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Abstract: The gaseous reactive oxygen/nitrogen species (RONS) generated by cold atmospheric
plasma (CAP) can effectively inactivate Aspergillus flavus (A. flavus) and prolong the shelf-life of food.
Plasma-activated water (PAW) is the extension of cold plasma sterilization technology. Without the
limitation of a plasma device, PAW can be applied to more scenarios of food decontamination. How-
ever, the efficacy of PAW as a carrier of RONS for eradicating A. flavus or inhibiting its growth remains
unclear. In this study, the immediate fungicidal effect and long-term inhibitory effect of PAW on A.
flavus were investigated. The results demonstrated that 60-min instant-prepared PAW could achieve
a 3.22 log reduction CFU/mL of A. flavus and the fungicidal efficacy of PAW gradually declined
with the extension of storage time. Peroxynitrite (ONOO-/ONOOH) played a crucial role in this
inactivation process, which could damage the cell wall and membrane structure, disrupt intracellular
redox homeostasis, and impair mitochondrial function, ultimately leading to fungal inactivation. In
addition to the fungicidal effect, PAW also exhibited fungistatic properties and inhibited the synthesis
of aflatoxin B1 (AFB1) in A. flavus. By analyzing the cellular antioxidant capacity, energy metabolism,
and key gene expression in the AFB1 synthesis pathway, it was discovered that PAW can significantly
reduce ATP levels, while increasing SOD and CAT activity during 5-d cultivation. Meanwhile, PAW
effectively suppressed the expression of genes related to AFB1 synthesis.

Keywords: plasma-activated water; Aspergillus flavus; peroxynitrite; fungicidal effect; inhibitory effect

1. Introduction

Aspergillus flavus (A. flavus) is a soil-borne saprophytic fungus that infects and contami-
nates crops [1]. A. flavus produces aflatoxins, which are highly toxic and pose serious threats
to food quality, safety, and human health [2]. It has been reported that about 25% of global
food crops worldwide are contaminated with aflatoxins [3]. Therefore, the decontamination
of A. flavus and aflatoxins are critical issues that need to be addressed [4].

Cold atmospheric plasma (CAP) attracts increasing attention as a novel non-thermal
technology for food decontamination and preservation [5]. CAP is generated by electrical
discharge, which refers to ionized gas that processes a variety of reactive oxygen/ nitrogen
species (RONS). These RONS have been proven to be the major agents in microbial inacti-
vation [6,7]. Numerous investigations have also confirmed the antifungal effects of CAP
against A. flavus. For instance, Dasan et al. demonstrated that CAP could compromise the
integrity of A. flavus spore cells by scanning electron microscopy (SEM) observations [8,9].
The decontamination efficacy was found to increase with the increasing applied reference
voltage and frequency. Upon further study, Dasan et al. discovered that air plasma was
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more effective than nitrogen plasma in eliminating A. flavus spores due to the formation of
ROS in the presence of oxygen [10]. Devi et al. found that a 60-W and 15-min CAP treat-
ment could effectively inactivate 99.5% of A. flavus, and significantly reduce the production
of AFB1 by 96.8% [11]. Mošovská and Ott et al. employed optical emission and absorption
spectroscopy to confirm the production of gaseous RONS, e.g., hydroxyl radical (·OH),
ozone (O3), nitrogen oxides (NOx). These RONS induce the inactivation of A. flavus [2,12].
Recently, Lin et al. employed a novel rotary plasma jet to inhibit A. flavus and found CAP
effectively inhibited the growth of A. flavus on peanuts. Moreover, the content of AFB1
was significantly reduced. Aflatoxin concentrations in CAP treated (200 W and 5 min) and
untreated peanuts were 16.5 and 363.7 ppb after 29-d storage, respectively [3].

These aforementioned research articles demonstrated the decontamination ability
of CAP against A. flavus and Aflatoxin. However, CAP decontamination faces plenty
of problems in practical application. For example, the samples with irregular shapes
cannot be treated homogeneously by CAP [13] and the large-scale processing is difficult
to achieve [14]. Moreover, the UV and electromagnetic fields in CAP may pose potential
hazards to the operators and damage delicate biological materials [15]. Thus, to successfully
transfer CAP decontamination into the practical application, a novel CAP-based technology
should be proposed. Recently, plasma-activated water (PAW) has been born to meet the
need. PAW is generated by CAP treatment of water, which also possesses rich RONS (such
as ·OH, superoxide anion (·O2

−), singlet oxygen (1O2), hydrogen peroxide (H2O2), nitrate
(NO3

−), nitrite (NO2
−), and peroxynitrite (ONOO−/ONOOH)) and can inactivate various

microorganisms (such as viruses, bacteria, and fungi) [16–22]. Without the limitation of the
CAP device, PAW can be used as a carrier of RONS to decontaminate foods in a variety of
scenarios [23]. However, the decontamination effects of PAW against A. flavus and Aflatoxin
are not clear yet.

Herein, this study investigated the immediate fungicidal effect and long-term in-
hibitory effect of PAW on A. flavus. A novel plasma jet device was employed to prepare
PAW, and the electrochemical properties (oxidation-reduction potential (ORP), pH, and
electrical conductivity) of PAW were detected. Meanwhile, the concentration of ONOO−

and NO3
− in PAW was also measured. Furthermore, the inactivation efficiency of PAW

against A. flavus at different storage times and its relationship with ONOO− concentration
were analyzed. Then, the possible inactivation mechanism of PAW against A. flavus was
analyzed by measuring the cell membrane integrity, intracellular RONS, and mitochondrial
membrane potential. In addition to the inactivation effect, the inhibition effect of PAW on
AFB1 synthesis was also investigated via the analysis of the changes in antioxidant capacity,
energy metabolism, and the expression of key genes in the aflatoxin synthesis pathway of
A. flavus.

2. Experimental Setup and Methods
2.1. The Preparation of PAW

A novel CAP jet device was employed to treat the water for the preparation of PAW
(Figure 1a). The plasma jet device was comprised of an HV copper electrode in the chamber
and the outer copper electrode as the ground electrode. The electrodes were separated by
a ceramic tube and were driven by the high-voltage power supply (Suodifu, Zhengzhou,
China). Air was used as the carrier gas with a flow rate of 10 L/min, and the length of the
jet plume was about 30 mm. The discharge voltage was measured by a high-voltage probe
(Tektronix, P6015A), and the discharge current was measured by the current probe (Pearson
Electronics, 2877). The data of the waveforms were recorded by an oscilloscope (Teledyne,
WaveSurfer 3000). As shown in Figure 1b, the discharge frequency was 33 kHz and the
voltage had a peak-to-peak value of 8 kV. The power was sustained at approximately 240 W.
50 mL sterile distilled water was treated by CAP for 2 min to acquire the PAW solution.
After being stored for different times, PAW was utilized to treat A. flavus.
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Figure 1. (a) Schematic diagram of CAP jet device, PAW preparation, and PAW treatment of A. flavus.
(b) Current and voltage waveforms of CAP jet.

2.2. Measurements of Optical Emission Spectra

During the processing of CAP discharge, optical emission spectra (OES) were detected
by AvaSpec-ULS 4096CL-EVO (Avantes, Lafayette, CO, USA). The probe of fiber optics
cable was used to acquire the light signals at a distance approximately 5 mm away from
the end of the plasma jet plume.

2.3. Measurements of pH, ORP, Electrical Conductivity, and ONOO− in PAW

The pH and ORP of PAW were measured after storage at different times by the
multimeter pH and Redox (Mettler-Toledo, Zurich, Switzerland). The electrical conductivity
of PAW was measured after storage at different times by an electric conductivity meter.
The ONOO− concentration in PAW was measured after storage for different times by the
method provided by Tarabová et al. [24]. The probe of 2, 7-dichlorodihydrofluorescein
diacetate (H2DCFDA) was used for ONOO− detection. NO3

− concentration in PAW was
measured after storage for different times by spectrophotometric method [25].

2.4. The Culture of A. flavus Spores and Mycelium

A. flavus spores were harvested in 20 mL of sterile deionized water from 7-day-old
cultures grown on potato dextrose agar (PDA) at 30 ◦C. After filtration with the sterile
gauze, centrifuged, and washed with the sterile deionized water, the concentration of A.
flavus spores was adjusted to about 7 log CFU/mL for PAW treatment. In addition, A. flavus
spores were inoculated on PDA and cultivated for two days at 30 ◦C. Then, the mycelium
was collected and treated by PAW.

2.5. Detection of A. flavus Inactivation Efficiency

The inactivation efficiency of A. flavus by PAW was evaluated by colony forming units
(CFU). A. flavus spores were treated by PAW after storage at different times, and then
centrifuged at 8000× g for 5 min and resuspended by the sterile deionized water. A 10-fold
serial dilution of 100 µL of spore suspensions were spread on PDA. Then the plates were
placed in the incubator for the spore growth at 30 ◦C. After 48 h cultivation, the CFU was
counted.

2.6. Detection of Cell Membrane Integrity, Intracellular RNS and Mitochondrial
Membrane Potential

After treatment with the instant-prepared PAW, the cell membrane integrity, intra-
cellular RNS, and mitochondrial membrane potential of A. flavus were measured by flow
cytometry and fluorescence microscope. Propidium iodide (PI) was used to detect the
cell membrane permeability. 2′, 7′-dichlorofluorescein diacetate (H2DCF-DA), 3-Amino,4-
aminomethyl-2′,7′-fluorescein, and diacetate (DAF-FM DA) were used to detect the in-
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tracellular ONOO− and NO. 5,5′,6,6′-tetrachloro-1,10,3,3′-tetraethylimidacarbocyanine
iodide (JC-1) (Beyotime, Shanghai, China) was used to detect the mitochondrial membrane
potential (MMP). After PAW treatment, A. flavus spores or mycelium were centrifuged and
resuspended by phosphate-buffered saline (PBS), and their probes were added into the sus-
pensions and incubated at 30 ◦C for 30 min in the dark. Then, A. flavus spores or mycelium
were washed by PBS, and the mean fluorescence intensity (MFI) of A. flavus spores was
analyzed by flow cytometry. The fluorescence intensity of mycelium was observed by
fluorescence microscope.

2.7. Determination of AFB1 Concentration

AFB1 was detected with enzyme-linked immunosorbent assay (ELISA). After treat-
ment with the instant-prepared PAW, A. flavus was inoculated onto PDA and cultivated
for 2, 3, and 5 d. The AFB1 concentrations of A. flavus at different culture times were
analyzed by the AFB1 ELISA Kit (Finderbio, Shenzhen, China). The kit consisted of a
96-well microtiter plate pre-coated with conjugate antigen, horseradish enzyme marker,
antibody, standard of AFB1, and other supporting reagents. AFB1 in the samples can
compete with conjugate antigen pre-coated in the plate, and inhibit AFB1 antibodies. TMB
(3,30,5,50-tetramethylbenzidine) was used for color development. The absorbance value of
the sample was negatively correlated with the content of AFB1. The amount of AFB1 in the
samples can be calculated by comparing it with the standard curve. The detection limit of
this ELISA kit was 1 ppb.

2.8. Determination of SOD Activity, CAT Activity, and ATP Content

After treatment with the instant-prepared PAW, A. flavus was inoculated onto PDA
and cultivated for 2, 3, and 5 d. The SOD activity, CAT activity, and ATP content of A. flavus
at different culture times were measured. Mycelia were freeze-dried in liquid nitrogen and
grounded. After that, the samples were homogenized in PBS and centrifuged in 7000× g
for 15 min at 4 ◦C. The supernatant was used for the detection of ATP content, total protein
concentration, and enzyme activity. The ATP level was measured with a bioluminescence
assay kit (Beyotime, Shanghai, China). The total protein concentration of A. flavus was
determined by Bradford assay (Protein standard: bovine serum albumin). SOD and CAT
activities were detected by commercial kits (Cu/Zn-SOD and Mn-SOD Assay Kit, Catalase
Assay Kit, Beyotime, Shanghai, China). The SOD or CAT activities were expressed as the
SOD activity or CAT activity divided by total protein concentration.

2.9. Detection of the Gene Expression Level

After treatment with the instant-prepared PAW, A. flavus was inoculated onto PDA
and cultivated for 2, 3, and 5 days for the extraction of RNA. The cultures were harvested
and homogenized in liquid nitrogen. Total RNA was extracted with TRIzol Reagent
(Thermofisher Scientific, Carlsbad, USA) and transcribed to cDNA by the Evo M-MLV RT
premix Kit (Accurate Biology, Changsha, China) according to the manufacturer’s protocol.
The relative expression of aflatoxin biosynthesis genes (aflD, aflP, aflQ, aflR, aflS) was
determined by real-time fluorescence quantitative PCR (RT-qPCR). The primers for the
amplification of these 5 genes and a reference gene (β-tubulin) were reported by the
literature [26]. The sequences and amplification efficiency of each pair of primers were
also shown in the Supporting Information (Table S1 and Figure S1). The PCR reaction
contained cDNA as a template, gene-specific primers, and 2 × SYBR@ Green Pro Taq HS
Premix (Accurate Biology, Changsha, China). qPCR was carried out at 95 ◦C for 2 min;
40 cycles of 95 ◦C for 15 s, 58 ◦C for 15 s, and 68 ◦C for 20 s (Roche’s automatic fluorescence
PCR analyzer (LightCycler480)); melting curves were performed according to the default
parameters of the instrument. The 2−∆∆Ct values were obtained using the β-tubulin gene as
an internal reference [27].
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2.10. Statistical Analysis

Three replicate experiments were carried out to obtain the data. Values were expressed
as the mean value ± standard deviation (SD). Analysis of variance (ANOVA) in SPSS
statistical package 22.0 (SPSS statistical package 22.0, New York, NY, USA) was used to
perform the statistical analysis. Student–Newman–Keuls multiple range test was employed
to identify the significant differences between samples with a confidence level at p < 0.05.

3. Results and Discussion
3.1. The OES of Plasma Jet

To identify the major excited reactive species, OES in the wavelength of 200–1000 nm
were observed. As was shown in Figure 2, the second positive system N2 (C3Πu → B3Πg)
emissions (313, 337, 357, and 380 nm), NOγ (200–300 nm), O (777 and 844 nm) and ·OH
band (309 nm) could be identified [28]. The electron impact dissociation of O2 molecules
led to the formation of O (Equation (1)). Simultaneously, the band in N2 molecules can
also be broken by vibrational excitation and dissociation (Equation (2)) [29]. The excited
N2 molecules can dissociate H2O molecules to form ·OH (Equations (3) and (4)). Nitrogen
oxides can be formed from the reactions of the dissociated N2 and O2 (Equations (5) and
(6)) [7]. These gas-phase RONS can further react with water molecules to produce various
secondary RONS in liquids [17].

e + O2 → O + O + e (1)

e + N2 → N + N + e (2)

e + N2 → N2* + e (3)

N2* + H2O→ N2 + ·OH + H (4)

N + O→ NO (5)

NO + O→ NO2 (6)
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3.2. Physicochemical Properties of PAW

The plasma gas-liquid interaction can change the physicochemical properties of the
liquid. ORP can reflect the total oxidation level of the solution. Generally speaking, the
higher ORP, the stronger oxidation of the solution. It has been reported that the ORP of
water after CAP treatment was increased [20]. Compared to water (~230 mV), the ORP
of PAW was increased to about 560 mV (Figure 3a). In addition to ORP, the acidification
of water is another property after CAP treatment. As was shown in Figure 3b, the pH
value of PAW was about 2.8. The results of OES demonstrated the generation of nitrogen
oxides. The dissolution of nitrogen oxides in the liquid can form NO2

−, NO3
−, and H+ ions,

thus leading to a drop in pH (Equations (7) and (8)) [7]. Electrical conductivity was also
measured. As was shown in Figure 3c, the electrical conductivity of PAW was increased to
about 400 µS/cm, indicating that a number of ions existed in PAW. These ions, especially
RONS, play important roles in fungal inactivation.
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Peroxynitrite was reported to be the critical RONS in PAW, which was a strong oxidant
agent including both anionic (ONOO−) and protonated (ONOOH) forms [16]. Peroxynitrite
can be generated in PAW through many pathways. Firstly, ·O2

− reacted with NO, and ·OH
reacted with NO2 to form ONOO- (Equations (9) and (10)) [30]. Secondly, ONOO− can
be formed by the dissolution of gaseous N2O5 from the plasma region (Equation (11)). In
addition, ONOO− can be formed via the reaction of NO2

− and H2O2 (Equation (12)) [31].
Peroxynitrite was a kind of short-lived RONS. As was shown in Figure 3d, ONOO− was
gradually decreased with the increasing storage time. Given that ONOOH would be
the dominant form when the pH was lower than 6.8 (pKa of ONOOH), ONOOH was
the dominant form in PAW, whose pH was 2.8. It was reported that most of ONOOH
would be decomposed into NO3

− and H+ (Equation (13)) [16]. Thus, we speculated that
peroxynitrite was decomposed via this reaction. The increase in NO3

− during the extension
of storage time could also verify this viewpoint (Figure 3e). The slight increase of electrical
conductivity from 400 to 480 µS/cm during 24-h storage may be attributed to the generation
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of NO3
− (Figure 3c). While there was no significant change in ORP with the increasing

storage time. This may be attributed to the pH, which was an important factor influencing
ORP [32].

2NO2 + H2O→ NO2
− + NO3

− + 2H+ (7)

NO + NO2 + H2O→ 2NO2
− + 2H+ (8)

·O2
− + NO→ ONOO− (9)

·OH + NO2 → ONOO− + H+ (10)

N2O5 + H2O→ 2ONOOH (11)

NO2
− + H2O2 → H2O + ONOO− (12)

ONOOH→ NO3
− + H+ (13)

3.3. The Inactivation of A. flavus by PAW

Although the fungicidal ability of PAW has been evidenced [18,33], the influence of
storage time on the fungicidal efficiency of PAW was rarely studied. As was shown in
Figure 4, the instant-prepared PAW exhibited the best fungicidal ability, which achieved
a 3.22 Log reduction of A. flavus after 60-min treatment. When the PAW was stored at
different times, its fungicidal ability was reduced quickly. A 60-min PAW treatment could
only reduce 0.7 Log of A. flavus after 1-h storage. When the storage time reached 4 h,
the fungicidal ability of PAW almost disappeared, which was the same as that of water
treatment (Figure 4). According to the detection of peroxynitrite in PAW (Figure 3d), the
fungicidal ability of PAW was consistent with the change of peroxynitrite, which indicated
that peroxynitrite plays an important role in A. flavus inactivation by PAW.
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3.4. The Antifungal Mechanism of A. flavus by PAW

It was reported that RONS in PAW could induce membrane oxidative damage [18].
Among RONS, peroxynitrite could lead to lipid peroxidation and nitration [16]. Under
the condition of low pH, peroxynitrite mainly in the form of ONOOH could cross the
lipid bilayer in the cell membrane, and then initiate membrane peroxidation [34]. As
was shown in Figure 5a, the cell membrane integrity of A. flavus spores was damaged.
The enhancement of the permeability will contribute to the penetration of RONS into the
cell, which can damage the cellular components and lead to the death of A. flavus. As
was shown in Figure 5b,c, with the increase in PAW treatment time, both intracellular
ONOO− and NO increased. Differently, after 15 min PAW treatment, the increase in NO
was more obvious than ONOO−. The reason may be that ONOO− was not easy to enter
a cell when the membrane was relatively intact. While, NO was more stable and highly
diffusible, which could enter the cells easily [34]. Mitochondria dysfunction is an important
intracellular event for the fungal inactivation induced by CAP or PAW [18,35]. As was
shown in Figure 5d, PAW induced the depolarization of MMP. NO could lead to the loss of
MMP through signal regulation (glutamate-receptor activation) [36]. In addition, NO could
regulate ATP synthesis by inhibiting cytochrome c oxidase [37]. ONOO− could inactivate
the complex I, II, and V, as well as the electron transport-related enzymes, thus inducing
mitochondrial dysfunction [19]. Thus, the increase in NO and ONOO− could lead to a
drop in MMP, which resulted in the death of A. flavus eventually.
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In addition to A. flavus spores, the change in cell membrane integrity, intracellular
ONOO− and NO, and MMP in A. flavus mycelium was also detected. As was shown in
Figure 6, PAW treatment could also lead to the increase in cell membrane permeability
and intracellular NO and ONOO−, as well as the depolarization of MMP. These results
indicated that PAW could also inactivate A. flavus mycelium.
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3.5. The Inhibition of AFB1 Synthesis by PAW

Besides the fungicidal ability of PAW, the long-term influence of PAW on fungal
growth and AFB1 synthesis in A. flavus was also investigated. After the instant-prepared
PAW treatment, the spores were inoculated onto PDA and cultivated for 2, 3, and 5 d. As
was shown in Figure 7, the content of AFB1 reached 120 ppm after 5-d cultivation in the
control group, while the content of AFB1 in the PAW treatment group was about 14 ppm.
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The result indicated that PAW treatment could influence the AFB1 synthesis of A. flavus. The
influence of plasma treatment on intracellular redox homeostasis and energy metabolism
was considered the key reason for inducing fungal biological effects [35]. Therefore, we
investigated the change of intracellular ATP, SOD, and CAT activity during 5-d cultivation
after PAW treatment. It was found that ATP in the PAW treatment group was less than
that in the control group. While SOD and CAT activity were higher compared with the
control group (Figure 7). Liao et al. reported that the oxidative stress response triggered by
plasma treatment will consume more cellular energy [38]. Thus, the energy assigned for
other physiological activities might be reduced. It was speculated that the energy assigned
for AFB1 synthesis might be reduced when A. flavus suffered the oxidative stress of PAW
treatment, thus leading to the decrease in AFB1. In addition, it was reported that plasma
treatment could disrupt mitochondrial function and decrease acetyl-CoA contents [39].
Acetyl-CoA is the precursor of Aflatoxins (AFs), which can be cyclized by the polyketide
synthase. With a series of enzymatic reactions, AFs can be synthesized [40]. PAW treatment
might disrupt the mitochondrial function and decrease acetyl-CoA contents, thus inhibiting
the synthesis of AFB1. Meanwhile, the enhancement of antioxidant enzymatic activities
might inhibit AFB1 synthesis. For example, dithiothreitol, and dimethyl sulfoxide can
inhibit AFB1 synthesis with an increase in SOD enzymatic activity [41,42]. Similarly, it was
reported that ascorbic acid, cinnamaldehyde, and piperine-induced AFB1 decrease with an
increase in CAT activity [42–44]. Therefore, the improvement of SOD and CAT activities
might inhibit AFB1 synthesis under PAW treatment.
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3.6. Inhibition of Key Genes Expression of AFB1 Synthesis in A. flavus by PAW

In A. flavus, the biosynthesis pathways of AFB1 are organized by diverse regulatory
and structural genes. About 25 genes residing in a 75 kb cluster can encode more than
18 enzymes [45]. The structural genes of aflD, AflP, and aflQ encode three kinds of key
enzymes in the biosynthesis pathways of AFB1. AflD-encoded enzyme is responsible for
the conversion of norsolorinic acid (NOR) to averantin (AVN). AflP-encoded enzymes are
necessary for converting sterigmatocystin (ST) to o-methylsterigmatocystin (OMST). And
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aflQ-encoded enzymes are necessary for converting OMST to AFB1. The relative expression
of these three structural genes was examined. As was shown in Figure 8, all of these three
genes were downregulated during 5d cultivation. aflR and aflS are key regulatory genes in
the synthesis of AFB1 [26]. We also examined the relative expression of these two genes. As
was shown in Figure 8, the expression of these two genes was also downregulated during
5-d cultivation. It was speculated that the changes in intracellular redox homeostasis and
energy metabolism induced by PAW could regulate the expression of genes involved in the
AFB1 synthesis pathway, consequently decreasing AFB1 biosynthesis in A. flavus.
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4. Conclusions

In this study, the immediate fungicidal effect and long-term inhibitory effect of PAW on
A. flavus were investigated. PAW could efficiently inactivate A. flavus, which was attributed
to the increase in cell membrane permeability and intracellular NO and ONOO− as well as
the depolarization of mitochondrial membrane potential. The fungicidal ability of PAW
almost disappeared after 4-h storage. Besides the immediate fungicidal effect, PAW also
exhibited long-term fungistatic properties. PAW treatment could inhibit AFB1 production
by inhibiting the expression of key genes involved in AFB1 biosynthesis. Peroxynitrite was
considered to play a critical role in the inactivation and inhibition of A. flavus. This study
could provide new guidance for the application of low-temperature plasma technology
especially PAW in the fungal and mycotoxin decontamination.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12132490/s1, Table S1: The list of primers and the cor-
responding clustered aflatoxin biosynthesis pathway genes showing enzymes involved and their
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theoretical calculation curves. Dashed black lines indicate measurement curves).
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