reported. The
main target chemicals in these oils were PFOA and PFDA, which were discovered in six oil
samples with concentrations between 6 pg g−1 and 2458 pg g−1. Long-chain compounds
such as PFOA can get up to 2018 pg g−1. The short-chain PFCAs, including PFBA and
PFHxA, were also detected at concentrations of 37 and 588 pg g−1 in blended oil, respec-
tively [35]. The concentrations of five target PFCAs in sesame oil were relatively high
among the analysed samples, which is consistent with Yang’s study in 2015 [60]. Similarly,
18 PFASs (PFCAs, PFSAs, and PFASs) were analysed in six edible plant oils with different
manufacturing processes and brands purchased from supermarkets in Beijing. The PFOA
concentration was the most prominent out of the 18 PFASs tested, ranging from below the
LOD to 500 pg g−1 with a detection rate of 92%. The highest concentration detected was
4640 pg g−1 of PFNA in blend oil [60]. Recently, the contamination of PFAIs in edible oil
samples obtained from supermarkets in Beijing, China, was investigated. Perfluorobutyl
iodide (PFBI) and perfluorohexyl iodide (PFHxI) were detected in seven of the twelve
oil samples, and their concentrations ranged from 629.8 to 3053 pg g−1. Perfluorooctyl
iodide (PFOI) was found in five of twelve oil samples in the concentration range of 212.9
to 2626 pg g−1. Perfluorodecyl iodide (PFDeI) and perfluorododecyl iodide (PFDoI) were
detected only in camellia seed oil at 226.8 and 560.6 pg g−1, respectively [119].
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It can be said that the contamination of PFAS in edible oils is worldwide, and C6–C10
PFCAs and PFSAs were extensively present in the edible oils. In contrast, a majority of the
research conducted on PFOA in PFCA and PFOS in PFSA revealed greater contamination
of PFOA than PFOS, whereas only a small number of studies investigated short-chain
PFASs (PFBA and PFBS) and non-ionic PFASs (PFAIs). Information remains limited, but
some existing studies have already suggested that these highly fluorinated alternatives
(short-chain PFASs, etc.) may not be less persistent, less bioaccumulative, or less toxic
as intended [34,120–122]. Given the growing prevalence of short-chain and novel PFAS
products, they deserve more in-depth study.

6. Pre-Treatment Methods for PFAS Analysis in Edible Oil

It is essential to evaluate the levels of PFAS in edible oils due to possible contamination.
Monitoring edible oils for PFASs assists in identifying the presence of the compounds,
enabling a more accurate evaluation of the oils’ safety, and assists regulatory authorities in
identifying any quality issues so they can take prompt action to effectively manage food
safety hazards.

The analysis of PFASs in edible oils is incredibly difficult due to the trace levels of
analytes and the high fat content in the matrix, especially fatty acids, which are ubiquitous
in edible oils, have a similar carbon skeleton to PFASs, and can lead to significant matrix
effects and misidentification [118,123]. Hence, pre-treatment strategies are important for
the extraction and clean-up of target compounds. At present, the extraction of PFASs from
oil samples is mainly carried out by liquid-liquid extraction (LLE), dispersive liquid-liquid
microextraction (DLLME), ion-pairing extraction (IPE), alkaline digestion, and liquid-solid
extraction (LSE). These methods have their own advantages and disadvantages for the
extraction of PFASs in different samples, so it is crucial to choose suitable extraction methods
for different matrices. In addition, solid phase extraction (SPE) is usually employed for
further enrichment and clean-up of targets after sample extraction to enhance detection
efficiency and minimise the matrix effect during the detection (Figure 3).
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6.1. Liquid-Liquid Extraction (LLE)

LLE, also known as solvent extraction, is a classical pre-treatment method that takes
advantage of differences in the partition coefficients between targets and impurities in two
incompatible solvents [124]. Good extraction efficiency and recovery for PFASs in oil make
LLE a distinct advantage, but it has a large toxic and harmful solvent consumption, which
does not meet green chemistry criteria [125].

A one-step reversed-phase liquid-liquid extraction was processed, using a mixture of
basified water/methanol (1:1, v/v, containing 0.5% NH3H2O) as the aqueous system and
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dichloromethane as the non-polar system, for separating PFOA and PFOS from cooking oil
and extracting them into the aqueous system. The instrumental LOQs of PFOA and PFOS
were 0.01 ng mL−1 [117].

6.2. Ion Pair Extraction (IPE)

IPE is a technique for the selective extraction of polar (i.e., acidic/basic) compounds
from aqueous samples into an organic phase with the assistance of counter-ions, comprising
different hydrophobicities as ion-pairing reagents [126].

The IPE was employed using methyl tert-butyl ether (MTBE) and subsequent solid
phase extraction clean-up on Florisil and graphitised carbon for 11 target PFASs deter-
mination. The recovery of fat is 62–91%. PFOS, PFUnDA, and PFHxA were detected in
fat, and the concentrations were 13, 5.8, and 4.3 pg g−1, respectively [114]. PFOS and
PFOA were extracted using an IPE procedure and measured using high-performance liquid
chromatography (HPLC) with electrospray ionisation (ESI) tandem mass spectrometry.
However, PFOS and PFOA were not detected in olive and peanut oils [115].

6.3. Dispersive Liquid-Liquid Microextraction (DLLME)

DLLME, which is the miniaturised version of liquid-liquid extraction in that the
amount of organic solvent used is dramatically reduced and shows a very high enrichment
factor compared to other liquid- or even solid-phase extraction methods, is an easy and
quick method for the extraction and purification of organic compounds present at trace
levels in aqueous samples [127]. The primary benefit of DLLME is that it has a greater
contact area than LLE, which enhances, speeds up, and optimises the extraction [128].

The traditional DLLME technique involved the rapid addition of a mixture of a water-
insoluble extraction solvent dissolved in a water-soluble solvent to an aqueous sample.
Magnetic deep eutectic solvents (DESs) are recent approaches to DLLME, either with or
without the need for dispersion solvents and without the need for centrifugation to break
the dispersion [129]. The superparamagnetic nanofluid, based on a new choline chloride/1-
(o-tolyl) biguanide DES system, was dispersed into edible oil for direct extraction of five
PFCAs from edible oils. The pre-treatment process was performed in 15 min, recoveries
ranged from 90 to 109%, and the LOD was 0.3–1.6 pg g−1. In six out of the ten edible
oil samples. PFOA and PFDA were the predominant target compounds and detected at
concentrations between 6 pg g−1 and 2458 pg g−1. Long-chain compounds like PFOA can
get up to 2018 pg g−1, and short-chain PFCAs such as PFBA and PFHxA were also detected
with concentrations ranging from 37 to 588 pg g−1 [35].

6.4. Alkaline Digestion

Alkaline digestion of lipids and proteins before extraction was suggested to achieve
an accurate and reliable measurement of PFASs. Alkaline digestion could reduce the matrix
effect and improve extraction efficiency. However, this method generally requires shaking
for hours, prolonging the pre-treatment time, which is not conducive to the rapid detection
of pollutants [130]. For alkaline digestion, the same solvents were used; the sample matrix
was digested using sodium hydroxide or potassium hydroxide solutions [34].

PFASs were extracted from freeze-dried margarine using alkaline digestion (sodium
hydroxide in methanol), followed by SPE using weak anion exchange (WAX) and additional
clean-up with Styrene-divinylbenzene (ENVI)-carb. PFHxS, PFOS, PFHxA, and PFOA
were detected in margarine, and the concentrations were 1.3, 2.3, 2.5, and 12 pg g−1,
respectively [109]. The same alkaline digestion extraction methods were also performed in
freeze-dried olive oil, and only PFOS was detected at a level of 1.1 pg g−1 [112].

6.5. Liquid-Solid Extraction (LSE)

LSE is the separation of components in a solid mixture using a solvent by partition
of analytes between the two involved phases, the matrix and the extractant, which is
essentially a mass transfer process in which the solute is transferred from the solid phase to
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the liquid phase only [128]. LSE is usually used for extracting solid or semi-solid samples
such as butter and margarine. An LSE extraction technique was used for PFAS extraction
from margarine based on extraction with a mixture of tetrahydrofuran and water (v/v:3:1).
The combination of a WAX resin and Envi-carb SPE in-line was found to be effective in
reducing matrix effects in the clean-up process. A total of eight PFASs were detected in
butter as follows: PFOS 33 pg g−1, PFHxA 20 pg g−1, PFOA 16 pg g−1, PFHxS 16 pg g−1,
PFDA 6 pg g−1, PFHpA 5 pg g−1, PFNA 2 pg g−1, and PFDoDA 2 pg g−1 [110].

6.6. Solid Phase Extraction (SPE)

SPE is used for purification and enrichment of targets, and it is usually employed after
extraction in the processing of complex oil samples. SPE is performed by the interaction
(ion exchange, physical adsorption, hydrophobic action, etc.) of a solid adsorbent between
the target compound and the adsorbent for the purpose of separating the target compound
from the sample matrix and the interfering compound [131]. However, this pre-treatment
method requires a large cost in purchasing expensive solid-phase extraction cartridges.

By using acetonitrile extraction, extract modification by water, and keeping the sample
refrigerated at 5 ◦C before subjecting it to SPE, the sample preparation process was signifi-
cantly simplified to decrease analysis costs. The validity of the approach was confirmed
and applied to actual edible oil samples. The recovery of butter and oil is 37–118% and
45–120%, respectively. The LOQ of PFAS was 1.4–2.7 ng g−1 [116]. The PFASs in sunflower
oil were extracted by tetrahydrofuran-water solvent, followed by WAX resin and Envi-carb
SPE. The recovery ranged from 88 to 110%, and the LOD ranged from 2.5 to 60 pg g−1 [111].

6.6.1. Dispersive Solid-Phase Extraction (d-SPE)

D-SPE is a novel sample pre-treatment technique developed from traditional SPE
techniques and is commonly used to extract target compounds from samples. The technique
is based on the addition of a sorbent to the sample, allowing the desired components to
attach to it, and then the target compounds are eluted using a solvent to achieve enrichment
and separation of the target compounds. D-SPE is popular in analytical chemistry due to its
minimal solvent consumption and its uncomplicated, speedy, and effective operation [132].

PFASs were extracted by acetonitrile and purified by gel permeation chromatography
(GPC) and d-SPE using graphitised carbon black (GCB) and octadecyl (C18). The recoveries
of PFASs ranged from 60% to 129%, and the detected PFAS concentrations in the oils ranged
from below the LOD to 4.64 µg kg−1. It should be noted that the highest level of PFNA
detected was 4.64 µg kg−1 in blend oil, and this is likely because PFNA is not a chemical
that is strictly regulated worldwide [60].

6.6.2. Magnetic Solid-Phase Extraction (MSPE)

The fact that the magnetic or magnetisable sorbent can be disseminated in the sample
solution to improve the interfacial area between the sorbent and sample gives MSPE
numerous advantages over traditional SPE techniques. The magnetic sorbent is included in
the sample solution in MSPE technology. An external magnetic field is used to separate the
magnetic sorbent from the sample solution after the target component has been absorbed
into it. Following that, a suitable solvent is used to elute the extracted analytes from the
sorbent. Finally, the magnet separates the eluent from the sorbent and introduces it to
analytical tools [133,134].

A sensitive method was used to analyse the PFAIs, combining an UiO-66-NH2@DES-
based MSPE with a gas chromatography-mass spectrometer (GC-MS). Under optimised
conditions, the proposed approach demonstrated great sensitivity with methodology
recovery (74.9–111%) and a LOD of 2.81–34.3 pg g−1. The technique worked well for
assessing PFAIs in various food oils, and the targets were found in a number of samples
with concentrations between 212.9 and 3053 pg g−1 [119].
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6.7. QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe)

The QuEChERS approach is a SPE technique based on LLE and d-SPE, which are
frequently used for the extraction of organic compounds in food items [34]. The method
relies on the combination of solvents and salts to separate the analyte from the sample into
acetonitrile [135].

PFAS analysis of oil products was performed using the QuEChERS method. Samples
were accurately weighed, targets were extracted using acetonitrile by sonication and vortex
following NaCl and MgSO4 treatment, and the supernatant was cleaned up with ENV
SPE bulk sorbent. PFOA was the most commonly detected compound in fat and oil food
samples, with a detection frequency of 100%, and PFBA was found at the highest levels. The
LOQ varied from 0.002 to 0.075 ng g−1 depending on the perfluoroalkyl compound [30].

7. Determination of PFAS in Edible Oil

PFASs could not be detected by UV or fluorescence detectors because there are no
chromophores in PFASs. Hence, GC-MS/MS and liquid chromatography (LC)-MS/MS
have become the dominant determination methods for target PFASs.

In general, the ionic PFASs were usually analysed using LC-MS/MS, and the non-ionic
PFASs were analysed using GC-MS/MS [136]. To this day, the instrumental analysis of
PFASs in edible oil is focused on ionised PFAS detection, especially for PFSAs and PFCAs,
as shown in Table 3. Therefore, LC-MS/MS is the main instrumental analysis method.
With the advent of modern analytical instruments, more sensitive analytical methods have
been developed, such as high-performance liquid chromatography (HPLC) and ultra-
performance liquid chromatography (UPLC) combined with mass spectrometry (MS),
such as HPLC-MS/MS, UPLC-MS/MS, and UPLC-QTOF-MS, etc. As shown in Table 4,
UPLC-QTOF-MS displayed the highest accuracy with a LOD of 0.3–1.6 pg g−1, followed
by UPLC-MS/MS (LOD: 2.3–5.4 pg g−1). Although these instruments are expensive, they
have outstanding advantages in the analysis of trace analytes with more analytical modes,
higher sensitivity, higher selectivity, and less background interference.

Non-ionic PFASs, the precursors of PFASs, are widely used in various fields as emerg-
ing POPs. Therefore, instrumental analysis of non-ionic PFASs should also be given great
attention. Most non-ionic PFASs are reported to be volatile and could be analysed by GC-
MS/MS [136]. Four FTOHs were determined in the childcare environment using GC-MS,
and the LOD is 20–70 pg g−1 [39]. PFAIs were also analysed by GC-MS/MS [119,136]. To
date, there are few studies on the GC-MS/MS analysis of non-ionic PFASs in edible oils.

Table 4. Different analytical methods for PFASs in edible oils.

Extraction Extraction
Solvent/Material Clean-Up Clean-Up

Material
Recovery

(%)
Analytical

Instrumentation
LOD

(pg g–1) Reference

LLE

Basified
water/methanol,
dichloromethane

- - - LC-MS/MS 10–2500 pg
mL– 1 [117]

Acetonitrile,
n-pentane SPE DSC-18 SPE cartridge

(Sigma-Aldrich) 37–120 HPLC-MS/MS 1400–2700 [116]

Acetonitrile GPC+DSPE C18, GCB 60–129 LC-ES-MS/MS 4–400 [60]

Acetonitrile d-SPE ENV SPE bulk
sorbent 72–104 micro-HPLC-

MS/MS 2–75 [30]

Basified
methanol/water

(1:1, v/v,
containing 1%

NH3H2O)

MSPE
Fe3O4@SiO2@

Quaternary
ammonium (QTA)

85.0–98.5 LC-MS/MS 1.5–20 [118]

Methanol MSPE Fe3O4@UiO-66-
NH2@DES 74.9–111 GC-MS/MS 2.81–34.3 [119]
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Table 4. Cont.

Extraction Extraction
Solvent/Material Clean-Up Clean-Up

Material
Recovery

(%)
Analytical

Instrumentation
LOD

(pg g–1) Reference

DLLME Superparamagnetic nanofluid DES based nano
Fe3O4 fluid 90–109 UPLC-QTOF-

MS 0.3–1.6 [35]

Ion pair
extraction

MTBE SPE Florisil and
graphitised carbon 62–91 UPLC-ESI-

MS/MS 2.3–5.4 [114]

MTBE - - - HPLC-ESI-
MS/MS - [115]

Alkaline
digestion

Sodium hydroxide
in methanol SPE WAX, ENVI-carb - UPLC-ESI-

MS/MS - [109,112]

LSE Tetrahydrofuran
and water SPE

A weak anion
exchange resin and

ENVI-carb
- LC-EI-MS/MS - [110]

Although chromatography offers the sensitivity and precision necessary for analysis,
the intricate procedures, expensive apparatus, and personnel expertise required make it dif-
ficult to exploit its full testing potential, with a cost per sample of around USD 200–300 [137].
Recently, emerging low-cost detection methods have been developed for PFAS detection,
such as optical assays like fluorescent detection (LOD 27.8 nM for PFOS) [138], colorimetric
detection (LOD 8.6 nM for PFOS) [139], and electrochemical-based sensor assays (LOD
70 ng L−1 for PFOS and PFOA) [140]. Photoelectrochemistry (PEC) was also used as a
detection technique with the potential to increase sensitivity and miniaturisation [141,142].
These methods could serve as a strategy for the invention of novel detection techniques for
PFAS in edible oils.

8. Conclusions

The potential health and environmental risks of PFASs have caused an increasing
focus on their monitoring by various analytical techniques. Up to this point, PFAS detection
has been limited to traditional ionic PFAS analysis in a simple food matrix. Traditional
PFASs (i.e., long-chain PFCAs, PFSAs, etc.) are being strictly restricted in production and
use all over the world. Subsequently, emerging PFASs (non-ionic PFASs and short-chain
PFASs) are introduced into markets. Edible oils, as an important route of exposure to
PFASs, deserve special attention. The pool of new PFAS compounds is rapidly growing and
now consists of numerous substances with diverse chemical compositions, volatility, and
solubility, the physical, chemical, and toxicological properties of which are still unknown
and could result in potentially hazardous exposure.

For the safety of edible oils, faster, simpler, and more effective analytical methods
for PFASs are imperative. For the detection of PFASs in edible oils, LLE or LSE extraction
is usually performed, followed by SPE for further enrichment, and the target PFASs are
analysed using GC/LC-MS/MS. It is essential to develop a universal pre-treatment process
for all the target PFASs that have a broad spectrum of polarity. Multiple interaction
strategies may be introduced to maximise their extraction/absorption effectiveness.

Despite the progress made in research into the effects of PFASs on edible oil, there is
still much to be investigated. For instance, safe human exposure levels need to be assessed,
and effective control measures need to be explored in food products. Additionally, in-depth
research on the environmental effects of these compounds, their interaction with other
components of the food system, their migration and transformation into the food system,
and their impact on food safety is still essential.
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