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Abstract: A new next-generation probiotic, Christensenella minuta was first discovered in 2012 from
healthy human stool and described under the phylum Firmicutes. C. minuta is a subdominant commen-
sal bacterium with highly heritable properties that exhibits mutual interactions with other heritable
microbiomes, and its relative abundance is positively correlated with the lean host phenotype as-
sociated with a low BMI index. It has been the subject of numerous studies, owing to its potential
health benefits. This article reviews the evidence from various studies of C. minuta interventions
using animal models for managing metabolic diseases, such as obesity, inflammatory bowel disease,
and type 2 diabetes, characterized by gut microbiota dysbiosis and disruption of host metabolism.
Notably, more studies have presented the complex interaction between C. minuta and host metabolism
when it comes to metabolic health. Therefore, C. minuta could be a potential candidate for innovative
microbiome-based biotherapy via fecal microbiota transplantation or oral administration. However,
the detailed underlying mechanism of action requires further investigation.

Keywords: Christensenella minuta; next-generation probiotic; metabolic diseases; obesity; inflammatory
bowel disease

1. Introduction

There has been increasing attention on the importance of gut microbiota, owing to
their relationship with human health–disease conditions [1]. These rich communities
of microorganisms colonize the human gastrointestinal tract. Up to 100 trillion (1014)
microbes inhabit the gastrointestinal tract and establish a symbiotic relationship with
human hosts [2,3]. The human gut microbiota is first acquired at birth and subsequently
altered throughout one’s lifetime, based on a complex combination of environmental factors,
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dietary intake, and host genetics [4–7]. Gut microbiota plays a crucial role in maintaining
host health and overall well-being. It modulates the immune response, defends against
pathogens, and regulates energy balance and nutrient metabolism. However, severe chronic
disease may develop when microbes are unbalanced, resulting in gut dysbiosis [8,9]. Gut
dysbiosis is the disruption and imbalance of microbial diversity, the loss of beneficial
bacteria, and a rise in pathogenic bacteria [10]. It has been intrinsically linked to metabolic
diseases such as type 2 diabetes mellitus, obesity, and inflammatory bowel disease [11–13].
Therefore, maintaining a favorable equilibrium in the gut microbiome is beneficial for host
health [14,15].

For the past decades, probiotics have been known as live microorganisms that confer a
health benefit on the host when administered in adequate amounts [16,17]. Although most
traditional probiotics, such as Lactobacillus and Bifidobacterium, are widely used, they only
target the general sub-healthy population, with inconsistent therapeutic efficacy [18,19].
Recently, metagenomic approaches have been conducted in various studies to highlight the
significance of commensal species in maintaining gut health and have revealed numerous
new potential species, namely next-generation probiotics [20]. These new commensal
species can be tailored for microbiome-based therapeutics and represent a new class of
probiotics that are more effective and longer lasting than traditional probiotics. Next-
generation probiotics typically resist the harsh conditions of the digestive system and
colonize the gut more effectively. They produce specific compounds that offer additional
health benefits, such as improved nutrient absorption and modulation of the immune
system [21,22]. Christensenella minuta is a recently discovered bacterial species that has
gained increasing attention from the scientific community, owing to its potential therapeutic
applications in human health. This review discusses various aspects of C. minuta, including
its taxonomy, distribution, and potential health benefits.

2. Descriptions of Christensenella minuta

Christensenella minuta is a rod-shaped bacterium with tapered ends; it is strictly anaer-
obic, non-motile, gram-negative, and does not form endospores. C. minuta is the first
member of the Christensenellaceae family that was discovered in 2012 from 16S rRNA gene
sequencing and was first cultivated from the fecal sample of a healthy Japanese male [23].
The C. minuta strain DSM22607 (NR 112900.1) was first reported by Morotomi et al. [24], and
Caldicoprobacter oshimai JW/HY-331T, Tindallia californiensis DSM 14871T, and Clostridium
ganghwense JCM 13193T were the closest relatives, with 86.9%, 86.3%, and 86.1% pairwise
IDs, respectively, based on the 16S rRNA sequence. The discovery of two novel bacte-
rial species, Christensenella massiliensis and Christensenella timonensis, which showed 97.4%
and 97.5% sequence similarities, respectively, with C. minuta via 16S rRNA sequencing,
contributed to increased genetic divergence in the Christensenella genus [25,26]. In 2021,
another C. minuta strain, DSM33407, was discovered by Mazier et al. [27], which matched a
99% sequence identity with the strain DSM22607 and displayed similar microbiological
characteristics. The following year, another strain, C. minuta DSM 33715, was published
and registered [28].

Taxonomically, C. minuta belongs to the phylum Firmicutes, the Clostridia class, and
the Clostridiales order. This bacterium is named to honor Danish microbiologist Henrik
Christensen, and its species name refers to its small size. (Minuta means “small” in Latin.)
The genome of the strain is relatively small, consisting of approximately 1.5 million base
pairs, and its DNA G+C content is 51.5 mol%. The colonies’ average dimensions are
0.507 ± 0.04 µm for width, 1.27 ± 0.28 µm for length, and 0.5–1.0 µm for diameter,
occurring singly or in pairs [1]. The predominant fatty acids identified in bacterial cells
are iso-C15:0, C14:0, and C16:0 [24,29]. C. minuta has a well-defined cell wall composed
of alanine, glutamic acid, serine, and LL-diaminopimelic acid linked to galactose, glucose,
rhamnose, and ribose as whole-cell sugars. C. minuta survives in an anaerobic environment
and has an oxygen tolerance for at least 24 h of exposure to atmospheric oxygen. Some
intestinal anaerobic colonizers have shown similar properties, such as Bacteroides fragilis,
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which remains viable after 48 h of ambient air [30]. C. minuta grows strongly in Gifu
anaerobic medium (GAM broth) containing digested hemin serum. Other growth media
used to culture C. minuta include reinforced clostridial medium (RCM), trypticase soy agar
(TSA), brain heart infusion (BHI), and Wilkins–Chalgren anaerobic agar (WCA). C. minuta
shows optimal growth at 37 ◦C and at pH 7 [27], with survivability found in medium
containing <5% NaCl and 20% bile resistance for the strain DSM22607 but up to 80%
bile resistance for strain DSM33715. Cells are resistant to ampicillin and tetracycline but
susceptible to chloramphenicol, clindamycin, meropenem, metronidazole, moxifloxacin,
and piperacillin/tazobactam [27]. C. minuta can utilize a variety of monosaccharides, such
as glucose, D-xylose, L-arabinose, L-rhamnose, and D-mannose, to carry out saccharolytic
fermentation. The major fermentation products of glucose by C. minuta are short-chain fatty
acids, namely acetic and butyric acids, which contain no respiratory quinones. C. minuta
shows negative results for catalase, oxidase, and urease tests. It is also incapable of
reducing nitrates and cannot metabolize tryptophan [24]. Kropp et al. [31] established a
metabolic model to evaluate the substrate utilization ability of the C. minuta strain DSM
22607. This showed that C. minuta can metabolize arbutin, 2′-deoxyadenosine, inosine,
palatinose, salicin, turanose, fumaric acid, maltotriose, pyruvic acid, uridine, D-arabitol,
D-cellobiose, dextrin, D-fructose, D-galactose, α-d-glucose, D-mannitol, D-mannose, N-
acetyl-D-glucosamine, L-fucose, and L-phenylalanine [31].

As the subdominant commensal microbial species in the colon of healthy adults,
C. minuta constitutes over 0.2% to 2% of the total bacterial population [27]. Its prevalence
varies widely among individuals, with some studies reporting that Christensenellaceae is the
most highly heritable taxon that is strongly correlated with leanness and gut metabolism.
A British cohort of monozygotic and dizygotic twin studies demonstrated that the host
genotype could account for 40% of the variation in the relative abundance of the family
Christensenellaceae between individuals [27]. However, the specific human genes underlying
heritability remain elusive. In the human gut microbiome, C. minuta forms a co-occurrence
network with other heritable microbiota, namely Methanobrevibacter smithii, a methanogenic
archaea belonging to the family of Methanobacteriaceae [32]. This trophic network is en-
riched in individuals with a lean body type, based on 16S rRNA gene-based surveys of
gut microbiomes. M. smithii, the most abundant methanogen, produces methane (CH4)
using H2 and CO2, the products of bacterial fermentation of dietary fibers by C. minuta,
demonstrating H2 based syntrophy that correlates with a lean phenotype and a healthy
status. This suggests interspecies hydrogen transfer between C. minuta and M. smithii and a
positive correlation between the two species and the lean phenotype. The Christensenellaceae
family has been proposed to act as a keystone species in the human intestinal ecosystem
that facilitates the establishment of other microbial taxa [33,34]. However, further studies
on these interactions are needed.

3. Anti-Obesity Potentials of C. minuta and Its Associated Metabolic Mechanisms

Obesity is a complex disease resulting from excessive body fat accumulation that can
adversely affect body health. It is assessed using a body mass index (BMI) greater than or
equal to 30. BMI is defined as a person’s weight in kilograms divided by the square of their
height in meters [35]. According to the World Health Organization (WHO), more than one
billion people worldwide are obese, with 65% of them being adults [35]. Annually, about
4.7 million premature deaths are attributed to obesity, leading to the world’s largest health
problem [36]. A large range of non-communicable diseases, such as cardiovascular disease,
various forms of cancer, type 2 diabetes, hypertension, and stroke, as well as mental health
issues, are correlated with obesity. Recently, the etiology of obesity has been associated
with dysbiosis of the gut microbiota and congenital leptin deficiency. In preclinical studies,
several mechanisms have been proposed to link obesity genesis with gut microbiota com-
position through the dysfunction of metabolic and inflammatory activities [37]. Obesity
genesis involving the gut microbiota and the host is mediated by direct interactions with
proximal organs or indirect interactions with distant organs across the liver, adipose tissue,
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and brain via metabolite secretion [38]. In numerous studies, C. minuta has been repeat-
edly associated with its therapeutic anti-obesity potential, suggesting a strong correlation
between the role of C. minuta in the gut microbial ecosystem and the regulation of host
metabolism [34,39]. The proposed mechanisms by which C. minuta plays a therapeutic anti-
obesity role are modulation of the gut microbiota composition, production of metabolites,
lipid metabolism, gut epithelial integrity, and bile acid metabolism (Figure 1).
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Figure 1. Mechanisms underlying the anti-obesity role of Christensenella minuta. (1) Modulation of
gut microbiota—C. minuta renormalizes gut microbiome composition by balancing the ratio between
Firmicutes/Bacteroidetes. (2) Production of short-chain fatty acids—C. minuta enhances the browning of
white adipose tissues, which promotes lipolysis. (3) Modulation of lipid metabolism—C. minuta pro-
motes thermogenesis and reduces hepatic lipid accumulation in brown adipose tissues. (4) Regulation
of gut epithelial integrity—C. minuta enhances intestinal barrier integrity by regulating the tight
junction assembly through the activation of AMP-activated protein kinase (AMPK). (5) Modulation
of bile acid metabolism—C. minuta shows a high-level expression of bile salt hydrolases (BSH),
resulting in the stimulation of fatty acid oxidation while inhibiting triglyceride and hepatic fatty acid
production.

3.1. Modulation of Gut Microbiota by C. minuta

The human body comprises many microorganisms, including bacteria, fungi, viruses,
archaea, and unicellular eukaryotes. Only a few bacteria phyla predominate in the human
gut microbiome, namely Firmicutes (43.6 ± 9.2%) and Bacteroidetes (41.6 ± 13.1%), followed
by Verrucomicrobia (8.5 ± 10.4%), Proteobacteria (2.8 ± 4.8%), Actinobacteria (1.8 ± 3.9%) and
Euryarchaeota (1.4 ± 2.7%) [40]. The two major phyla, Firmicutes and Bacteroidetes, play a
crucial role in maintaining gut homeostasis and preserving overall gut health. Changes in
microbiota composition, called dysbiosis, particularly the abundance of specific Firmicutes
or Bacteroidetes species, might lead to various pathologies. An increased or decreased
Firmicutes/Bacteroidetes ratio is associated with the development of obesity and bowel
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inflammation, respectively [41]. Although a high Firmicutes/Bacteroidetes ratio has been
characterized as a biomarker of obesity, some studies have corroborated the association
between the relative abundance of Christensenellaceae and the host obesity phenotype, such
as BMI [42]. Goodrich et al. [42] reported that Christensenellaceae was found in abundance
in individuals with a normal BMI of 18.5 to 24.9, compared to obese individuals (BMI ≥ 30).
This indicated a positive correlation between the relative abundance of Christensenella and
leanness across populations. In addition, individuals with more weight loss had higher
OTU richness (alpha diversity measure) and taxa level differences (beta diversity mea-
sure) than individuals with little weight loss, indicating the general association of overall
microbiome differences with body fat percentage and total fat mass [39]. Another study
showed that C. minuta DSM33407 treatment had a profound influence on the Shannon
index (measures the diversity of species richness) of gut bacterial diversity in the colon [27].
Indeed, alteration of the Firmicutes/Bacteroidetes ratio and bacterial diversity can strongly
impact the microbial composition associated with the development of digestive patholo-
gies, such as inflammatory bowel diseases (IBD), and metabolic diseases, such as obesity.
Therefore, balancing the ratio between Firmicutes/Bacteroidetes through the administration
of Christensenella has the potential to prevent gut dysbiosis-related diseases, such as obesity
and IBD.

3.2. Production of Short-Chain Fatty Acids by C. minuta

The most abundant metabolic products of anaerobic intestinal microbiota from the
fermentation of dietary undigested carbohydrates and amino acids are short-chain fatty
acids (SCFAs), primarily acetate, butyrate, and propionate, along with other fermentative
gases, including carbon dioxide, methane, and hydrogen [43,44]. The abundance of ac-
etate, butyrate, and propionate produced by bacterial fermentation was estimated at an
approximate molar ratio of 60:20:20 in the cecum and colon [45]. Kropp et al. [31] found
that C. minuta DSM 22607 produced a high level of acetate and moderate levels of butyrate
at a ratio of 5:1 over three growth phases (latent, exponential, and stationary) without
producing propionate. In parallel, branched-chain fatty acids, namely isobutyric acid,
isovaleric acid, and isocaproic acid, were found at low levels in both the proximal and distal
colons, indicating that C. minuta reduces bacterial proteolysis and stimulates carbohydrate
fermentation. Indeed, gut microbiota is involved in the regulation of energy metabolism
and gut homeostasis through balanced SCFA production [46]. SCFAs are absorbed and
act as energy sources or precursors for glucose and lipid metabolism in the host. SCFAs
may interact with colonic, hepatic, muscular, and adipose tissues via G-protein-coupled
receptors (GPRs), namely free fatty acid receptors 2 (FFAR2) and 3 (FFAR3) [47]. Moreover,
SCFAs upregulate the synthesis of the hunger-suppressing hormone leptin, inhibit lipo-
genesis, and promote lipolysis [48]. In the details of specific fatty acids, studies evaluated
that the administration of butyrate could treat and prevent obesity by promoting adipocyte
formation and browning of adipose tissue, resulting in reduced energy intake, enhanced
fat oxidation, and energy expenditure. This was evidenced by profound findings on the
prevention of high-fat diet-induced obesity and obesity-related disorders, such as type
2 diabetes mellitus or hypertrophy in animal models [49,50]. Some studies have shown
that acetate supplementation significantly suppressed high-fat diet-induced weight gain,
compared with the control group [51]. However, this is in contrast with some studies that
show contradictory results [52].

3.3. Modulation of Lipid Metabolism by C. minuta

In addition, BMI linked with adiposity level or body fat has also shown strong associa-
tions with the abundance of C. minuta in the gut. The modulation of fatty acid synthesis,
oxidation, and inhibition of lipogenesis favorably affects body fat and weight [39]. An
earlier study demonstrated a link between the presence of C. minuta in the gut microbiome
and lower adiposity in animal studies [42]. An interventional study with C. minuta showed
that the accumulation of hepatic triglycerides and free fatty acids was hindered in a mouse
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model of diet-induced obesity. This finding was aligned with the gene expression level,
where strong repression of the gck gene coding for hepatic glucokinase was shown in an
animal model supplemented with C. minuta [27]. Overexpression of glucokinase facilitated
excessive sugar uptake, hepatic lipid accumulation, and downregulation of thermogenic
proteins in brown adipose tissue (BAT), resulting in obesity [53]. Mechanistically, enhanced
adipose tissue thermogenesis in BAT and induction of the browning of white adipose tissue
(WAT) could lead to weight loss [54]. In addition, the food metabolism rate was reduced
without affecting feeding behavior and daily food intake. Studies have demonstrated signif-
icant weight loss and reduced adiposity gains in recipient mice that were administered with
both strains of C. minuta, DSM22607 and DSM33407, compared to controls receiving the
unsupplemented microbiome [27]. Evidence of lower fat mass and reduced hypertrophy of
mesenteric WAT to anti-obesity has been obtained from animal model studies treated with
C. minuta. A similar observation was made by Le Roy et al. [55], who reported a significant
negative correlation between Christensenellaceae and visceral fat mass. At the hormonal
level, lower circulating levels of adipokines, such as leptin and resistin, were evident in the
C. minuta treatment group [27]. Resistin is an adipocyte-derived polypeptide secreted by
adipose tissue in mice that links obesity to insulin resistance. Excessive circulating levels
of leptin might induce leptin resistance, resulting in the inability of leptin to reduce food
consumption and body weight [56].

3.4. Regulation of Gut Epithelial Integrity by C. minuta

The gut epithelial integrity is also associated with obesity. A study suggested that
C. minuta improves the expression of intestinal tight junction proteins ZO-1, occludin
(OCLN), and claudin-1 (CLDN1) in vitro and in animal studies involving a high-fat diet
group [27]. Reduced tight junctions have been demonstrated in obese mice, which suggests
that obesity results from increased intestinal permeability and decreased transepithelial
resistance. Increased gut permeability has been proposed as a driving factor of fat-induced
obesity, which is associated with gut dysbiosis and gut inflammation. Downregulation
of intestinal tight junction proteins can lead to gut leakiness, where lipopolysaccharide
bacterial substances and other inflammatory mediators diffuse through tight junctions
and interact with host immune cells, resulting in low-grade inflammation, contributing to
hyperphagia and an eventual gain in body weight [57,58]. C. minuta has been proposed to
act as a membrane barrier protector during high-fat induction due to its SCFAs-producing
activity [27]. In particular, butyric acid has been shown to enhance intestinal barrier
integrity by regulating tight junction assembly through the activation of AMP-activated
protein kinase [59].

3.5. Modulation of Bile Acid Metabolism by C. minuta

Bile acid metabolism is crucial for the modulation of glucose and energy metabolism,
intestinal integrity, and immunity. Alterations in the bile acid metabolism are closely
associated with obesity. In the context of obesity, weight loss is associated with bile acid
metabolism by stimulating fatty acid oxidation and inhibiting triglyceride and hepatic fatty
acid production [60]. The anti-obesity potential of C. minuta is exhibited, not only through
the production of SCFAs, but also through the cholic acid/taurocholic acid (CA/TCA)
ratio in the colon [34]. This finding is significant and provides an important theoretical
basis for the association of anti-obesity with saccharolytic metabolism, as well as with
the efficient deconjugation of primary bile acids. In short, primary bile acids, such as
cholic acid and chenodeoxycholic acid, are converted into secondary or deconjugated
bile acids, such as deoxycholic acid and lithocholic acid, by bile salt hydrolases (BSHs)
because unconjugated bile salts are highly toxic to bacteria [61]. Interestingly, C. minuta is
able to hydrolyze glycine- and taurine-conjugated bile acids, indicating that C. minuta is
able to carry out bile detoxification and colonize human and rodent guts. Both C. minuta
strains DSM33407 and DSM22607 are highly tolerant to bile acids in the presence of 80%
bile for 48 h. The bsh gene has been identified in both C. minuta strains and is highly
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expressed, owing to its strong ability to hydrolyze conjugated bile acids [34]. C. minuta
also promotes bile acid metabolism via the farnesoid x receptor and G protein-coupled
bile acid receptor (TGR5), which is highly expressed in the intestine [62]. In some in vivo
studies, the high-level expression of BSHs in the gut ecosystem has been suggested as a key
regulatory factor in anti-obesity through a significant reduction in body weight, adiposity,
circulating low-density lipoprotein (LDL) cholesterol, and triglycerides [60]. BSH activity
is a key mechanistic target in obesity control. Enrichment of the intestinal microbiome
with bacterial strains carrying high BSH activity may be a strategy for preventing and
controlling obesity.

4. Inflammatory Bowel Diseases Associated with C. minuta

Inflammatory bowel diseases (IBD) is a chronic inflammatory disease that affects
the gastrointestinal tract and is characterized by a dysregulated immune response in the
host’s intestinal microflora [63]. There are two inflammatory conditions: Crohn’s disease
and ulcerative colitis, each with different physiological symptoms. Individuals with IBD
have been found to exhibit changes in microbial composition, characterized by a decrease
in the Firmicutes to Bacteroidetes ratio [64]. Gut dysbiosis is accompanied by changes in
SCFA composition, followed by the disruption of intestinal barrier integrity, eventually
initiating inflammatory responses through immune system modulation [31,65]. Although
the etiology of IBD remains poorly understood, studies suggest that they are triggered by
uncontrolled inflammatory responses associated with an increase in interleukine-8 (IL-8)
cytokines and reactive oxygen species (ROS). Recent in vitro and in vivo preclinical studies
showed that C. minuta had strong anti-inflammatory and potent immunomodulatory
properties. C. minuta reduced colonic inflammation by inhibiting the NF-κB signaling
pathway and the secretion of proinflammatory cytokines IL-8 and IL-1β [28]. Moreover,
the transepithelial electrical resistance ratio remained stable in Caco-2 cells treated with
C. minuta, indicating that C. minuta maintained intestinal barrier integrity in vitro. An
interventional study with C. minuta showed that C. minuta limited colon damage, promoted
mucosal healing, and reduced the activation of neutrophils, specifically myeloperoxidase
and eosinophil peroxidase, due to inflammation in two different animal models of acute
colitis and a human intestinal cell line [31]. In addition, the concentration of LCN-2, a non-
invasive biological marker of intestinal inflammation, was decreased in C. minuta treatment
animal models. At the genetic level, individuals carrying IL23R, a Crohn’s disease risk gene,
had a decreased abundance of microbes related to Christensenellaceae, indicating that the
gut microbiome was influenced by host genetics. However, when mice were supplemented
with C. minuta, the IL23R-protective coding variant was reported to increase, thereby
protecting against Crohn’s disease [66]. C. minuta also produces butyrate to control the
inflammatory response through the butyrate receptor, GPR109a, in adipocytes, intestinal
epithelial cells, and immune cells. Remarkably, the anti-inflammatory efficiency of C. minuta
was demonstrated to be similar to that of mesalamine, also known as 5-aminosalicylic acid
(5-ASA), a medication used to treat IBD [67].

5. Traditional Chinese Medicine Modulates C. minuta for Type 2 Diabetes

Type 2 diabetes (T2D) is a complex metabolic and endocrine dysfunction characterized
by hyperglycemia resulting from insulin resistance, pancreatic β-cell dysfunction, low-
grade systemic inflammation, gut dysbiosis, obesity, and other endocrine disorders [68–70].
According to the World Health Organization (WHO), approximately 300 million people
will suffer from diabetes by 2025. The prevalence of T2D is expected to be 13.5% worldwide
by 2040, which presents a significant challenge to healthcare systems [71]. Traditional Chi-
nese medicine (TCM) is another complementary medicine, derived from natural products,
that possesses potential in the treatment of metabolic syndromes. Oral Chinese medicine
intervention can directly impact the gut microbiome but exhibits low bioavailability, due
to the poor lipophilicity properties of their active ingredients, such as flavonoids [72].
Biotransformation of the intestinal flora facilitates drug absorption, which has a significant



Foods 2023, 12, 2485 8 of 14

impact on pharmacology. Moreover, TCM components may modulate the population of
the host intestinal microflora. Huang-Qi-Ling-Hua-San (HQLHS), composed of Astragalus
membranaceus, Ganoderma lucidum, Inonotus obliquus, and Momordica charantia L., is a spe-
cially designed Chinese medicinal formula for the treatment of T2D [73]. Recently, a study
demonstrated that HQLHS inhibited pathogenic bacteria and enriched beneficial bacteria,
particularly C. minuta and Christensenella timonensis, in mouse models. Notably, this study
showed that HQLHS significantly increased the relative abundance of Christensenella in
the gut flora of mice. The study also described the effect of C. minuta on liver metabolism,
laying the basis for understanding the pharmacological mechanisms of C. minuta in dia-
betes treatment and control. In the same study, C. minuta DSM 22607 reduced diabetes
inducers, such as oxidative stress, tryptophan, and tyrosine, in diabetic rats. The levels of
antioxidant enzymes and MDA, a biomarker of lipid peroxidation, were also controlled.
Several mechanisms of the anti-diabetic properties of C. minuta have been proposed, such
as improving glycolipid metabolism, inhibiting glucose absorption by suppressing the
expression of SGLT1 and GLUT2 in intestinal glucose transport, and promoting GLP-1
secretion to stimulate insulin resistance and regulate glucose homeostasis [73].

6. Fecal Microbiota Transplantation and Future Application of C. minuta

In clinical studies, fecal microbiota transplantation (FMT) has been widely imple-
mented to resolve gut microbial dysbiosis-associated disorders, such as intestinal bowel
disease, obesity, and diabetes. FMT involves the transplantation of fecal material from
healthy individuals containing functional microbial communities into the patient’s gas-
trointestinal tract to modulate the recipient’s gut microbiome [74]. FMT has been approved
by the US Food and Drug Administration (FDA) as a biotherapeutic agent to normalize
gut microbiota composition in recipients [75]. Multiple studies have proven that FMT is
a successful therapy for Clostridium difficile infection (CDI), but its efficacy remains con-
troversial for IBD, obesity, and diabetes [76,77]. The potential risk of disease transmission
associated with the gut microbiome must be considered and needs further assessment. In
an earlier study, Goodrich et al. [42] demonstrated that obese mice significantly lost weight
after C. minuta was transplanted into their gut microbiomes. This suggests that FMT of
C. minuta is a potential therapeutic strategy for obesity and IBD. In addition, manipulation
of the gut microbiome can be achieved through oral probiotic administration. The efficacy
of C. minuta in treating obesity and its associated diseases has been reported using animal
models, as presented in Table 1 [73,78].

The first clinical trial was presented by Claus et al. [79] to evaluate the safety and
efficacy of C. minuta as a novel microbiome-based biotherapy to treat obesity and associated
metabolic disorders. A new drug containing C. minuta DSM 33407, namely Xla1, was
developed and demonstrated to be safe and efficacious in a Phase 1 clinical trial involving
28 normal-weight and obese volunteers [80]. The safety and tolerability of Xla1 in healthy
adults or obese volunteers were assessed and reported to have no serious adverse events.
However, treatment-related effects, including gastrointestinal disorders, were observed
in the Xla1-treated and placebo-treated groups. These were common side effects of tak-
ing probiotics for the first time for the first few days as the gut microbiome underwent
adaptation. Meanwhile, its efficacy was evidenced by reducing LDL cholesterol levels
in obese volunteers who received daily oral treatment with Xla1 for 12 weeks [79]. This
finding is significant and provides a theoretical basis for the clinical application of C. minuta.
Nonetheless, this evidence warrants further clinical assessment, owing to the small sample
size of the trial. Having said that, the researchers from Pharmabotic Research Institute
and YSOPIA Bioscience shared valuable insights into their experiences and strategies in
navigating the regulatory landscape, obtaining necessary authorization, and eventually
advancing Xla1 as a live biotherapeutic product (LBP) into the clinical stage [81,82].
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Table 1. Overview of Christensenella minuta intervention studies on metabolic disorders.

Diseases Treatments Effects Mode of Actions References

Obesity

2.109 CFU/day of
C. minuta cells by oral gavage for 4 to

12 weeks

• Prevented HFD-induced body weight
gain and hyperglycemia in
diet-induced obesity mouse models;

• Regulated hepatic lipid metabolism by
preventing intestinal lipid absorption;

• Regulated bile acid metabolism;
• Increased production of short-chain

fatty acids (SCFAs);
• Maintained intestinal epithelial

integrity.

• High-fat diet-induced hypertrophy of the mesenteric WAT was significantly
reduced;

• Plasma leptin, resistin, and delta fat mass were decreased;
• gck gene coding for glucokinase was significantly repressed;
• Slc2a4, coding for the glucose transporter GLUT4, and Fasn, coding for the

fatty acid synthase, were regulated;
• Hepatic triglycerides and FFA were decreased;
• Ratio of unconjugated over conjugated forms of the primary bile acid cholic

acid (CA/TCA) was increased;
• SCFAs upregulated the synthesis of the hunger-suppressing hormone leptin,

inhibited lipogenesis, and promoted lipolysis;
• Expression of key tight junction proteins, e.g., OCLN and ZO-1, were

upregulated.

[27]

1 × 108 C. minuta cells through FMT for
21 days

• Reduced weight and adiposity gains in
the C. minuta treatment group. • Mechanisms were not described. [42]

IBD

109 CFU/mL of
C. minuta cells for 14 days by oral gavage

• Protected from damages induced by
chemically-induced colitis in mice;

• Induced improvement of inflammatory
lesions by 36%, compared to the
disease group;

• Possessed systemic anti-inflammatory
effects.

• Stimulated the production of the anti-inflammatory cytokine IL-10;
• Inhibited IL-8, colonic IL-1β protein, and lipocalin-2 production;
• Lowered macroscopic and microscopic score;
• Increased goblet cell number per crypt.

[28]

In vitro studies
Supernatant concentration of

C. minuta culture medium (10%)
In vivo studies

Oral dose of C. minuta (109 CFU/mL) for
2 weeks in rodents’ preclinical colitis

models

In vitro studies

• Demonstrated anti-inflammatory solid
activity on HT-29 cells;

• Maintained the integrity of the
epithelial cell in the Caco-2 cell line.

In vivo studies

• Reduced colonic inflammation;
• Induced an immunomodulatory

response.

In vitro studies

• TNF-α-induced IL-8 production decreased by around 50%; NF-κB activation
decreased by 40%;

• Stable transepithelial electrical resistance (TEER) ratio to maintain barrier
integrity and limit cell damage.

In vivo studies

• Concentrations of lipocalin-2 (LCN-2) and IL-1β secretion were decreased in
the colon;

• Decreased neutrophil infiltration and myeloperoxidase (MPO) activity.

[31]



Foods 2023, 12, 2485 10 of 14

Table 1. Cont.

Diseases Treatments Effects Mode of Actions References

Type 2 Diabetes
1× 109 cfu/mL of

C. minuta by intragastric administration
for 6 weeks

• Stimulated insulin secretion and
regulated glucose homeostasis;

• Inhibited gluconeogenesis;
• Inhibited glucose transport and glucose

absorption in the small intestine;
• Reduced oxidative stress in diabetes;
• Enhanced intestinal barrier;
• Reduced LPS-induced inflammation.

• Stimulated the expression of proglucagon (gcg), the precursor gene encoding
GLP-1, but also increased the serum GLP-1 content;

• Reduced hepatic expression of two gluconeogenic rate-limiting enzymes,
G6PC and PEPCK;

• Expressions of GLUT2 and SGLT1 in ileum were suppressed;
• Increased CAT, SOD, and GSH-PX activity and decreased MDA serum

content;
• Expression of colonic ZO-1 and Claudin-1 was upregulated;
• Hepatic and colonic expressions of TLR4, NF-κB, IL-1β, IL-6, and TNF-α

were suppressed.

[73]
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7. Conclusions

Christensenella minuta is a recently described next-generation probiotic that has received
considerable attention as a new preventive and therapeutic agent. C. minuta displays many
potential health benefits and can be a promising candidate for the treatment of various
metabolic diseases, including obesity, inflammatory bowel disease, and type 2 diabetes.
It plays a key role in the alleviation of metabolic disorders by regulating the intestinal
microbiome. In particular, Christensenella can pave the way for personalized medicines or
therapies based on the gut microbiome. Several studies have shown C. minuta’s profound
anti-obesity effects through several mechanisms, including renormalization of the gut
microbiome, production of functional short-chain fatty acids, inhibition of lipogenesis,
maintenance of gut epithelial integrity, and regulation of energy metabolism through bile
acid metabolism. Moreover, C. minuta alleviates inflammatory bowel disease by regulating
the immune system. Interestingly, C. minuta is selectively promoted by TCM in alleviating
type 2 diabetes through the modulation of glucose metabolism, liver metabolism, oxidative
stress, inflammation, and intestinal barrier function. Interventions such as fecal microbiota
transplantation (FMT) or oral administration of C. minuta could be effective approaches
to restoring gut microbiome composition. Notably, the use of C. minuta as an LBP has
undergone clinical investigations regarding its safety and efficacy and is currently in the
pipeline for commercial development. However, it is important to note that these observed
effects primarily stem from preclinical studies, which predominantly focus on animal
models, with only one completed human trial. Further research is necessary to gain a
comprehensive understanding of the ecological role of C. minuta and its interactions with
other gut microbiomes. Exploring these aspects will shed light on the potential benefits of
the intervention. Moreover, there is a need for in-depth studies and clinical assessments to
elucidate the underlying molecular mechanisms involved.
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