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Abstract: This study aimed to investigate the effects of different environmental factors (temperature,
pH, and NaCl) and food matrices (skimmed milk powder, lecithin, and sucrose) on the antibac-
terial activity of theaflavins (TFs) against Staphylococcus aureus (S. aureus) and Salmonella paratyphi B
(S. paratyphi B). TFs showed a larger diameter of inhibition zone (DIZ, 12.58± 0.09 mm–16.36± 0.12 mm)
value against S. aureus than that of S. paratyphi B (12.42 ± 0.43 mm–15.81 ± 0.24 mm) at the same
concentration (2–10 mg/mL). When temperatures were 25–121 ◦C, the DIZ of TFs against both
S. aureus and S. paratyphi B was not significantly different. As pH increased from 2 to 10, their DIZ
values decreased significantly from 16.78 ± 0.23 mm to 13.43 ± 0.08 mm and 15.63 ± 0.42 mm
to 12.18 ± 0.14 mm, respectively. Their DIZ values increased slightly as the NaCl concentration
increased from 0.2 mol/L to 0.8 mol/L, while their DIZ values decreased significantly for skimmed
milk powder concentrations in the range of 20–120 g/L. Regarding the concentrations of lecithin
and sucrose were 2–12 g/L and 10–60 g/L, their DIZ values showed no significant change against
S. paratyphi B, but an increased trend for S. aureus. Under the above different environmental factors
and food matrices, TFs maintained excellent antibacterial activity against S. aureus and S. paratyphi B,
providing a theoretical guidance for applying TFs as novel antibacterial additives in the food industry.

Keywords: theaflavins; diameter of inhibition zone; temperature; pH; NaCl; skimmed milk powder;
lecithin; sucrose

1. Introduction

Microbial contamination is a common food safety issue with potentially serious conse-
quences, including food spoilage and foodborne illnesses, both of which pose significant
risks to public health and result in substantial economic losses [1,2]. Therefore, inhibiting
the microbial growth in the foods while maintaining quality, freshness, and safety, referred
to as food preservation, becomes necessary and meaningful. The food industry has been
using preservatives, such as nitrates, for many years to extend food shelf-life by disrupt-
ing the activities of pathogenic and spoilage microorganisms [3]. However, the above
preservatives are synthetic substances that may cause problems for public health, such as
allergic reactions [4]. Therefore, natural preservatives have received widespread attention
in food preservation with ensured food quality, reduced health hazards, and improved
antibacterial efficiency; and they have gained wide attention in food preservation due to
their non-toxic, efficient, and operable characteristics [5,6].
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Theaflavins (TFs) are antioxidant polyphenols with a reddish color formed by the
condensation of flavan-3-ols in tea leaves during the fermentation of black tea, and their
content accounts for 0.5–3.0% of the dry weight in black tea [7–9]. Theaflavin and its deriva-
tives, including theaflavin-3-gallate (TF2A), theaflavin-3′-gallate (TF2B), and theaflavin-3,3′-
digallate (TF3), contribute to the quality and bioactivity of black tea [9]. Recently, TFs have
attracted considerable interest because of various biological activities, such as antioxidant,
anti-inflammatory, anti-aging, anti-diabetic, and antimicrobial properties [8,10]. These bio-
logical activities are mainly attributed to the antioxidant abilities of TFs [11], resulting from
their benzophenone skeleton and functional groups [12]. Yang et al. [13] found that TFs had
a stronger scavenging efficiency than epigallocatechin gallate (EGCG) against DPPH and
hydroxyl radicals. In addition, Gao et al. [14] evaluated the effect of TFs on the antioxidant
capacity in cured sausage, and TFs could inhibit the oxidation of myoglobin to improve the
color of cured sausage. Notedly, during the storage preservation of semi-dried large yellow
croaker, TFs treatment exhibited positive effects on the stability of muscle proteins and
lipids, showing excellent antibacterial activity against the genus of Actinobacteria, Proteus,
and Psychrobacter [15]. Therefore, TFs are a potential and attractive antimicrobial agent for
application in the food industry.

Food is a complex multi-scale system, including environmental factors (such as tem-
perature, pH, and NaCl) and food matrices (such as carbohydrate, protein, and lipid),
which will interfere with the antibacterial efficiency of natural preservatives. Regarding
environmental factors, the antibacterial activity of thymol decreased significantly when
the temperature was higher than 80 ◦C [16]; nisin showed a reduced antibacterial effect
at acidic and basic pH compared with neutral conditions [17]; 0.2 mol/L of NaCl could
significantly enhance the antibacterial activity of nisin [18]. Additionally, food matrices may
have a negative influence on the antibacterial efficiency of nisin, which should be added
under 60 g/L of sucrose (simulated carbohydrate-based system), 120 g/L of skimmed milk
powder (simulated protein-based system), and 12 g/L of lecithin (simulated lipid-based
system) in the related food products [19].

Although the antibacterial activity of TFs has been reported, their effects from different
environmental factors and food matrices remain unclear. This study aims to evaluate the
effects of environmental factors (temperature, pH, and NaCl) and food matrices (sucrose,
skimmed milk powder, and lecithin) on the antibacterial activity of TFs against Staphylococ-
cus aureus (S. aureus) and Salmonella paratyphi B (S. paratyphi B) through the double layer
agar method. The obtained results can provide a theoretical guidance for applying TFs as a
new antibacterial product in the food industry.

2. Materials and Methods
2.1. Materials

TFs (80% of purity) were provided by Jiangsu Dehe Biotechnology Co., Ltd. (Wuxi,
China). Luria-Bertani (LB) broth and agar were purchased from Qingdao Haibo’ao Biotech-
nology Co., Ltd. (Qingdao, China). S. aureus (CCMC(B) 226003) and S. paratyphi B (CMCC
50094) in the study were kindly donated from the Food Nutrition and Microorganism
Laboratory, Yangzhou University (Yangzhou, China). Skimmed milk powder, lecithin, and
sucrose were supplied by Shanghai Sangong Bioengineering Co., Ltd. (Shanghai, China).
Other chemicals and reagents were of analytical grade.

2.2. Preparation of Bacterial Culture Suspensions

S. aureus and S. paratyphi B were cultivated in LB medium for 12 h at 37 ◦C with 150 rpm
shaking culture; then, the bacterial culture concentration was diluted to 1 × 107 CFU/mL
for further studies, if not otherwise stated [20,21].

2.3. Evaluation of Antibacterial Activity

The antibacterial activity of TFs was evaluated based on the diameter of the inhibition
zone (DIZ) around Oxford cups (8.0 mm of diameter), according to the double-layer agar
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method described by de Azevedo et al. [22] with slight modifications. Oxford cups firstly
were placed on the surface of the Agar plates; then, S. aureus and S. paratyphi B culture
concentration (1 × 107 CFU/mL, 250 µL) and solid media (25 mL) were thoroughly mixed
into Agar plates. As the solid media solidified, the above Oxford cups were pulled out, and
150 µL of TFs solution with the concentrations of 2, 4, 6, 8, and 10 mg/mL was poured into
the Oxford cup cavity. After diffusion at 4 ◦C for 6 h and intubation at 37 ◦C for 18 h, the
above plates were taken out to measure DIZ with sterile water as control.

2.4. Effect of Environmental Factors on the Antibacterial Activity of TFs

To evaluate the antibacterial activity of TFs to pH, TFs solutions (10 mg/mL) were
adjusted to pH 2–10 by adding HCl (0.4 mol/L) and NaOH (0.4 mol/L); then, their DIZ
values to S. aureus and S. paratyphi B were further measured with untreated 10 mg/mL of
TFs as the control [23].

TFs solutions (10 mg/mL) were treated at 25 ◦C (room temperature), 60 ◦C (lowest
temperature for pasteurization), 80 ◦C (highest temperature for pasteurization), 100 ◦C
(boiling temperature), and 121 ◦C (commercial sterilization temperature) for 30 min to
evaluate the relationship between antibacterial activity of TFs and temperature. Then, their
DIZ values for S. aureus and S. paratyphi B were further measured with untreated 10 mg/mL
of TFs as control [24].

To explore the antibacterial activity of TFs to NaCl, TFs solutions (10 mg/mL) were
prepared to 0.2–0.8 mol/L of NaCl concentrations; then, their DIZ values to S. aureus and
S. paratyphi B were further measured with untreated 10 mg/mL of TFs as control [25].

2.5. Effect of Food Matrices on the Antibacterial Activity of TFs

Sucrose, skimmed milk powder, and lecithin were added to TFs solutions, which
could be used for simulated carbohydrate-based, protein-based, and lipid-based food
matrices, respectively. Then, the effects of different concentrations of sucrose (10–60 g/L),
skimmed milk powder (20–120 g/L), and lecithin (2–12 g/L) on the DIZ was measured
with untreated 10 mg/mL of TFs as control [19].

2.6. Statistical Analysis

All the tests were repeated at least three times. The data are presented as the
mean ± standard deviation. Significant differences among groups were analyzed by the
Duncan test at p < 0.05 using SPSS 20.0 software.

3. Results
3.1. Antibacterial Effects of TFs Concentrations

Figure 1 exhibits the inhibition zone appearance combined with their DIZ values of TFs
against S. aureus (A and B) and S. paratyphi B (C and D) as a function of TFs concentrations
(0–10 mg/mL). The DIZ value without TFs was 8 mm, the same as the diameter of the
Oxford cup, implying that sterile water has no antibacterial effect. As the concentration
of TFs increased from 2 mg/mL to 10 mg/mL, their DIZ values increased significantly
from 12.58 ± 0.09 mm to 16.36 ± 0.12 mm and 12.42 ± 0.43 mm to 15.81 ± 0.24 mm for
S. aureus (Figure 1B) and S. paratyphi B (Figure 1D), respectively, showing a dose-dependent
antibacterial activity of TFs. Furthermore, TFs show larger DIZ values against S. aureus than
S. paratyphi B at the same concentration, consistent with the findings of EGCG, showing
higher antibacterial activity on Gram-positive bacteria and low antibacterial activity on
Gram-negative bacteria [26].
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Figure 1. Inhibition zone appearance combined with their DIZ values of TFs against S. aureus (A,B),
and S. paratyphi B (C,D) as a function of TFs concentrations (0–10 mg/mL). Different lowercase letters
in (B,D) indicated significant differences among groups (p < 0.05).

3.2. Effect of Environmental Factors
3.2.1. Role of Temperature

Figure 2 shows the DIZ values of TFs against S. aureus (A) and S. paratyphi B (B)
as a function of processing temperatures (25–121 ◦C). As temperatures increased from
25 ◦C to 121 ◦C, no significant difference was observed for the DIZ values of TFs against
S. aureus and S. paratyphi B, respectively. Compared with the control group (25 ◦C), the
high temperature at 121 ◦C did not show a significant effect on the antibacterial activity
of TFs against S. aureus and S. paratyphi B, respectively. Therefore, TFs can be used as
bio-preservatives in foods undergoing commercial sterilization. Yang et al. [19] found
that the antibacterial activity in nisin was significantly reduced after high-temperature
treatment, which may be attributed to the difference in molecular structure.
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3.2.2. Role of pH

Figure 3 presents the DIZ values of TFs against S. aureus (A) and S. paratyphi B (B) as a
function of pH (2–10). Compared with the control group (pH = 6, DIZ = 15.76 ± 0.23 mm
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and 14.85 ± 0.18 mm against S. aureus and S. paratyphi B), when the pH was reduced to 2,
the DIZ values were increased to 16.78 ± 0.23 mm and 15.63 ± 0.42 mm for S. aureus and
S. paratyphi B, implying their enhanced antibacterial activity; whereas the pH increased to
10, the DIZ values were decreased to 13.43 ± 0.08 mm and 12.18 ± 0.14 mm for S. aureus
and S. paratyphi B, indicating their attenuated antibacterial activity. Therefore, low pH is
beneficial for the antibacterial activity of TFs, while high pH diminishes their antibacterial
activity. The result is consistent with a previous study that shows an excellent antibacterial
activity of monolaurin under low pH conditions [23].
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Figure 3. The DIZ values of TFs (10 mg/mL) against S. aureus (A) and S. paratyphi B (B) as a function
of pH (2–8). Different lowercase letters in (A,B) indicated significant differences among groups
(p < 0.05).

3.2.3. Role of NaCl

Figure 4 illustrates the DIZ values of TFs against S. aureus (A) and S. paratyphi B (B)
as a function of NaCl concentrations (0–0.8 mol/L). There was no significant difference
in their DIZ values against S. aureus and S. paratyphi B when the NaCl concentration
increased from 0 to 0.6 mol/L. The DIZ values increased slightly from 15.44 ± 0.10 mm and
15.65 ± 0.05 mm to 15.50± 0.11 mm and 15.67± 0.09 mm against S. aureus and S. paratyphi B
when the NaCl concentration increased from 0.6 mol/L to 0.8 mol/L. Compared to the
control group (NaCl concentration 0 g/L), TFs with 0.8 mol/L of NaCl concentration
showed a significantly enhanced antibacterial activity against S. aureus and S. paratyphi B.
Therefore, the antibacterial activity of the TFs was enhanced when the NaCl concentration
reached above 0.8 mol/L. These findings are consistent with a previous study [27], which
showed that combining NaCl with essential plant oils (carvacrol and thymol) significantly
increased the antibacterial activity against E. coli O157:H7, Listeria monocytogenes, and
S. aureus. The result is caused by the synergistic effect of antibacterial activity resulting
from multiple stress factors. Therefore, TFs and NaCl show a synergistic antibacterial
activity against S. aureus and S. paratyphi B.

3.3. Effect of Food Matrices
3.3.1. Role of Sucrose

Figure 5 shows the DIZ values of TFs against S. aureus (A) and S. paratyphi B (B) as a
function of sucrose concentration (0–60 g/L). As sucrose concentration increased from 0 to
10 g/L, the DIZ value of TFs against S. aureus increased significantly from 16.55 ± 0.19 mm
to 17.44 ± 0.15 mm, and no significant difference was observed for their DIZ values with
sucrose concentration further increasing to 60 g/L. Additionally, there was no significant
change in the DIZ value of TFs against S. paratyphi B with sucrose concentration ranging
from 0 to 60 g/L. Compared with the control group (sucrose concentration 0 g/L), TFs
with 60 g/L of sucrose concentration exhibited an enhanced antibacterial activity against
S. aureus and a neutral antibacterial activity against S. paratyphi B. The result implies that
sucrose addition shows a stronger influence on the antibacterial activity of TFs against
S. aureus than S. paratyphi B, which may be attributed to various species displaying different
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susceptibilities to the same antimicrobial agent, resulting in a strain-specific effect of sucrose
on antibacterial activity [28].
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sucrose concentrations (0–60 g/L). Different lowercase letters in (A,B) indicated significant differences
among groups (p < 0.05).

3.3.2. Role of Skimmed Milk Powder

Figure 6 presents the DIZ values of TFs against S. aureus (A) and S. paratyphi B (B)
as a function of skimmed milk powder concentrations (0–120 g/L). As skimmed milk
powder concentration increased from 0 to 80 g/L, the DIZ values of TFs against S. aureus
and S. paratyphi B decreased significantly from 16.81 ± 0.68 mm and 15.76 ± 0.08 mm to
8.00 ± 0.08 mm and 8.00 ± 0.12 mm, respectively. However, when the concentration of
skimmed milk powder further increased to 120 g/L, there was no significant change in
the DIZ values of TFs against both S. aureus and S. paratyphi B. The above results indicated
that TFs with 20–120 g/L of skimmed milk powder concentration showed an attenuated
antibacterial activity against S. aureus and S. paratyphi B as compared to the control group
(skimmed milk powder concentration 0 g/L). These results suggest that skimmed milk
powder has a negative impact on the antibacterial activity of TFs because protein is an
essential nutrient for microbial growth. The antibacterial activity of resveratrol in milk is
similar [29].
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3.3.3. Role of Lecithin

Figure 7 exhibits the DIZ values of TFs against S. aureus (A) and S. paratyphi B (B) as a
function of lecithin concentrations (0–12 g/L). Compared with the control group (lecithin
concentration 0 g/L), the DIZ value of TFs against S. aureus increased significantly from
16.61 ± 0.28 mm to 18.46 ± 0.33 mm when the lecithin concentration increased from 0 to
2 g/L, implying their enhanced antibacterial activity of TFs against S. aureus. However,
as the lecithin concentration further increased to 10 g/L and 12 g/L, their DIZ values
of TFs against S. aureus decreased significantly to 16.78 ± 0.89 mm and 15.86 ± 1.02 mm
with no significant difference as compared to the control group. In addition, there is no
significant difference in their DIZ values against S. paratyphi B when the lecithin concen-
tration increased from 0 to 12 g/L. Our findings are consistent with a previous study that
quercetin-enriched lecithin exhibits an antibacterial activity compared with lecithin or
quercetin [30].
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4. Discussion

In this study, TFs exhibited excellent antibacterial activity against S. aureus (Gram-
positive bacteria) and S. paratyphi B (Gram-negative bacteria). Due to their polycyclic
structures and phenolic hydroxyl groups, TFs have a high affinity for biomacromolecules
such as lipids, proteins, carbohydrates, and nucleic acids. This high affinity enables TFs
to react with the bacterial cell membrane, resulting in an unstable membrane structure,
decreased membrane fluidity, and destroyed membrane integrity [31], as shown in Figure 8.
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Figure 8. Possible antibacterial mechanism of TFs against Gram-positive and Gram-negative
bacteria [32–34].

TFs showed a larger DIZ value against S. aureus than S. paratyphi B at the same con-
centration, exhibiting a stronger antibacterial activity against S. aureus. The result may be
related to their differences in the structures and compositions of the cell wall [35]. Similar
results were observed for EGCG [36] and catechin [37], wherein they could cause cell
membrane damage easier in Gram-positive bacteria with a thin peptidoglycan layer. Fur-
thermore, Gram-negative bacteria had an additional outer membrane mainly composed
of lipopolysaccharides overlaying the thin peptidoglycan layer, which may be a funda-
mental reason for the weak inhibitory effect against Gram-negative bacteria [38]. These
results should be responsible for the role of environmental factors (processing temperature,
pH, and NaCl) and food matrices (sucrose, skimmed milk powder, and lecithin) in the
antibacterial effects of TFs against S. aureus and S. paratyphi B.

As for the effect of processing temperature (25–121 ◦C) on the antibacterial activity
of TFs, there was no significant change, even at high temperatures commonly used in
commercial sterilization processes. Bacteriocin remained active after autoclaving at 121◦C
for 15 min [39]. Additionally, Su et al. [40] reported that the mixture of catechins and TFs
may suffer severe degradation from 100 ◦C for 3 h. However, no significant degradation of
TFs could occur at the processing temperatures of 100 ◦C and 121 ◦C for 30 min in this study,
resulting in no change for the antibacterial activity of TFs. The results may be attributed to
their detailed compositions and limited processing time. The above results indicate that TFs
possess an excellent antibacterial activity to high processing temperatures, which is a crucial
factor in preserving heat-processed food products with good antibacterial properties.

In addition, this study investigated the effect of environmental factors (pH and NaCl)
and food matrices (sucrose, skimmed milk powder, and lecithin) on the antibacterial
activity against S. aureus and S. paratyphi B, as shown in Figures 9 and 10, respectively.
There is no significant difference for the inhibition zone appearance with pH values (2–8),
NaCl concentrations (0–0.8 mol/L), sucrose concentrations (0–60 g/L), skimmed milk
powder concentrations (0–120 g/L), and lecithin concentrations (0–12 g/L), implying their
insufficient antimicrobial activity. Interestingly, a remarkable antibacterial effect with
an apparent inhibition zone was observed for the above conditions with TFs addition,
which should be responsible for antimicrobial activity. These findings are consistent with
previous studies that phenolic-rich plant extracts or pure plant phenolics could inhibit the
growth of microorganisms in the special food matrix (such as chicken soup and pasteurized
milk) [41–43].
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(A–E) and without (F–J) TFs on the inhibition zone appearance from S. paratyphi B.

Considering the effect of pH (2–10) on the antibacterial activity of TFs, S. aureus and
S. paratyphi B both exhibited an increased sensitivity at low pH values of 2–6, which may be
due to their damaged cell membrane (e.g., membrane permeability or lipid peroxidation)
in an acidic environment [44]. This phenomenon is consistent with the findings of Rda
et al. [45] and Buldain et al. [46]. They found that Thurincin H and essential oils were
more effective in inhibiting the growth of Listeria innocua and Escherichia coli at pH 5–6.5,
respectively. Furthermore, Lee et al. [47] found that TFs were stable at pH 6.5 and degraded
seriously at pH 9, resulting in the decreased antibacterial activity. Therefore, TFs are more
suitable for food processing and preservation in an acidic environment than an alkaline
environment, which is conducive to the efficient performance of their antibacterial activity.

Considering the effect of NaCl concentration (0.2–0.8 mol/L) on the antibacterial
activity of TFs, TFs and NaCl exhibited a synergistic antibacterial activity against S. aureus
and S. paratyphi B, especially at a concentration of 0.8 mol/L NaCl. Xu et al. [48] observed
that the biofilm formation of S. aureus was seriously suppressed with the increasing NaCl
concentration (0–2%). This finding was consistent with the previous studies where NaCl
could enhance the efficiency of Ruta chalepensis essential oils in killing microorganisms
under certain conditions [49]. In addition, Wen et al. [50] applied tea polyphenols to
preserve pork sausages for high-salt foods, and found that tea polyphenols could enable
their excellent quality and sensory characteristics, and prolonged the shelf-life from 36 d



Foods 2023, 12, 2615 10 of 13

to 42 d. Therefore, high concentrations (>0.8 mol/L) of NaCl combined with TFs are
encouraged for food processing and preservation.

Regarding the effect of sucrose concentration (10–60 g/L) on the antibacterial activity
of TFs, sucrose addition significantly enhanced the antibacterial activity of TFs against
S. aureus, but no significant change for S. paratyphi B, which may be attributed to the
species-specific effects resulting from the varied susceptibilities of different species to the
same antibacterial agent [51]. The increase in osmotic pressure caused by high sucrose
concentration may lead to an imbalance in microbial cells, thus, increasing their suscep-
tibility to TFs [52]. Yang et el. [19] reported that the antibacterial activity of nisin against
Listeria monocytogenes was significantly reduced when the sucrose concentration increased
to 60 g/L, which may be attributed to the molecular structure of the antibacterial agent
and its interaction with sucrose [28]. The above results suggest that TFs are suitable for
preservation and freshness maintenance in carbohydrate-based systems, such as sucrose
concentration < 60 g/L.

As for the effect of skimmed milk powder concentration (20–120 g/L) on the antibac-
terial activity of TFs, their antibacterial activity against S. aureus and S. paratyphi B was
significantly decreased when the skimmed milk powder concentration increased from
20 g/L to 80 g/L, which could be attributed to the interaction between polyphenols and
proteins resulting in the formation of polyphenol–protein complexes, thereby limiting the
action of active polyphenolic compounds against microbial cells [53]. Smith et al. [54]
further reported that protein could weaken the antibacterial activity of active ingredients
by promoting the growth of bacteria. Therefore, the concentration of skimmed milk pow-
der should be controlled within 80 g/L to facilitate the antibacterial activity of TFs in a
protein-based system.

Considering the effect of lecithin concentration (2–12 g/L) on the antibacterial activ-
ity of TFs, their antibacterial activity against S. aureus exhibited a significant increasing
trend, but no significant change for S. paratyphi B. The results may be because the combi-
nation of lecithin with Ca2+ and Mg2+ destabilizes the lipopolysaccharide membrane [55].
Furthermore, the antibacterial activity of the quercetin-enriched lecithin formulation was
better than that of individual quercetin, showing high antibacterial activity against Gram-
positive [30]. Additionally, adding tea polyphenols to edible fats, oils, and fat-containing
products could effectively inhibit lipid oxidation, and the growth and reproduction of
microorganisms, ultimately extending the shelf-life of such products [56,57]. Therefore, this
study provides a theoretical reference for applying TFs in the preservation and freshness
maintenance of a lipid-based system (lecithin concentration < 12 g/L).

5. Conclusions

In this study, TFs had better antibacterial activity against S. aureus than S. paratyphi B.
TFs also exhibited a dose-dependent antibacterial activity, and showed an ideal antibacterial
activity with high processing temperatures and low pH conditions. Additionally, 0.8 mol/L
NaCl had a synergistic effect on the antibacterial activity of TFs. In different food matrices,
TFs maintained good antibacterial activity in the concentration range of sucrose (<60 g/L),
skimmed milk powder (<80 g/L), and lecithin (<12 g/L). This study provides valuable
theoretical support for the application of TFs in the food industry, which is beneficial for
developing food-grade antimicrobial agents in food preservation.
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