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Abstract: Coconut water (CW) is a popular and healthful beverage, and ensuring its quality is crucial
for consumer satisfaction. This study aimed to explore the potential of near-infrared spectroscopy
(NIRS) and chemometric methods for analyzing CW quality and distinguishing samples based on
postharvest storage time, cultivar, and maturity. CW from nuts of Wenye No. 2 and Wenye No. 4
cultivars in China, with varying postharvest storage time and maturities, were subjected to NIRS
analysis. Partial least squares regression (PLSR) models were developed to predict reducing sugar
and soluble sugar contents, revealing moderate applicability but lacking accuracy, with the residual
prediction deviation (RPD) values ranging from 1.54 to 1.83. Models for TSS, pH, and TSS/pH
exhibited poor performance with RPD values below 1.4, indicating limited predictability. However,
the study achieved a total correct classification rate exceeding 95% through orthogonal partial least
squares discriminant analysis (OPLS-DA) models, effectively discriminating CW samples based
on postharvest storage time, cultivar, and maturity. These findings highlight the potential of NIRS
combined with appropriate chemometric methods as a valuable tool for analyzing CW quality and
efficiently distinguishing samples. NIRS and chemometric techniques enhance quality control in
coconut water, ensuring consumer satisfaction and product integrity.

Keywords: Cocos nucifera L.; liquid endosperm; dwarfs; non-destructive analysis; discrimination

1. Introduction

Tender coconut water (CW), the main edible part from the nuts of Cocos nucifera L., has
gained immense popularity as a health drink due to its pleasant flavor [1], rich nutritional
components [2], and therapeutic properties [2,3]. However, the organoleptic and functional
characteristics of CW can vary based on factors, such as postharvest storage time, coconut
cultivar, and maturity [4,5], posing challenges for industrial producers in utilizing it as
raw material.

Time to maturity for Cocos nucifera L. nuts typically takes around 11–12 months, and it
can be classified into three stages: immature or tender (6–8 months), mature (9–11 months),
and overly-mature (12 months or older) [6]. CW from nuts around 8 months is generally
preferred as a refreshing drink due to its delicate flavor, while that from younger fruits
tastes sour, and older ones have an unpleasant taste [4]. However, there is currently no
efficient method to differentiate between the different developmental stages of CW.

Cocos nucifera L. can be categorized into two main groups: tall and dwarf. While
tall is the predominant cultivar worldwide, dwarfs have gained attention in recent years,
particularly for CW production due to the superior taste [7]. In China, the Wenye series of
Dwarf cultivars (Wenye No. 2–6) has become popular among growers for the high yield,
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early production, and sweet water content. Among these cultivars, Wenye No. 2 is selected
from ‘Malaya Yellowing Dwarf’ and is distinguished by its yellow-colored fruit, while
Wenye No.4 is screened from an aromatic coconut known for its sweet juice rich in 2-acetyl-
1-pyrroline (2AP). However, based on our knowledge, there has been no investigation into
the efficient differentiation of CW from different cultivars.

Postharvest conditions can have a detrimental effect on CW quality. The initial in-
dicator of quality decline is the deterioration in organoleptic properties, mainly caused
by changes in metabolites, such as amino acids, organic acids, sugars, phenolics, and
nucleotides [5]. Off-flavors in the endosperm of postharvest coconuts can also arise from
the metabolism of β-oxidation and lipoxygenase pathways [8,9]. Therefore, accurately and
quickly determining the freshness of CW is crucial for drink manufacturers, but it remains
a challenge.

Sugar and acid quality significantly affect the flavor of CW, making it important
to monitor these constituents for product quality. However, conventional methods for
analysis are often time-consuming and expensive. Near-infrared spectroscopy (NIRS) is
a non-destructive and efficient method for measuring various constituents in different
commodities. It has been successfully applied to evaluate various aspects of coconut
products, including fat content [10], soluble solids [11], salt content [12], and pH value [13],
in curry soup containing coconut milk. Moreover, NIRS has shown promising results in
assessing the total soluble sugar content of coconut kernels from different cultivars and
maturities [14]. However, the application of NIRS in detecting sugar and acid quality in CW,
as well as discriminating CW based on postharvest storage time, cultivar, and maturity, has
not been reported. Therefore, this study aims to address the gap by evaluating CW quality
parameters and exploring the potential of NIRS combined with chemometric analysis.
Further research in this area could potentially provide a rapid and cost-effective means of
monitoring CW quality during production and handling.

Taking CW from coconuts of different storage time, coconut cultivars, and maturities
as the research object, we evaluated the quality parameters (TSS, pH, TSS/pH, reducing
sugar content, and soluble sugar content) of CW in postharvest coconut stored at 25 ◦C
and collected NIRS information for each sample, intended to: (1) develop a calibration
model to predict the quality parameter using NIRS as a rapid and nondestructive tool;
(2) explore the possibility of using NIRS combined with chemometric analysis to discrimi-
nate CW according to postharvest storage time, coconut cultivar, and maturity. The results
of this study will contribute to the understanding of coconut water analysis, provide
valuable insights for quality control, and offer a basis for further research in this field.

2. Materials and Methods
2.1. Sample Treatments

Coconuts of ‘Wenye No. 2’ and ‘Wenye No. 4’ cultivars were obtained from Coconut
Germplasm Repository of Ministry of Agriculture and Rural Affairs in Wenchang, China.
The coconuts were harvested in November 2020, with ‘Wenye No. 2’ coconuts collected
at 8-month (No. 2-8M) and 10-month (No. 2-10M) maturity stages, and ‘Wenye No. 4’
coconuts collected at 6 months (No. 4-6M) and 8 months (No. 4-8M). After harvesting,
coconuts were immediately transported to the laboratory of Coconut Research Institute
and stored at 25 ◦C until measurement. Eliminating the fruits with physiological disorders,
infections, or mechanical damage, a total of 544 coconuts with uniform shape were obtained,
including 198 coconuts from No. 2-8M, 77 coconuts from No. 2-10M, 63 coconuts from
No. 4-6M, and 206 coconuts from No. 4-8M. Each day, three coconut samples from
No. 2-10M and No. 4-6M and five coconuts from No. 2-8M and No. 4-8M were randomly
selected and individually measured. Total soluble solids (TSS) and pH of CW were imme-
diately measured upon extraction. Additionally, samples were frozen in liquid nitrogen
and stored at −80 ◦C for further analysis, including NIRS profiling collection, reducing
sugar content, and soluble sugar content.
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2.2. Measurement of Biochemical Properties

Biochemical analysis was conducted to determine the TSS, pH, reducing sugar content,
and soluble sugar content. TSS was measured using a hand-held digital refractometer
(ATAGO PAL-1, Tokyo, Japan). This instrument was zero-set before use, and an appropriate
amount of the sample was transferred to the prism using a disposable dropper. The
measurement was recorded accordingly. The pH value was measured using a METTLER
TOLEDO FE20 pH meter, calibrated with standard buffers (pH 4.01, 7.0 and 9.21) prior to
measurement. The pH meter’s probe was immersed in the sample, and the measurement
was recorded. The sugar acid ratio, calculated as TSS/pH value, was determined according
to the method described by Chen et al. [15].

The contents of soluble sugar and reducing sugar were carried out according to the
method described by Shen et al. [5]. In this method, 1 g of coconut water was mixed with
3 mL of a potassium ferrocyanide solution (10.6 g mL−1) and 3 mL of a zinc acetate solution
(21.9 g mL−1). The resulting mixture was then diluted to a volume of 50 mL and filtered.
To determine the content of reducing sugar, 0.5 mL of the filtered solution was combined
with 1.5 mL of distilled water and 4 mL of a 3,5-dinitrosalicylic acid solution. The mixture
was then heated in a boiling water bath for 5 min and subsequently diluted to a final
volume of 10 mL. After cooling, the solution was measured at a wavelength of 540 nm
using an ultraviolet-VIS spectrophotometer (ultraviolet-1600, Shanghai Aoyi, Shanghai,
China). For the determination of soluble sugar, 10 mL of the filtered solution was mixed
with 1 mL of hydrochloric acid solution (6 mol L−1) and heated at a temperature of 80 ◦C
for 10 min. After cooling, methyl red was added as an indicator, and sodium hydroxide
solution (6 mol L−1) was added until the mixture turned light orange in color. The resulting
mixture was then diluted to a final volume of 25 mL and reacted with 3,5-dinitrosalicylic
acid. The absorbance of the solution was measured at a wavelength of 540 nm using the
ultraviolet-VIS spectrophotometer. The total soluble sugar content was calculated based
on the obtained absorbance, using a standard curve generated from a glucose standard
solution. The content of soluble sugar was expressed as a percentage.

2.3. NIRS Measurement

NIRS analysis was conducted using an NIR-Flex N500 model (Buchi Labortechnik AG,
Switzerland) to acquire transreflectance spectra in a wavelength range of 1000–2500 nm
(10,000–4000 cm−1) at a spectral resolution of 4 cm−1. Each spectrum contained 1501 data
points. The spectrometer was equipped with a tungsten halogen lamp and a temperature-
controlled extended range Indium–Gallium–Arsenide (InGaAs) detector. A 2 m long fiber
optic probe with two embedded fiber bundles, one with a diameter of 2.0 mm for the
light beam and one with a diameter of 3.5 mm for the light collector, was used. Prior to
measurement, samples were equilibrated to room temperature using a water bath and
analyzed on the same day. Each sample (1 mL) was placed in an 8 mm PE-stopfen flacon
and analyzed three times without repositioning under thermostatic condition at 35 ◦C.
Each spectrum acquisition consisted of 32 single scans. The acquired spectral data were
documented in transmission (T) units and converted to absorbance (A) units (log (1/T)).
Three received spectra, each consisting of 1131 data points after eliminating abnormal
bands, were averaged to obtain a single spectrum for quantitative and qualitative analysis.

2.4. Chemometrics Analysis and Data Analysis

The partial least squares regression (PLSR) approach was employed to establish a
relationship between the spectra and biochemical reference values using 544 CW samples.
The Monte Carlo Sampling method was utilized to remove outliers [16]. The preprocessed
spectra were divided into a training set and an external validation set at an approximate ra-
tio of 3:1. The spectra were preprocessed using smoothing and the second derivative
(2nd Der) algorithms. Three wavelength selection algorithms, including competitive
adaptive reweighting sampling (CARS) [16], variable combination population analysis
(VCPA) [17], and interval combination optimization (ICO) [18], were used to select key
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variables to optimize the model. The root mean squared error of cross-validation was ob-
tained using 5-fold cross-validation method, and the minimum value served as a reference
parameter to determine the optimal number of latent variables.

The performance of the quantitative model equations was evaluated using several
metrics, including the coefficient of determination for calibration (R2

C) and prediction (R2
P),

the root mean squared error of fitting (RMSEF) and prediction (RMSEP), and the residual
prediction deviation (RPD). A good model should have higher R2 and RPD values and
lower RMSE. The RPD was classified as proposed by Chang et al. [19]: (A) excellent models
(RPD > 2.0); (B) useful models (1.4 < RPD < 2.0); (C) unreliable models (RPD < 1.4). The
R2 values were classified into 5 levels according to Saeys et al. [20]: (A) poor predictions
(R2 < 0.50); (B) moderate predictions (0.50 < R2 < 0.65); (C) approximate quantitative
predictions (0.66 < R2 < 0.81); (D) good quantitative prediction (0.82 < R2 < 0.90);
(E) excellent prediction (R2 > 0.91). All these analyses were conducted using MATLAB
7.10.0 (R2010a) (Math Works Inc., Natick, MA, USA) with the libPLS toolbox (Version 1.98).

Discriminant analysis was performed using SIMCA-P v14.1 software (Umetrics, Umeå,
Sweden) to distinguish samples based on three matrices: (1) postharvest storage period,
categorized as relatively fresh CW (F) or aged CW (A); (2) coconut cultivar, with samples
from Wenye No. 2 (N2) or Wenye No. 4 (N4); and (3) maturity, with samples from Wenye
No. 2 at 8 months (N2-8) or 10 months (N2-10), and samples from Wenye No. 4 at 6 months
(N4-6) or 8 months (N4-8). For the discrimination based on postharvest storage period,
samples categorized as F were derived from coconuts stored for 0–7 days, while samples
categorized as A were from nuts stored for 15 days or more. Regarding the discriminations
for matrices of coconut cultivar and maturity, the samples referred to relatively fresh CW
from the corresponding conditions.

The dataset was divided into a training set and an external validation set using a
random selection process to minimize potential bias. Specifically, for each day, three out
of the five samples of No. 2-8M and No. 4-8M, and two out of the three samples of
No. 2-10M and No. 4-6M, were randomly selected and assigned to the training set, while
the remaining samples were assigned to the external validation set. This approach ensured
that both subsets were representative of the overall dataset and that the model trained on
the training set could generalize well to new data.

Spectral data matrix was preprocessed using various techniques, including the first
derivative (1st Der), 2nd Der, multiplicative signal correction (MSC), standard normal
variate (SNV), row center (RC), Savitzky–Golay (SG), exponentially weighted moving
average (EWMA), wavelet compression spectral (WCS), and wavelet denoising spectral
(WDS), before modeling. This preprocessing aimed to reduce baseline shift and improve
the spectral properties. PCA was performed on the raw and preprocessed spectra to detect
trends among samples and identify outliers by evaluating Hotelling’s T2 range values (at a
5% level of significance) [21]. Subsequently, OPLS-DA was employed to build discrimina-
tion models that differentiated CW samples based on postharvest storage time, coconut
cultivar, and maturity. The performance of OPLS-DA model was internally validated using
a 7-fold cross-validation (CV) approach and assessed for quality using R2Xcum (the sum of
predictive plus orthogonal variation explained in X matrix), R2Ycum (total sum of variation
explained in Y matrix), and Q2

cum (goodness of prediction estimated via CV). External
validation was performed to evaluate the overall classification performance of the models,
utilizing metrics, such as the percentage of correctly classified observations and AUC (the
area under the Receiver Operating Characteristic Curves). The most influential absorption
bands in the OPLS-DA classification model were identified using VIP (Variable Importance
in Projection) values greater than 1 and p values less than 0.05. The reliability of the clas-
sifiers was evaluated using CV-ANOVA (analysis of variance testing of cross-validation
predictive residuals), considering a p value < 0.05 as an indication of a good model [21].
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3. Results
3.1. Distribution and Quantification of Reference Data

The distribution and quantification of reference data were analyzed for various at-
tributes, including TSS, pH, TSS/pH, reducing sugar, and soluble sugar. Figure 1 illustrates
the behavioral differences between CW samples stored for different times. Due to varia-
tions in gene diversity, sampling regions, and physiological differences among coconut
samples, the coefficient of variation was high and unstable for the quantified attributes of
each individual sampling time (Tables S1–S4). Despite these recorded variations, it was ob-
served that postharvest storage had the effects of raising the value of pH, while decreasing
those of TSS, reducing sugar, and soluble sugar content, irrespective of coconut cultivar
and maturity.
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Figure 1. Biochemical properties of CW from postharvest coconuts. Each point represented the mean
value of three technical replicates from one biochemical sample. TSS for No. 2-8M (A), No. 2-10M (B),
No. 4-6M (C), and No. 4-8M (D); pH value for No. 2-8M (E), No. 2-10M (F), No. 4-6M (G), and
No. 4-8M (H); TSS:pH for No. 2-8M (I), No. 2-10M (J), No. 4-6M (K), and No. 4-8M (L); Reducing
sugar content for No. 2-8M (M), No. 2-10M (N), No. 4-6M (O), and No. 4-8M (P); and soluble sugar
content for No. 2-8M (Q), No. 2-10M (R), No. 4-6M (S), and No. 4-8M (T).

3.2. Spectral Characteristics

The average raw spectra (1000–2500 nm) obtained from CW samples at each posthar-
vest storage time for No. 2-8M (Figure 2; Table S5), No. 2-10M (Figure S1; Table S6),
No. 4-6M (Figure S2; Table S7), and No. 4-8M (Figure S3; Table S8) were illustrated. Distinct
absorption peaks were observed at approximately 1390, 1520, and 1860 nm (Figure 2 and
Figures S1–S3), which are typically correlated to the presence of C-H combination, C-H2, or
C-H (2νCH3 and δCH3) combination from aliphatic hydrocarbons; N-H (2ν), secondary
amine as (R-NH-R) from N-H secondary amine; and C-Cl (7ν), C-Cl from chlorinated
hydrocarbons, respectively [22]. Bands with a wide absorption range at 1780–1800 nm
are associated with the vibrations produced by O-H stretching and 2 C-O stretching, com-
monly found in carbohydrate [23]. Carbohydrate-related vibrations were also detected in
a wavelength range between 1160–1200 nm, which corresponded to the C-H stretching
first overtone [23]. Additionally, despite the noise observed at 1900–2500 nm, bands in this
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region exhibited intense absorption values (≥4.0), attributed to various combinations of
fundamental and overtone vibrations, such as N-H symmetry stretching and amide II from
proteins at 2050 nm, O-H stretching and deformation from alcohols at 2073 nm, amide I +
amide III from proteins at 2154 nm, O-H stretching and deformation from starch at 2253 nm,
and N-H stretching and C-O stretching from proteins at 2292 nm [23].
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3.3. Model Development for Quantitative Analysis

Wavenumbers containing relevant information related to the targeted compound were
selected using CARS, VCPA, and ICO algorithms to predict the biochemical parameters
using PLSR. The results of this variable selection process are presented in Table 1.

Table 1. Chemometric parameters of PLS calibration protocols to predict biochemical properties via
different band selection methods.

Attributes
Number of
Collected
Samples

Number of
Outliers

Variable
Selection
Methods

Number of
Latent

Variables

Number of
Variables

Training Set External Validation Set

R2
C RMSEF R2

P RMSEP RPD

TSS 544 37

Full-spectrum 6 1131 0.1516 0.7041 −0.0462 0.6578 0.9777
CARS 6 21 0.1608 0.7003 −0.0473 0.6582 0.9633
VCPA 8 11 0.4232 0.5806 0.2316 0.5637 1.1077
ICO 5 128 0.4213 0.5815 0.2395 0.5609 1.1467

pH 544 15

Full-spectrum 1 1131 0.0260 0.3048 0.0265 0.3137 1.0135
CARS 2 7 0.0610 0.2993 0.0191 0.3149 1.0073
VCPA 12 12 0.6354 0.1865 0.4776 0.2298 1.2636
ICO 14 157 0.6570 0.1809 0.4609 0.2334 1.3619

TSS:pH 544 31

Full-spectrum 11 1131 0.2540 0.1225 −0.0876 0.1299 0.9589
CARS 2 14 0.0894 0.1354 −0.0995 0.1306 0.9280
VCPA 9 10 0.4584 0.1044 0.1687 0.1136 1.0785
ICO 14 68 0.3656 0.1130 0.1811 0.1127 1.1051

Reducing sugar
content 544 19

Full-spectrum 20 1131 0.4972 0.5436 0.2713 0.6322 1.1715
CARS 7 31 0.7359 0.3940 0.7207 0.3913 1.8235
VCPA 10 11 0.7682 0.3691 0.7081 0.4001 1.7267
ICO 6 93 0.7552 0.3793 0.6999 0.4057 1.8255

Soluble sugar
content 544 25

Full-spectrum 20 1131 0.5037 0.5366 0.2635 0.5818 1.1652
CARS 6 107 0.6978 0.4188 0.5962 0.4307 1.5417
VCPA 8 11 0.7046 0.4140 0.6197 0.4181 1.5680
ICO 17 120 0.7209 0.4024 0.6047 0.4262 1.5906

R2
C : the coefficient of determination for calibration; RMSEF: the root mean squared error of fitting; R2

P: the
coefficient of determination for prediction; RMSEP: the root mean squared error of prediction; RPD: the residual
prediction deviation.

For the reducing sugar content and soluble sugar content, all three methods (CARS,
VCPA, and ICO) improved the accuracy of the models, as evidenced by lager RPD and
R2 values, as well as smaller RMSEF and RMSEP values. Compared to the full-spectrum
approach, the RPD values were enhanced by 55.66%, 47.39%, and 55.83% for reducing
sugar content, and 32.31%, 34.56%, and 36.51% for soluble sugar content when using
CARS, VCPA, and ICO, respectively. Calibration models based on different band selection
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methods for reducing sugar content performed slightly better than those for soluble sugar
content, exhibiting higher RPD values and R2 values, as well as smaller RMSEF and RMSEP
values. The R2 values in the training set ranged from 0.7359 to 0.7682 for reducing sugar
content and from 0.6978 to 0.7209 for soluble sugar content. In the external validation set,
the R2 values were between 0.6999 and 0.7207 for reducing sugar content and between
0.5962 and 0.6197 for soluble sugar content. The achieved RPD values ranged from 1.54 to
1.83, and training set R2 values ranged from 0.69 to 0.77, indicating that the NIRS models
for reducing sugar and soluble sugar contents provided reliable quantification but lacked
sufficient precision [20,24]. However, for TSS, pH, and TSS/pH, the prediction results were
unsatisfactory, with R2 values below 0.66 and RPD values below 1.5.

3.4. Classification of CW Samples Based on Spectral Information
3.4.1. Discrimination using Postharvest Storage Time

The liquid samples from coconuts were categorized into two groups: relatively fresh
CW (F), stored for 0–7 days, and aged CW (A), stored for more than 14 (≥15) days. Raw
spectral data were divided into two classes (F and A) based on storage period. As shown in
Table S9, the training set consisted of 99, 37, 28, and 103 spectra for No. 2-8M, No. 2-10M,
No. 4-6M, and No. 4-8M, respectively, while the external validation set included 65, 19,
14, and 68 spectra, respectively. The statistical parameters, such as the number of spectra,
R2Xcum, R2Ycum, Q2

cum, and PCV-ANOVA, were calculated for OPLS-DA calibration, while
the classification rate and p-value were determined for external validation. Models with
the highest total classification rate, along with higher values of R2Ycum and Q2

cum values
were considered as the best pretreatment method for predicting. According to Table S9,
the 1st Der pretreatment was the most suitable for discriminating between F and A for
No. 2-10M (R2Ycum = 0.957, Q2

cum = 0.870; total classification rate = 100.00%) and No. 4-6M
(R2Ycum = 0.992, Q2

cum = 0.957; total classification rate = 100.00%). The 2nd Der pretreatment
was found to be the most suitable for No. 2-8M (R2Ycum = 0.960, Q2

cum = 0.747; total
classification rate = 95.38%), while EWMA was the best option for No. 4-8M (R2Ycum = 0.686,
Q2

cum = 0.607; total classification rate = 97.06%).
The score scatter plots, AUC, and VIP results from the best-fitted calibration model

are illustrated in Figure 3 for No. 2-8M, Figure S4 for No. 2-10M, Figure S5 for No. 4-
6M, and Figure S6 for No. 4-8M. However, clear distinctions between F and A were not
observed for No. 2-8M and No. 2-10M or No. 4-6M and No. 4-8M, with significant
overlap among the spectral points. This could be primarily attributed to the intraclass
variability being greater than the among-class variability [25]. To ensure the stability of the
monitoring system, outliers beyond the warning limit of Hotelling T2 with 95% confidence
interval were removed. This resulted in the removal of two outliers from Figure 3A, two
outliers from Figure S4, one outlier from Figure S5, and five outliers from Figure S6. The
remaining data were used as the calibration dataset for the OPLS-DA analysis of No. 2-8M
(N = 97), No. 2-10M (N = 35), No. 4-6M (N = 27), and No. 4-8M (N = 98), respectively. The
score scatter plots for the OPLS-DA analysis B, Figures S4B–S6B) displayed good interclass
variability along the first predictive component, where all F samples corresponded to
negative scores and most A samples corresponded to positive scores. However, no tight
cluster between F and A was observed along the first orthogonal component, indicating a
high interclass variability. Importantly, excellent AUC values (Figure 3C, Figures S4C–S6C)
above 0.97 were obtained for No. 2-8M, No. 2-10M, No. 4-6M, and No. 4-8M, with only
a few samples experiencing misclassifications. This indicates a satisfactory classification
based on postharvest storage time.



Foods 2023, 12, 2415 8 of 15

Foods 2023, 12, x FOR PEER REVIEW 8 of 15 
 

 

being greater than the among-class variability [25]. To ensure the stability of the monitor-
ing system, outliers beyond the warning limit of Hotelling T2 with 95% confidence interval 
were removed. This resulted in the removal of two outliers from Figure 3A, two outliers 
from Figure S4, one outlier from Figure S5, and five outliers from Figure S6. The remaining 
data were used as the calibration dataset for the OPLS-DA analysis of No. 2-8M (N = 97), 
No. 2-10M (N = 35), No. 4-6M (N = 27), and No. 4-8M (N = 98), respectively. The score 
scatter plots for the OPLS-DA analysis (Figures 3B, S4B, S5B and S6B) displayed good 
interclass variability along the first predictive component, where all F samples corre-
sponded to negative scores and most A samples corresponded to positive scores. However, 
no tight cluster between F and A was observed along the first orthogonal component, in-
dicating a high interclass variability. Importantly, excellent AUC values (Figures 3C, S4C, 
S5C and S6C) above 0.97 were obtained for No. 2-8M, No. 2-10M, No. 4-6M, and No. 4-
8M, with only a few samples experiencing misclassifications. This indicates a satisfactory 
classification based on postharvest storage time. 

 
Figure 3. Discrimination results for No. 2-8M according to postharvest storage time. Score scatter 
plot based on PCA analysis (A), Score scatter plot based on OPLS-DA analysis (B), AUC prediction 
value (C), and characteristic wavelengths (VIP > 1 and p < 0.05) (D). The ellipse represents the Ho-
telling T2 with 95% confidence interval. 

The spectral regions that contributed the most to the discrimination between F and 
A in each calibration are visualized in Figures 3D, S4D, S5D and S6D. Among the best 
calibrations for No. 2-8M and No. 2-10M, common influences were found in the 1591.3–
1592.3, 1354.3–1356.5, 1350.6, 1179.8, and 1175.9–1177.0 nm wavelength regions related to 
N-H from proteins, as well as the 1816.9, 1717.0, 1710.0–1713.5, 1683.5–1684.6, 1679.0–
1681.2, 1656.7–1657.8, 1189.9–1192.2, and 1150.5–1151.5 nm wavelength regions related to 
aromatic hydrocarbons [22].  

3.4.2. Discrimination by Coconut Cultivar 

Figure 3. Discrimination results for No. 2-8M according to postharvest storage time. Score scatter plot
based on PCA analysis (A), Score scatter plot based on OPLS-DA analysis (B), AUC prediction value
(C), and characteristic wavelengths (VIP > 1 and p < 0.05) (D). The ellipse represents the Hotelling T2

with 95% confidence interval.

The spectral regions that contributed the most to the discrimination between F and A
in each calibration are visualized in Figure 3D, Figures S4D–S6D. Among the best calibra-
tions for No. 2-8M and No. 2-10M, common influences were found in the 1591.3–1592.3,
1354.3–1356.5, 1350.6, 1179.8, and 1175.9–1177.0 nm wavelength regions related to N-H
from proteins, as well as the 1816.9, 1717.0, 1710.0–1713.5, 1683.5–1684.6, 1679.0–1681.2,
1656.7–1657.8, 1189.9–1192.2, and 1150.5–1151.5 nm wavelength regions related to aromatic
hydrocarbons [22].

3.4.2. Discrimination by Coconut Cultivar

The discrimination between cultivars of Wenye No. 2 (N2) and Wenye No. 4 (N4) was
performed using relatively fresh CW from nuts matured for 8 months, which is considered
the most palatable stage in China. A total of 49 spectra were used as the training set,
with an additional 31 spectra used for external validation. The statistical analysis of
OPLS-DA calibration and external validation for discriminating between N2 and N4 using
different pretreatment methods is exhibited in Table S10. The highest total classification rate
(100.00%) of the external validation set was achieved with various pretreatment methods,
including no treatment, 1st Der, 2nd Der, MSC, SNV, RC, EWMA, and WCS. Among these,
the SNV pretreatment model performed the best, exhibiting strong generalization ability,
with a higher Q2

cum value of 0.916. Figure 4 illustrates the results of the best-fitted PCA,
OPLS-DA, AUC analyses, and VIP prediction values for this model.
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The PCA analysis of SNV pretreated NIR spectra (Figure 4A) detected one outlier in
the CW samples, which was eliminated from the OPLS-DA analysis. This resulted in a total
of 48 samples for calibration. Although there is some overlap, a slight separation between
N2 and N4 samples can be observed in the score plot (Figure 4A). The score plot along the
first predictive component showed two distinct clusters, with positive scores corresponding
to N4 samples and negative scores corresponding to N2 samples (Figure 4B). Notably, this
model achieved a perfect AUC value of 1 for both N2 and N4 samples (Figure 4C).

3.4.3. Discrimination by Maturity

Table S11 provides statistical information obtained from different preprocessing meth-
ods for discriminating CW samples from different maturities. The dataset includes 62 CW
samples from Wenye No. 2 at maturity of 8 (N2-8) and 10 (N2-10) months, as well as
65 samples from Wenye No. 4 at 6 (N4-6) and 8 (N4-8) months. According to Table S11,
the 1st Der preprocessing method turned out to be the most effective for the discrimina-
tion using the maturity mathematical model for both Wenye No. 2 (R2Ycum = 0.984,
Q2

cum = 0.932, total classification rate = 100.00%) and Wenye No. 4 (R2Ycum = 0.974,
Q2

cum = 0.872, total classification rate = 100.00%). These models are further depicted
in Figure 5, which includes the score scatter plots of PCA and OPLS-DA analysis, AUC
results, and VIP value of the spectral variables. Based on the PCA analysis results shown
in Figure 5A,B, no outlier sample points were identified in Wenye No. 2, while one sample
point from Wenye No.4 exceeded the ellipse representing Hotelling’s T2 with a 95% con-
fidence interval. Therefore, the single outlier from Wenye No. 4 was removed to ensure
reliable and accurate results before conducting the OPLS-DA models.
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Figure 5. Discrimination results according to maturation stage. Score scatter plot based on PCA
analysis for Wenye No. 2 (A) and Wenye No. 4 (B), and OPLS-DA analysis for Wenye No. 2 (C)
and Wenye No. 4 (D). The ellipse represents the Hotelling T2 with 95% confidence interval. AUC
prediction value for Wenye No. 2 (E) and Wenye No. 4 (F). Characteristic wavelengths (VIP > 1 and
p < 0.05) for Wenye No. 2 (G) and Wenye No. 4 (H).

For Wenye No. 2, a slight separation between N2-8 and N2-10 samples was observed
based on PCA analysis (Figure 5A). However, for Wenye No.4, there was heavy overlap be-
tween the natural clustering of CW samples from different maturities, and clear boundaries
could not be identified based on PCA analysis (Figure 5B). The score scatter plots of OPLS-
DA results in Figure 5C,D indicate a better separation of samples from different maturities.
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Specifically, the 8-month samples were predominantly distributed on the positive scores of
the first predictive component, while CW of N2-10 and N4-6 formed separate clusters on
the negative scores. Furthermore, the excellent AUC values of 1 in Figure 5E,F demonstrate
the strong performance of both OPLS-DA models.

4. Discussion

Water and sugar (5%) are the main constituents of dwarf tender coconut at maturity of
7 months, with low concentrations of acidic substances, such as organic acids and amino
acids [26]. In this study, similar results were obtained regarding the sugar content of CW,
with reducing sugars ranging from 3.84 to 5.02% and soluble sugars from 3.85 to 6.64% for
fresh tender samples, respectively. The dominant soluble sugars found in CW are glucose,
sucrose, and fructose [27], and the variation in these sugars may play a vital role in the
overall sugar composition of CW. The pH value of fresh tender CW ranged from 4.67 to
5.54, which was influenced by the presence of total non-volatile acids and free organic
acids [28]. Additionally, free fatty acids and amino acids identified in CW [4,5,29] may
also have contributed to the acidity of samples. Furthermore, the soluble sugar content
in No. 4-8M was found to be higher than that in No. 4-6M at the same postharvest
storage, whereas no obvious difference was observed between samples from No. 2-8M and
No. 2-10M. Similar changes in total soluble sugar content have been reported in CW of
‘Malayan Yellow Dwarf’, where the sugar content increased from 5–6 to 7–8 months old but
showed no significant difference from 7–8 to 9–10 months [4]. Moreover, at development
stage of 8 months, sugar attributes of reducing sugar and soluble sugar in CW were higher
in Wenye No. 4 compared to Wenye No. 2. The pH value of CW from No. 4-6M was lower
than that of No. 4-8M at the same postharvest stage, confirming the observation that the pH
of CW tended to rise with maturity [6]. These findings suggest the potential of using NIRS
combined with chemometrics to discriminate CW samples based on postharvest periods,
coconut cultivars, and maturities.

Soluble sugars constitute the major components of CW [30]. In a non-targeted
metabolome analysis of CW, 217 metabolites were identified and classified into 11 cat-
egories [5]. These components consist of various chemical bonds, including O-H, C-H,
N-H, and other functional groups that contain hydrogen. This composition forms the basis
for the application of NIRS analysis, as it mainly captures the overtones and vibration
combinations of these chemical constituents [31]. Although the spectra of CW from differ-
ent postharvest storage time, coconut cultivars, and maturities may appear similar, there
were still some subtle differences in the absorption bands. However, these differences were
not easily discernible via visual inspection alone. Therefore, to effectively analyze these
CW samples, chemometric methods were required to extract the relevant information for
quantitative and qualitative analysis.

Variable selection is a crucial step in multivariate calibration as it can lead to faster and
more cost-effective models, improve prediction accuracy, and enhance the interpretability
of the selected variables [17]. The established PLSR models established using CARS,
VCPA, and ICO algorithms for reducing sugar and soluble sugar contents demonstrated
applicability, with RPD values ranging from 1.54 to 1.83. However, the quantitative models
for the TSS, pH, and TSS/pH indices exhibited poor performance, with RPD values below
1.4. One possible explanation for these less favorable prediction results is that these
components themselves do not exhibit significant spectral activity within the considered
range, as described by Saeys et al. [20]. Another potential reason could be the low content
of acids in CW [32], making these parameters more susceptible to noises or interferences
and, thereby, challenging their confident prediction.

In tropical areas, the optimal taste of tender CW is best enjoyed when it is consumed
fresh within 7 days of harvesting from the tree [32]. However, if stored for more than
2 weeks, the flavor of the liquid inside the coconut may become altered, resulting in
decreased consumer acceptance [33]. For No. 2-8M, the most relevant variables were found
to be around 1679 nm, which are associated with C-H methyl groups and carbonyl adjacent
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as (.C=OCH3) related to ketones [22]. Similarly, the relevant variables around 1850 nm
exhibited the highest contributions to No. 2-10M, potentially indicating the presence of
acid chlorides [22]. The top relevant variables were observed to be around 1437 nm for
No. 4-6M, corresponding to the absorption of the first overtone of fundamental stretching
band of O-H from phenols and aryl alcohols (Ar-OH) related to phenolic O-H [22]. Likewise,
the most relevant variables around 1930 nm showed the highest contributions to No. 4-8M,
indicating O-H stretching and HOH bending combinations related to polysaccharides [22].
Overall, the differentiation of CW from different postharvest storage time using NIRS
techniques was mainly driven by variations in carbohydrate components. These findings
further suggest that the consumption of carbohydrates in CW of postharvest coconut was
the main factor contributing to its deterioration.

Quality criteria in CW, such as the water volume per nut ratio, TSS, total sugar, and
reducing sugar/total sugar ratio, are important indicators for assessing the suitability
of coconut cultivars [30]. The highest VIP values for distinguishing between coconut
cultivars are around 1.2, mainly concentrated in the vicinity of 1370 and 1852 nm bands,
indicating that aromatic hydrocarbons played a greater role in the identification process of
coconut cultivars. The most noticeable difference in CW between Wenye No. 2 and Wenye
No. 4 lies in the aroma profile of the liquid inside the kernel. Wenye No. 4, known as an
aromatic coconut cultivar in China, is characterized by a pleasant “pandan-like” flavor due
to the presence of 2AP [34], whereas Wenye No. 2 is a non-aromatic coconut cultivar. The
difference in NIR spectra observed in our study aligns with the flavor diversity between
these two coconut varieties.

Cocos nucifera L. produces nuts continuously throughout the year, with each nut taking
about 12 months to reach full maturity. During the ripening process, CW continues to fill
the inside cavity until reaching a development stage of around 11 months. At this point, the
volume of CW starts to decrease, and a distinct sound can be heard when the nut is shaken.
This characteristic makes it easy for manufacturers to identify nuts older than 11 months,
which are typically reserved for breeding purposes and were not considered in this study.
Therefore, our focus was on relatively fresh CW from nuts aged 6, 8, and 10 months, with the
aim of developing classification models to distinguish between them. For Wenye No. 2, VIP
values higher than 2.1 appeared near wavelengths of 1386–1389, 1409–1410, and 1546 nm
(Figure 5G). These wavelengths were correlated to C-H combination and O-H (2ν), and O-H
related to aliphatic hydrocarbons [22]. Conversely, for Wenye No.4, VIP values higher than
2.1 were located at wavelengths of around 1681–1690 nm (Figure 5H), which were assigned
to CONH2 specifically related to peptide β-sheet structures for proteins, C-H methyl, OH
associated as ROHCH3 for alcohols, and C-H (2ν), ArC-H for aromatic hydrocarbons [22].
These findings suggest that proteins, alcohols, and aromatic hydrocarbons could have
important contributions to differentiate CW from maturities of 6, 8, and 10 months.

5. Conclusions

NIRS combined with different chemometric methods was utilized as a tool for quantita-
tive analysis of sugar and acid indexes, as well as classification of CW based on postharvest
storage time, coconut cultivar, and maturity. The spectral information provided insights
into the changes in CW’s chemical constituents under different conditions. Based on our
experimental results, the following conclusions can be drawn: (1) PLSR models derived
from CW samples achieved better prediction parameters for reducing sugar and soluble
sugar contents compared to TSS, pH, and TSS/pH indices. However, the quantitative
models for sugar contents were not highly accurate, even with the use of variable selectin
algorithms, such as CARS, VCPA, and ICO; (2) NIR spectra combined with the OPLS-DA
statistical technique can effectively classify CW samples with up to 100% accuracy based
on postharvest storage time, coconut cultivar, and maturity.

To meet the demand of the fresh-eating market, our study focused solely on the
analysis of CW from nuts matured for 6–10 months using NIRS. Nuts matured beyond
11 months could be easily distinguished through manual means. Future research will con-
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centrate on developing more precise calibration equations to improve the model’s accuracy
in quantifying CW attributes and exploring its practicality in the industry. Furthermore,
discrimination models based on sufficient samples originating from diverse cultivars and
maturities are needed for commercial purposes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12122415/s1, Table S1: The mean, standard deviation,
range, and coefficient of variation for biochemical traits in the coconut water samples from postharvest
nuts for Wenye No. 2 at developmental stage of 8 months; Table S2: The mean, standard deviation,
range, and coefficient of variation for biochemical traits in the coconut water samples from postharvest
nuts for Wenye No. 2 at developmental stage of 10 months; Table S3: The mean, standard deviation,
range, and coefficient of variation for biochemical traits in the coconut water samples from postharvest
nuts for Wenye No. 4 at developmental stage of 6 months; Table S4: The mean, standard deviation,
range, and coefficient of variation for biochemical traits in the coconut water samples from postharvest
nuts for Wenye No. 4 at developmental stage of 8 months; Table S5: The average raw spectra of
coconut water samples from postharvest nuts for Wenye No. 2 at developmental stage of 8 months;
Table S6: The average raw spectra of coconut water samples from postharvest nuts for Wenye No. 2
at developmental stage of 10 months; Table S7: The average raw spectra of coconut water samples
from postharvest nuts for Wenye No. 4 at developmental stage of 6 months; Table S8: The average
raw spectra of coconut water samples from postharvest nuts for Wenye No. 4 at developmental
stage of 8 months; Table S9: Summary of OPLS-DA calibration statistics and external validation
for discrimination by postharvest storage time from matrixes of No. 2-8M, No. 2-10M, No. 4-6M,
and No. 4-8M.; Table S10: Summary of OPLS-DA calibration statistics and external validation
for discrimination by coconut cultivar; Table S11: Summary of OPLS-DA calibration statistics and
external validation for discrimination by maturation stage from matrixes of Wenye No. 2 and Wenye
No.4; Figure S1: The two-dimensional (A) and three-dimensional (B) plots of average raw spectra
at each postharvest storage time for No. 2-10M; Figure S2: The two-dimensional (A) and three-
dimensional (B) plots of average raw spectra at each postharvest storage time for No. 4-6M; Figure S3:
The two-dimensional (A) and three-dimensional (B) plots of average raw spectra at each postharvest
storage time for No. 4-8M; Figure S4: Discrimination results for No. 2-10M according to postharvest
storage time. Score scatter plot based on PCA analysis (A), Score scatter plot based on OPLS-DA
analysis (B), AUC prediction value (C), and characteristic wavelengths (VIP > 1 and p < 0.05) (D). The
ellipse represents the Hotelling T2 with 95% confidence interval; Figure S5: Discrimination results
for No. 4-6M according to postharvest storage time. Score scatter plot based on PCA analysis (A),
Score scatter plot based on OPLS-DA analysis (B), AUC prediction value (C), and characteristic
wavelengths (VIP > 1 and p < 0.05) (D). The ellipse represents the Hotelling T2 with 95% confidence
interval; Figure S6: Discrimination results for No. 4-8M according to postharvest storage time. Score
scatter plot based on PCA analysis (A), Score scatter plot based on OPLS-DA analysis (B), AUC
prediction value (C), and characteristic wavelengths (VIP > 1 and p < 0.05) (D). The ellipse represents
the Hotelling T2 with 95% confidence interval.
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