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Abstract: The perception of pungency can be attributed to the combination of pain and heat, and it
has critical impacts on food flavor and food consumption preferences. Many studies have reported
a variety of pungent ingredients with different Scoville heat units (SHU), and the mechanism of
pungent perception was revealed in vivo and in vitro. The worldwide use of spices containing
pungent ingredients has led to an increasing awareness of their effects on basic tastes. However, the
interaction between basic tastes and pungency perception based on structure-activity relationship,
taste perception mechanism and neurotransmission lacks review and summary, considering its
brighter prospects in food flavor. Thus, in this review, common pungency substances and pungency
evaluation methods, and the mechanism of pungency perception is presented, and the interaction
between basic tastes and pungency perception and the possible factors of their interaction are
reviewed in detail. Pungent stimuli are mainly transduced through transient receptor potential
vanilloid 1 (TRPV1) and transient receptor potential fixed hormone isoform (TRPA1) activated
by stimulants. Using modern detection techniques combined with sensory standards, different
substances produce different degrees of pungent stimulation, ranging from 104 to 107 SHU/g.
Pungent stimuli can affect taste receptor or channel protein conformation and regulate taste bud cell
sensitivity by producing neurotransmission products. The products of neurotransmission and taste
receptor cell activation in turn act on taste perception. When there are simultaneous effects of taste
perception, pungency stimulation may enhance the perception of salty at a certain concentration,
with a mutual inhibition effect with sour, sweet, and bitter taste, while its interaction with umami
taste is not obvious. However, due to the complexity of perception and the uncertainty of many
perceptual receptors or channels, the current studies of interactions are still controversial. Based on
the understanding of the mechanism and influencing factors, the availability of pungency substances
is proposed in the perspective of food industry in order to achieve new development.

Keywords: pungent perception; transient receptor potential (TRP) channels; taste sensations; taste in-
teraction

1. Introduction

As an important part of the global food culture, natural spices have always performed
irreplaceable roles in the diversity of seasoning in association with a special perception,
pungency. Since the identification of capsaicinoids in 1876 [1], pungent stimuli have gar-
nered the significant interest of many researchers. Pungency is not strictly a sense of taste,
because it is unlike taste (sour, sweet, bitter, salty, and umami). No taste receptor cells
(TRCs) for pungent sensation in the taste buds on the surface of the tongue are known [2].
Hence, taste buds cannot express or recognize pungent stimuli directly or specifically. Tra-
ditionally, the pungent sensation has been classified as a purely trigeminal stimulation [3],
which is a multimodal chemical sensory stimuli [4]. Elicitation of the pungent sensation
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essentially involves a combination of pain and heat and is often associated with the sting
and irritation associated with burning [5]. Analysis of trigeminal nerve sensitivity expres-
sion measurements in humans with chronic use of pungent foods revealed that regular
pungent stimulation increases the chemical heat-mediated resistance in the trigeminal
nerve. Furthermore, a substantial decrease in burning intensity is also noted with these
nerve receptors [6].

The transient receptor potential (”RP) ’hannel family is a superfamily of cationic
transmembrane proteins capable of responding to a wide range of sensory stimuli. TRP
is expressed in multiple tissues and performs an important role in the transmission of
taste and perception of chemical stimuli [7]. In the 1990s, David Julius, an American
physiologist specializing in receptor cloning, successfully cloned the capsaicin-specific
receptor, TRPV1, in 1997 using chili peppers as an entry point and unexpectedly discovered
that the receptor could be activated by physical higher temperature above 43 ◦C [8]. This
discovery presents, for the first time, the role of ion channel receptors in signal transduction
between physicochemical stimuli. Natural chemical stimuli, such as capsaicin, and physical
stimuli, such as temperature, can be uniformly converted into electrical signals via TRPV1
channels on cell membranes. These findings demonstrate the most fundamental source of
somatosensory perception at the molecular level and provide an update on the perception
of somatic sensations. In the following two decades, Julius used TRPV1 as the starting
point and discovered a variety of TRP channel proteins related to somatosensation. Fur-
thermore, he analyzed the three-dimensional structures of various TRP proteins, including
TRPV1, and explored the structural and functional relationships of TRP channel proteins
by physiological means, such as gene knockout, providing a theoretical basis for targeted
drug development. His pioneering and systematic research has led to him being awarded
the Nobel Prize in Physiology or Medicine in 2021.

Today, the most commonly used measure of heat is the Scoville heat units (SHU),
introduced by American chemist Wilbur Scoville in 1912. First, the SHU index is nothing
more than a taste test for capsaicin. In the test, a certain amount of capsaicin extract was
prepared from a certain pepper, and the extract was diluted with water until the tip of
the tongue could not feel pungency; the dilution factor represented the unit of pungency.
To unify the standards, the experiment stipulated that one unit of spiciness was equal to
the pungency that could be diluted to zero with 50 L of water. As this method is subject
to subjective influence, high-performance liquid chromatography (HPLC) was used to
analyze the pungency of capsaicinoids. However, because the SHU index has been used for
a long time, it is currently common to convert the content of a single class of capsaicinoids
measured by HPLC to SHU for examination of the degree of pungency by multiplying the
corresponding coefficient to indicate the pungency of each pungent substance, the conver-
sion coefficient was obtained by combining the threshold of substance pungency and gas
liquid chromatography (GLC) with accuracy [9]. This method can characterize pungency by
quantitative standard, reduce the uncertainty caused by subjective sensory factors, and be
more precise and efficient. The SHU coefficients of common capsaicinoids are listed as fol-
lows: nordihydrocapsaicin (9.3 × 103), capsaicin (16.1 × 103), dihydrocapsaicin (16.1 × 103),
homocapsaicin (6.9 × 103), homodihydrocapsaicin (8.1 × 103), and vanillyl pelargonamide
(9.2 × 103). In addition to the traditional methods, the innovation of modern technology has
promoted the new development of pungency measurement methods. Reported methods
include HPLC [10], gas chromatography [11], spectroscopy [12], and electrochemistry [13],
which have reduced the cost of detection, greatly improved the sensitivity of detection, and
lowered the detection threshold. As some of the instruments are compact and portable, it
provides the possibility for field analysis of pungency measurement [14].

Many natural compounds contribute to the pungent sensation. These natural pungent
ingredients exist in various plants and can be used to protect against microbial and animal
damage. These substances can interact with TRP channels in a covalent or noncovalent
manner, causing the body to respond to pungent conditions (Table 1). Pain and heat
sensations in the oral cavity attributed to pungency will interact with taste sensations
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and further affect the mediation and recognition of taste [15]. These substances also have
many physiological effects (Table 2). Therefore, pungent ingredients added to food can
enhance the taste of food and enrich the taste experience. In recent years, the TRP channels
involved in the production of pungent sensations have been investigated in detail, and
the contribution of pungent ingredients to taste perception has been identified. This
review provides a brief overview of the perception of pungent stimuli and discusses the
interactions between pungent stimuli and other taste information.

Table 1. Names, sources, and properties of natural pungent ingredients.

Natural Pungent
Ingredients Main Ingredients Molecular

Formula Chemical Formula CAS#
Threshold
Pungency
(105 SHU)

Natural Sources

Capsaicinoids

Capsaicin C18H27NO3
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Table 2. Physiological effects of common natural pungency ingredients in recent research.

Natural Pungent
Ingredients Physiological Effects Experimental Phenomenon References

Capsaicin

Antioxidant

In vitro: reduced lipoxygenase activity and lipid
peroxidation significantly.
Animal experiment: The oxidative stress levels in the liver
and testis of SD rats were significantly decreased, and the
contents of GSH-Px and GSH were significantly increased.

[16,17]

Anti-obesity

Reduced neutral fat content, fat accumulation, lipid droplet
size, and surface area;
Improved the release of glucagon and the absorption of
glucose in the gastrointestinal tract;
Improved postprandial hyperglycemia and hyperinsulinemia
and fasting lipid metabolic disorders in women with GDM,
reduced the incidence of LGA newborns.

[18,19]

Analgesic Relieved knee osteoarthritis pain, fibromyalgia, and
postherpetic neuralgia. [20]

Anti-cardiovascular and
cerebrovascular diseases

Significant neuroprotective effect on hypoxic neuron model
in vitro and cardiac arrest model in vivo. [21]

Anti-inflammatory
Alleviated the inflammation response and the Warburg effect
in a TRPV1-independent manner by targeting PKM2-LDHA
and COX-2 in sepsis.

[22]
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Table 2. Cont.

Natural Pungent
Ingredients Physiological Effects Experimental Phenomenon References

Dihydrocapsaicin Anti-cardiovascular and
cerebrovascular diseases

Protective mechanisms of brain injury after cardiac arrest
and resuscitation;
Markedly abrogated TNFα-induced expression of the
adhesion molecules VCAM-1 and ICAM-1, IL-6 production,
and activation of NFκB, Reduced inflammatory damage in
human vascular endothelial cell cultures.

[23,24]

Piperine

Anticancer
Inhibited the epithelial-mesenchymal transition (EMT)
activated by TGF-β and prevented the invasion and
metastasis of HepG2 cells in hepatocellular carcinoma.

[25]

Anti-inflammatory

Enhanced FAM134B and CCPG1-dependent ER phagocytosis
to reduce ER stress, thereby alleviating pancreatitis injury;
Repressed CS-induced infiltration of inflammatory cells and
thereby exaggerated production of pro-inflammatory
mediators and oxidative stress.

[26,27]

Anti-cardiovascular and
cerebrovascular diseases

Improved myocardial ischemia, cardiac injury, and cardiac
fibrosis, inhibited vascular smooth muscle cell proliferation,
and prevented arterial stenosis.

[28]

Immunoregulation Regulated PI3K/AkT-mediated anti-apoptosis signal
transduction and improves pancreatic β-cell dysfunction. [29]

Antioxidant Easy to react with high oxidation free radicals, scavenged
DPPH, TEMPO, hydrogen peroxide, and reduced Fe3+. [30]

Anti-obesity

Reversed HFD-induced liver lipid accumulation and insulin
resistance via the inactivation of adiponectin-AMPK and
PI3K-Akt signaling;
Regulated energy homeostasis and inflammation and
alleviates obesity associated with GM regulation.

[31,32]

Allyl
isothiocyanate

Anticancer

Inhibited Akt/mTOR proliferation signaling and promoted
mitochondria-dependent apoptotic pathway through
AITC-enhanced activities of caspase-3 and caspase-9 in
CAR cells

[33]

Antibacterial

Prevented A. niger, A. carbonarius and A. ochraceus from
infecting grapes and maize and controlled Ochratoxin A
contamination;
More effective in controlling yeast and Gram-negative
bacteria than Gram-positive bacteria.

[34,35]

Allicin

Anticancer Inhibited the proliferation and promoted apoptosis of various
colorectal cancer cells. [36,37]

Antibacterial Inhibited DNA gyrase activity in bacteria and has natural
antibacterial properties. [38]

Anti-cardiovascular and
cerebrovascular diseases

Decreased serum levels of IL-1β, IL-6, and TNF-α, improved
calcium homeostasis in cardiomyocytes, and downregulated
calcium transport related CaMK II and inflammation related
NF-κB and NLRP3, inhibited the activation of CaMK
II/NF-κB pathway and protected hypertensive vascular and
cardiac remodeling in spontaneously hypertensive rats.

[39]

Gingerols

Immunoregulation

Inhibited viral neuraminidase activity and boosted
hemagglutinin-specific CD4 T cell response to the infection;
Increased expression of pro-inflammatory cytokines and
enhanced Th1/Th17 responses.

[40,41]

Anti-inflammatory
Attenuated NF-κB/MAPK signaling pathways, formation of
ECM, production of inflammatory cytokines, and injury to
mammary gland cells both in vivo and in vitro.

[42]

Antioxidant Had a high scavenging capacity of DPPH and ATBS radicals,
retarded lipid oxidation, and hydrolysis. [43]

Anti-obesity
Inhibited adipogenic differentiation and lipid accumulation
and activated the Wnt/β-catenin signaling pathway during
adipogenic differentiation.

[44]
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Table 2. Cont.

Natural Pungent
Ingredients Physiological Effects Experimental Phenomenon References

Sanshools Antioxidant

Ameliorated spontaneous locomotion deficit of mice induced
by D-galactose (D-gal) and AlCl3 treatment, reduced
malondialdehyde production, and increased the activity of
antioxidative enzymes, showing an inhibitory effect on
oxidative stress.

[45]

Evodiamine Anticancer
Induced M-phase cell-cycle arrest by inactivation of CUL4A
E3 ligase, and suppressed the growth of esophageal
squamous cell carcinoma both in vitro and in vivo.

[46]

Cinnamaldehyde Antibacterial
Inhibited the growth of an array of microorganisms such as
bacteria, molds, and yeasts, inhibited toxin production by
micro-organisms.

[47]

2. Common Pungent Ingredients
2.1. Capsaicinoids

Capsaicinoids are among the most important active ingredients in the production
of pungent sensations. The genus Capsicum contains capsaicinoids, including capsaicin,
dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, and homodihydrocapsaicin. Cap-
saicin is the main irritating component found in capsicum plants. It is responsible for
almost 90% of capsicum pungency, with dihydrocapsaicin. The basic chemical structure
of capsaicinoids consists of an aliphatic hydroxyl group in vanillyl alcohol with a fatty
acid. Capsaicin is biologically bound to branched-chain fatty acids via vanillin and has a
nonpolar phenolic structure. The benzene ring in the structure is modified by an acyl chain
that performs a decisive role in the pungent sensation of capsaicin [19]. Capsaicinoids
produce strong burns on any tissue it comes in contact with, and capsaicin’s pungency
is evaluated in SHU, with 1 g of capsaicin being equivalent to 1.6 × 107 SHU, which is
similar to dihydrocapsaicin. The pungency of nordihydrocapsaicin, homocapsaicin, and
homodihydrocapsaicin is significantly lower than that of capsaicin and dihydrocapsaicin,
about 9 × 106 SHU [48]. Capsaicinoids act as antioxidants by chelating ferrous ions in the
body and scavenging DPPH free radicals. Moreover, capsaicin exerts a significant anti-
obesity effect by activating TRPV1 channels to reduce lipid levels in cells and regulate lipid
metabolism and glucose homeostasis. Interestingly, high concentrations of capsaicin can
induce desensitization of depolarized TRPV1 under sustained use, which has an analgesic
effect [19].

2.2. Allicin

Allicin (diallyl thiosulfinate), derived from the bulb of Allium sativum, is also found
in onions and other Liliaceae plants [49]. It is an organosulfur compound formed by the
catalytic decomposition of alliin in fresh garlic by alliinase [50] and is the main pungent
stimulant component in fresh garlic. It can activate cationic currents in TRPV1 and TRPA1
channels in nociceptive neurons by covalently modifying the cysteine residues on the
channels. It immediately produces a strong stimulating effect [51,52]. Furthermore, allicin
exhibits excellent membrane permeability and readily interacts with sequestered intra-
cellular sulfhydryl compounds to exert its unique physiological activities. Allicin is a
natural broad-spectrum antibiotic that inhibits bacterial growth. It also increases nitric
oxide synthase (iNOS) activity and superoxide dismutase (SOD) levels in living organisms,
inhibits cholesterol microgel formation, and protects the cardiovascular system and liver
cells. The allyl sulfide in allicin also exerts anticancer effects.

2.3. Allyl Isothiocyanate (AITC)

AITC is found in cruciferous plants, such as horseradish, broccoli, and mustard [53].
It is derived from the high content of glucosinolates in cruciferous plants and is the main
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pungent component of mustard and mustard oil. When plant tissues are damaged, glucosi-
nolates are hydrolyzed by myrosinase to form AITC with thiocyanate [54]. In physiological
studies, AITC has demonstrated strong antimicrobial and biological activities, especially in
the areas of anti-inflammation, DNA repair, and cancer risk reduction at low concentrations,
owing to its ability to disrupt the cell membrane of bacteria [55,56].

2.4. Piperine

Piperine, also known as 1-piperoylpiperidine, is an alkaloid unique to the piperaceae
family and has a strong pungent stimulus (1 × 105 SHU/g). For example, the fruits and
roots of plants, such as pepper and longan, are rich in piperine [57]. The structure of
piperine contains a replaceable benzene ring side chain and a hexahydropyridine ring.
The signal activation and desensitization effects of capsaicin on TRPV1 are stronger than
those of capsaicin alone. This finding suggests that piperine could perform a role in the
treatment of diseases associated with increased TRPV1 expression, such as inflammatory
bowel disease [58]. In addition, piperine has also demonstrated analgesic, blood pressure,
vascular cell regulation, anticancer, and anti-inflammatory effects [30].

2.5. Gingerols and Derivatives

The pungent flavor of ginger originates from the combination of gingerols and their
derivatives. The basic structure is a 3-methoxy-4-hydroxy-phenyl functional group con-
nected to a hydrocarbon chain. The mixture can be divided into six categories according
to the different fatty chains to which they are attached, including gingerols, zingerone,
shogaols, paradols, gingerdirones, and gingerdiols. Among these, the contents of gingerols
and shogaols are more abundant, both of which are the main pungent stimulants of ginger
and dried ginger, respectively. Gingerol is formed by dehydration of gingerol at high
temperatures and low pH and has higher biological activity than gingerol. The pungency
of gingerols and shogaols is 8 × 104 SHU/g and 1.5 × 105 SHU/g, respectively. They are
also responsible for the pungent sensation in the body through the activation of TRPV1 and
TRPA1 [59]. Furthermore, although zingerone, paradols, gingerdirones, and gingerdiols
have not been studied much in terms of pungent stimulation, they are still functional
factors of great interest, with anti-inflammatory, anti-viral, antioxidant, antiemetic, and
anti-cancer physiological activities [60].

2.6. Sanshools

Sanshool, a kind of chain unsaturated aliphatic amide alkaloid, is the main source
of prickly ash’s pungency (“Ma” taste). Sanshool is mainly found in the prickly ash peel,
followed by the flowers and leaves of the prickly ash peel. Sanshools all have conjugated
long chains, active amide structures, and alcoholic hydroxyl functional groups. To date, the
structures of six kinds of sanshools have been resolved, including α-sanshool, β-sanshool,
hydroxy-α-sanshool, hydroxy-β-sanshool, γ-sanshool, and δ-sanshool. Among them,
α-sanshool and γ-sanshool can produce a burning sensation in the mouth, hydroxy-α-
sanshool and hydroxy-β-sanshool can produce numbness, and β-sanshool can produce a
bitter taste [61]. Hydroxy-α-sanshool is the most abundant irritant in prickly ash and is the
main compound that causes a tingling sensation; the activation performance is lower than
that of capsaicin and allyl isothiocyanate [62]. In addition to TRP channels, sanshools can
interact with a variety of ion channels and receptors, such as the two-pore domain K+ and G
protein-coupled receptors (GPCRs). This is the basis for the development of multiple drugs
with anti-inflammatory and analgesic properties, intestinal protection, gastrointestinal
diseases, and type I diabetes [63].

2.7. Other Pungent Substances

In addition to pungent substances found in common natural species, they are widely
found in herbal medicines. However, owing to the wide variations in the spiciness of herbal
medicines, the specific pungency of stimulants in various herbs has not been elucidated.
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Dried, nearly ripe fruits of Euodia rutaecarpa (Juss.) Benth. are not only used as an unfair
condiment but are also used as a traditional Chinese medicine in China. Evodiamine is an
active substance of quinazoline carbonyl alkaloid that is extracted from Euodia rutaecarpa
(Juss.) Benth. The chemical structure of evodiamine contains a pyridine ring and an epoxide
ring and an aromatic ring between these two rings. Evodiamine is a novel, non-irritating
TRPV1 receptor inhibitor that does not induce a pungent sensation in the body [64].

Cinnamaldehyde is a yellow, viscous liquid that is abundant in plants, such as cin-
namon, and is found naturally in essential oils, such as Sri Lankan cinnamon oil, cassia
oil, patchouli oil, hyacinth oil, and rose oil. The natural cinnamaldehyde in nature is
trans structure; the molecule is an acrolein connected to a phenyl group so that it can be
considered as an acrolein derivative. Cinnamaldehyde can activate the TRPA1 receptor
and lead to acrid stimulation in the body [65], resulting in physiological effects, such as
sterilization, antisepsis, anti-ulcer, antiviral, and anti-obesity activities, and regulation of
blood circulation and stasis. Interventional studies involving animals or humans, and other
studies that require ethical approval, must list the authority that provided approval and
the corresponding ethical approval code.

3. Sensory Basis and Transmission of Pungent Sensation
3.1. Perceptual Mechanisms Associated with Pungent Sensory Information

The trigeminal nerve located on the surface of the mouth and tongue detects stimuli
attributed to foreign substances (pain and noxious heat) and produces a relevant response
by integrating signals. The two main types of pungent afferent nerves are the Aδ and C
nerve fibers, and TRPV1 and TRPVA1 on the fibers are able to bind to pungent substances,
which, in turn, are activated and opened [66]. The signal transduction pathway between
TRP channels and nerves associated with pungency is shown in Figure 1.
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TRPV1, a member of the TRP ion channel family, has been studied extensively as
a receptor for most pungent ingredients. TRPV1 receptors are widely distributed in so-
matosensory neurons and peripheral nerve fibers in the oral and nasal cavities [67] and
are mainly expressed in injured neurons in the trigeminal ganglion (TG) and dorsal root
ganglion (DRG) [8,68]. TRPV1 can perceive and stably express pain and thermal stimuli and
performs an indispensable role in pungent sensations [69]. It is a non-selective functional
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cation channel [70]. Electron cryomicroscopy analysis showed that the TRPV1 channels
have a tetramer structure, and the subunits are arranged in a quadruple symmetric form
around the central ion permeation path [71]. Each TRPV1 is composed of six transmem-
brane proteins (S1-S6) arranged an α-helical structure, and the transmembrane core can be
divided into two clusters according to their structure. The transmembrane core is a central
ion-conducting pore formed by a tetramer of the S5-P-S6 structural domain that controls
the opening and closing of the channel. This channel switch is surrounded by the adjacent
S1-S4 voltage-sensing region, thus facilitating the improvement of the binding site of the
stimulating ligand to the channel [72]. The ligand-binding pocket of TRPV1 consists of
the transmembrane S6-S4 region, the S5-S6 region adjacent to the methyl group, and the
S4-S5 region that acts as a linker [73]. The vanillamide structure in capsaicin can selectively
activate the TRPV1 channel via chemical thermal stimulation, which causes neurological
searing pain and provides the basis for pungent sensation [74]. At the intracellular protein-
water interface, the lipophilic tail of capsaicin and the polar region exhibit high affinity for
TRPV1 channels. Hence, the binding of capsaicin to TRPV1 is dominated by hydrophobic
interactions. Similar to capsaicin, piperine can also act on “vanillic acid receptors” to
activate TRPV1 channels, increase the current in the channels at a certain concentration,
and promote the dephosphorylation of TRPV1. Activation of TRPV1 by AITC relies on
the interaction of AITC at the capsaicin binding site, and activation occurs accordingly
to mediate pungency perception by AITC. The activation of TRPV1 by pyocyanin may
not require covalently binding to its intracellular reactive cysteine, because the activation
of TRPV1 is not structurally specific, and the specific binding mode needs to be further
studied [75]. When pungent substances, such as capsaicin, bind to the transmembrane
domain of the TRPV1 channel, the TRPV1 channel is activated and opened, which in turn
leads to an influx of sodium or calcium ions, depolarization of nerve cells and generation
of action potentials [76]. Sensory afferent axons of the TRPV1 channel transmit chemical
messages to the central nervous system (CNS) when stimulator ligands bind to sites of
action in the transmembrane domain of the channel. Simultaneously, the opposite axons
of the channel reflect stimuli back to the peripheral nerve tissue, releasing glutamate and
peptides, mainly substance P and calcitonin gene-related peptide (CGRP) [77]. These
substances secreted by axonal reflexes can affect the sensitivity of nerve cells near or within
the taste buds, thereby regulating taste responses [78]. In addition, TRPV1 can also respond
to temperature stimuli above 73 ◦C, and the activation of TRPV1 is enhanced when both
pungency and temperature stimuli are present [79].

TRPA1 channel is also a member of the TRP ion channel family and is the only member
of the TRPA subfamily [74]. The TRPA1 channel, similar to the TRPV1 channel, is present
in nociceptive neurons in the TG and DRG. It can cooperate with the TRPV1 channel and
is co-expressed in somatosensory cells and other parts of the oral cavity, ensuring that
individuals respond accordingly to the stimuli they receive [80,81]. Paulsen et al. [82]
determined the structure of human TRPA1 using single-particle electron cryomicroscopy.
Structurally, TRPA1 has a similar subunit structure to TRPV1. Hence, the TRPA1 subunit
is also composed of six α-helical transmembrane proteins (S1-S6), with S1-S7 forming the
receptor binding domain and S5 and S6 forming the pore loop of the channel switch. TRPA1
also has a unique structure. At the center of the TRPA1 channel is an α-helix tetramer
with polar residues on its surface, which facilitates helix-solvent interactions and mediates
subunit assembly of certain TRP heterodimers. The TRPA1 channel is activated by allicin,
AITC, and other pungent sensory substances, with allicin being the most potent activator
of TRPA1. TRPA1 is at least ten times more sensitive to allicin than the TRPV1 channel [83].
TRPA1 channel activators can be classified into electrophilic and nonelectrophilic categories.
The former can activate TRPA1 by binding cysteine or lysine at the cytoplasmic amino
terminus as a covalent bond, whereas non-electrophilic activators can activate TRPA1 via
non-covalent interactions with the S5-S6 region of the TRPA1 channel and by binding
to the transmembrane structural domain [84,85]. For TRPA1, AITC can activate it by
covalently binding to cysteine residues within the channel [86]. Furthermore, the TRPA1
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response induced by sanshools may involve the interaction between covalent and non-
covalent binding sites. Gingerols and shogaols specifically upregulate intracellular calcium
concentrations in TRPV1 and TRPA1 channels [87] and activate the heterologous expression
of TRPV1 and TRPA1 in rat and human cells.

3.2. Transmission and Generation of Pungent Sensation

Primary neurons transmitting pungent information from the mouth and face are
located in the TG, whose ganglion cells are pseudo-unipolar neurons with specific receptors
sensitive to temperature and pain perception.

The central synapses of the ganglion cells constitute the sensory roots of the trigemi-
nal nerve and the fibers that transmit thermal sensations mainly terminate in the spinal
nucleus of the trigeminal nerve. The periganglion synapses constitute the three branches of
the trigeminal nerve, namely, the ophthalmic meridian, maxillary nerve, and mandibular
nerve, which transmit thermal sensory information to the mouth and face [88,89]. Some
thermosensitive neurons in the TG respond to thermal stimuli, and thermally stimulated
neurons enhance their sensitivity to temperature stimuli [90,91]. When pungent ingredi-
ents, such as capsaicin are present in the oral cavity, the number of neurons responding to
temperatures ranging from 32–42 ◦C increases, and the response is enhanced. However, the
neurons responding to noxious temperature stimuli above 43 ◦C decrease their response
to temperature stimuli threshold, which further increases the neurons that respond to
stimuli in the temperature range of 32–42 ◦C. The TG is located near the temporal bone on
both sides of the skull and is directly connected to the brain stem through the trigeminal
nerve. The spinal trigeminal nucleus subnucleus caudalis (Vc) of the spinal nucleus of
the trigeminal nerve has unmyelinated C fibers and thinly myelinated Aδ fibers that can
transmit temperature and pain sensations perform a role in the transmission of received
sensory information. The information of heat and pain perception can enter the secondary
neurons through the main trigeminal nucleus, then be transmitted to the thalamus. Finally,
the innervation in the ventral posteromedial nucleus (VPM), medial thalamic nucleus
(MTN), and parbrachial nucleus (PBN) reaches the primary somatosensory cortex (nasal
cavity, lips, mouth, tongue, etc.) [92,93]. Experiments have shown that when capsaicin is
applied to the tongue, injected into the upper lip, or intradermally injected into the cheeks
of rats, there is a significant activation effect of rat Vc neurons [94,95]. Neurons transmitting
pungent sensation information in the superficial layer of the Vc mainly project fibers to
the PBN and thalamus, with the majority projecting fibers to the PBN [93,96]. The PBN,
which receives Vc fiber projections, can act as a relay station for thermosensory informa-
tion and continues to send information to brain regions, including the central amygdala
nucleus (CeA), bed nucleus of stria terminalis (BNST), ventromedial hypothalamic nucleus
(VMH), periaqueductal gray (PAG), paraventricular hypothalamus (PVH), and preoptic
area (POA) [97–99]. The lateral paranasal nucleus (IPBN) can protect the body from noxious
stimuli and mediate the production of corresponding emotional and protective responses
in the body. The pathways of the IPBN to the CeA and BNST are involved in the production
of sensation-related emotions and memories [100–102]. The pathway from the IPBN to
the PAG and VMH can induce the strong labor effect of stimulation and drive avoidance
behavior caused by injurious thermal stimuli through downward inhibition [98]. The POA,
as an integrated site of thermoregulation in the brain, regulates the thermal effect of body
homeostasis, and the IPBN-POA pathway participates in post-stimulus thermoregulation
after receiving stimulation [103].

4. The Interaction between Pungent Sensation and Taste Sensation
4.1. The Interaction between Pungent Sensation and Taste Sensation in the Saliva

Saliva, an essential component of the mouth, lubricates and protects the oral mucosa
and promotes flavor perception. Saliva is produced cumulatively by several glands. In
order to meet the demands of many functions, the composition of saliva is complex. The
main components of saliva are 99.5% water, 0.3% protein, and 0.2% inorganic ions and trace
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elements [104]. The pungent stimuli in the trigeminal nerve elicited by substances, such as
capsaicin, stimulate paracellular pathways in the oral salivary glands and increases saliva
production [105]. The effect of salivary secretion in response to capsaicin stimulation is
significantly stronger than that of the five basic taste sensations, with stimulation lasting for
up to six minutes [106]. In turn, a corresponding increase is noted in the salivary flow rate,
buffering capacity, and corresponding changes in ionic composition, which influence the
perception of taste compounds via the external environment affecting taste receptors [107].
A recent study by Gardner [108] showed that capsaicin increases the number of proteins
in saliva, specifically amylase and mucin 10 (MUC10). These proteins can interact with or
metabolize taste compounds, thereby affecting the release and perception of taste.

The increase in the salivary flow rate caused by pungent stimuli is one of the most
important factors influencing on taste perception. Saliva flow rate is negatively correlated
with the perception of salty and sour tastes [109,110]. In addition, an increase in enzymes
and proteins in the saliva performs a role in the perception of taste. For example, the protein
composition of saliva affects the sensitivity to salty taste perception [111]. The higher the
salivary amylase activity, the weaker the sensitivity to sweet taste perception in men [99],
and the less favorable the perception of salty taste in starch-thickened foods [112]. The
buffering capacity of saliva, zinc ion content, and glutamate concentration also influences
the perception of sour, bitter, and umami tastes, respectively [113–115].

Thus, the perception of pungent stimuli is highly individual. The flow rate, the compo-
sition of saliva and the perceptual threshold of various taste substances all have important
effects. Additionally, differences in the external environment and in the physiological state
and age of the individual are largely reflected in the perception as well.

4.2. Interaction between Pungent Sensation and Various Tastes
4.2.1. Interaction between Pungent Sensation and Salty Sensation

Pungent stimuli inevitably affect basic taste perception. The frequency of pungent
food intake affects the perception of taste [116]. The perception of saltiness is mediated
by taste receptor cells that form fungiform papillae or foliaceous papillae of taste buds
on the anterior-lateral side of the tongue. With the presence of Na+ and Cl- in the oral
cavity, saltiness is perceived. The mammalian perception of salty taste is mediated via two
main types of pathways, amiloride-sensitive and amiloride-insensitive, which are classified
according to the sensitivity of the receptor to the inhibitor amiloride. The former is an
amiloride-sensitive epithelial sodium channel (ENaC) located in apical cellular TRCs in
the front of the tongue [117]. The latter is an amiloride-insensitive salty taste receptor
that performs a major role in the perception of salty taste in humans [118,119]. TRPV1t
can mediate the amiloride insensitivity pathway, which in turn acts on salty taste percep-
tion processes. The channel is non-specific, responding to cations, such as Na+, K+, and
NH4

+ [120]. TRPV1t, a splice variant of the TRPV1 receptor, is similar to TRPV1 and can
be activated in response to capsaicin and temperature [121]. These same activators also
suggest that salty taste and pungency perceptions are closely related. Low concentrations
of capsaicin promoted the perception of saltiness in rats, whereas high concentrations
inhibited the perception of saltiness. The combined effect of capsaicin and piperonyl oleo-
resin had a significant enhancement of salty taste perception in a NaCl model, effectively
reducing NaCl concentrations in medium to high NaCl solutions under the same salinity
conditions [64]. When the pungent ingredients are applied to TRP channels in the mouth
and tongue, amiloride-insensitive nerve fibers in the chorda tympani will change their
response to NaCl in a dose-dependent manner. Due to the consistency of the receptors, low
concentrations of substances, such as capsaicin, can activate the receptors instead of cations,
thereby reducing the threshold of salty taste perception up to a certain degree. Once the
concentration of a pungent substance, such as capsaicin, is too high, the heat and pain
caused by the pungency can mask the perception of the salty taste. In addition to ENaC
and TRPV1, mTMC4 is a novel voltage-dependent chloride channel associated with the
salty taste produced attributed to high salt concentrations. mTMC4-mediated Cl- currents
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accelerate the cycling of action potentials. This is a novel finding depicting Cl- involvement
in salt taste perception [122]. Whether pungent stimuli affect the perception of salty taste
through this channel has not yet been elucidated. However, if the TMC4 receptor can be
activated by pungent ingredients, the salty taste perception channel with a high salt concen-
tration can be activated using a low salt concentration, which may provide a new theoretical
support for salt reduction and salinity enhancement in the food industry. CGRP released by
TG also acts on salty taste receptor cells expressed in the amiloride insensitive pathway and
affects information transmission associated with saltiness [123,124]. At the central nervous
system level, the central gustatory system and mesolimbic structure are closely linked with
the presentation of salty taste, and they perform important roles in taste signal processing
and mediating hedonic response to taste [125]. The secondary taste cortex, the orbitofrontal
cortex (OFC), is involved in the subjective pleasure of taste [126]. The insular cortex and
the OFC encode the intensity and pleasure of salty taste information, respectively [127].
The presence of pungent ingredients can modulate brain metabolic activity associated with
the salty taste. Low concentrations of capsaicin significantly increase the activity of the
insula and OFC when stimulated by salty information at high salt concentrations, and
the brain regions activated by pungent and salty information overlapped. This suggests
that pungent ingredients can enhance the intensity of salty taste by activating areas of the
brain associated with the pleasurable experience of salty substances and increasing the
excitability of the OFC nerves [128].

However, due to the diversity of salty taste perception pathways and salty stimuli in
humans, it is difficult for the current study to clearly explain the mechanism of salty taste
perception in humans. In addition, the neurotransmission process among individuals is
highly likely to deviate from the theoretical process due to physiological, psychological,
and life environment changes. Thus, the interaction of pungent and saltness perception
still needs to be studied more thoroughly.

4.2.2. Interaction between Pungent Sensation and Umami, Sweet, and Bitter Sensation

The receptors for umami, sweet, and bitter taste sensations are all located in type
II cells. Sweet and umami senses are expressed by taste receptor type 1 (T1R) GPCRs
T1R1/T1R2 and T1R1/T1R3, respectively, and umami taste perception can also be trans-
duced through metabolic glutamate receptors. Similar to T1R1/T1R3, metabolic glutamate
receptor also is located on type II taste cells (receptor taste cells) of the taste buds and
selectively respond to umami substances, such as sodium glutamate, aspartic acid, and
umami peptides [129–131]. However, the bitter taste is expressed by taste receptor type
2 (T2R) GPCRs. Following receptor activation, the signal transduction of the three tastes
shares an intracellular mechanism [132]. Therefore, the three tastes are very similar in the
process of taste interactions. Oral administration of capsaicin and its analogues reduces the
perception of quinine (bitter taste) and high concentrations sucrose (sweet taste) [133]. In
addition, sweet and bitter tastes mitigate oral burning caused by capsaicin, piperine, and
other pungent substances [134]. Bitter substances can reduce the irritation associated with
pungent ingredients on the tongue and mouth and have the least effect on the perception
of capsaicin compared to substances associated with other tastes. Higher concentrations of
capsaicin reduce the perception of bitterness to a greater extent [135]. Umami, which has a
weaker interaction than with sweet and bitter, is largely unaffected by heat, capsaicin, or
both. These findings suggest the presence of interaction between pungency perception and
taste receptor cells in type II cells.

In response to the stimulation of taste information, taste receptor cells release ATP via
membrane channels. ATP acts as a transmitter for afferent nerves to stimulate information
transmission [136]. Stimulation of the oral cavity and peripheral nerves by pungent ingre-
dients increases the temperature of peripheral nerve sensors, which in turn increases the
current in the TRP-melastatin 5 (TRPM5) pathway. This is responsible for the transduction
of bitter, umami, and sweet tastes [137]. Thus, the transduction of GPCR-related tastes
(sweet, bitter, and umami) increases the sensitivity to temperature [138]. However, presy-
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naptic taste cells also increase 5-hydroxytryptamine (5-HT) excitation [139]. An increase in
5-HT levels causes receptor cells to receive negative paracrine feedback, which diminishes
the availability of calcium ions to mediate taste production in taste cells and reduces ATP
secretion. Therefore, 5-HT can mediate inhibitory feedback in receptor (II) cells [140]. Sub-
stance P produced by pungent ingredients stimulated nerves and performs an important
role in umami conduction [141]. Substance P activates the tachyhormone NK1 receptors
on umami-sensitive cells, thereby enhancing the umami taste response and compensating
for the effects of 5-HT. Under the dual effects of the 5-HT and substance P, the effect of
the pungent ingredients on umami expression is not an apparent. In the perception of
sweet taste, in addition to natural sweet substances, such as sucrose, artificial sweeteners
(AS) are becoming increasingly important in the food industry as dietary supplements.
Low concentrations of AS can activate the T1R2+T2R3 sweet taste receptors [37], and with
an increase in AS concentration, the bitter taste perception receptors are activated [142].
Similar to capsaicin, AS reduces the activation temperature of TRPV1 and increases the
sensitivity of TRPV1 receptors to heat and acids. In addition, sweeteners such as saccharin
or aspartame can induce calcium transients in the DRG. Capsaicin-sensitive neurons can be
activated by the sweeteners in response [143].

Although the receptors for the perception of sweet, bitter and umami taste are relatively
well defined, the sites where the taste substances bind to the receptors are still uncertain
in practical studies. It is also unknown whether the simultaneous action of pungent
stimuli and taste substances will influence the structural domain conformation of the
receptors. This also makes the transmembrane state perception studies of the same type of
contradictory in their results.

4.2.3. Interaction between Pungent Sensation and Sour Sensation

The perception of sour taste can prevent the human body from consuming too much
dietary acid and maintain the acid-base balance of the system [144] and can also act as a
warning of food deterioration. Sour taste receptors in mammals include internal proton-and
hydrogen ion-gated channels. Acid stimulation produces internal currents [145], and the
internal proton channel refers to the internal proton current channel via which protons
pass through the oral space, such as the ENaC channel [146]. Hydrogen ion-gated channels
include the apical potassium channel of the basolateral membrane, nonspecific MDEG1
channel of the ENaC/Deg family, and hyperpolarization-activated circular nucleotide-
gated cation channel (HCN) [147]. By studying the cross-action between pungent and
sour stimuli, it can be concluded that taste buds treated with capsaicin have a strong
desensitization effect on the perception of citric acid stimuli. Desensitization can eliminate
sour stimuli and reduce the perception of the sour taste, particularly when the concentration
of capsaicin is high. Moreover, the perception of pungent stimuli and the perception of
sour taste in the oral are inhibited by each other [148]. The TRP channel, which is one of
the acid-sensing receptors, has an influx current stimulated by acid stimulation [145]. Sour
taste stimulation of the mouth caused by protons and protonates can lead to intracellular
acidification in all taste bud cells [149,150]. The penetration of hydrogen ions between the
inside and outside of taste bud cells makes the intracellular pH change with the extracellular
environment, thus contributing to the conduction of sour taste. The overlap between the
perceptual channels of pungent and sour stimuli makes the interaction between the two
relatively close, and some responses cannot be easily delineated.

4.3. Interaction between Pungent Sensation and Taste Sensation in the Peripheral and
Central Nerves

In the periphery, pungent ingredients can stimulate different taste receptors in the
gustatory cells. CGRP, one of the main releasers after the activation of the TRPV1 and TRPA1
channels, is essentially a vasodilator neuropeptide consisting of 37 amino acids [151]. CGRP
can convey chemical, temperature, and pain stimuli in sensitive mucous membranes of the
oral and nasal cavities and performs a role as an efferent transmitter of peripheral taste
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organs [76,152]. A large number of fine nerve fibers strongly immunoreactive to CGRP have
been found in taste buds or connective tissue membranes, which enable wide distribution
of the intense electron-dense precipitationin the cytoplasm of neurites, stimulated the
production of phospholipase C-inositol triphosphate-mediated transient changes in calcium
in type II and III taste. The release of CGRP can also increase the serotonin transmitter
necessary for taste transmission [153], which indirectly inhibits the secretion of the taste
receptor excitatory transmitter ATP [154]. In addition, spiciness affects the amiloride-
insensitive nerve fibers, thereby affecting the response to saltiness [155]. TRPV1 channels
can also transmit sour taste information by being activated by sour substances [156].

Under conditions involving innervation by the cord and facial nerves, taste informa-
tion can be transmitted to the central nervous system’s transit station, the nucleus tractus
solitarius (NTS). The NTS can also receive information from the somatosensory input of the
TG nervous system. After integration, it is transmitted to forebrain structures via afferent
nerve fibers. Thus, the existence of fiber connections between the TG, NTS, and forebrain
provides the morphological basis for the interaction between pungent and taste sensations
in the central nervous system [157,158]. The CeA, lateral hypothalamus, and gustatory
cortex (GC) in the forebrain region can generate electrical stimuli to regulate NTS neurons,
thereby activating neurons in IPBN that respond to different taste sensations [159]. IPBN
can also project to CeA via CGRP-containing neurons and experience aversive taste stimuli
and nociceptive pungent stimuli [160,161]. This indicates that the aversive taste information
encoded in IPBN, such as bitter, sour, and salty sensations, has regional overlap with the
pungent sensation, and that the differences in encoding may be attributed to differences in
temporal and spatial patterns (Figure 2).
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In summary, pungent ingredients in food can affect consumers both physically and
emotionally. Additionally, food companies can add flavor dimensions and layers to their
products based on taste, smell, and texture through the application of pungency ingredients.
In addition, studies have shown that people who regularly consume pungent foods are
more motivated in their pursuit of diversity [162]. The curiosity seeking is also one of
the potential markets that companies can tap into. For the most important aspect of
taste, those who consume pungent ingredients infrequently perceive that the stimulating
nature of pungent ingredients affects the palatability of food, whereas those who often eat
pungent foods believe that the presence of pungent stimuli can enhance the taste. This is
an important way that food companies can use to improve their products. For example,
pungent stimulation can improve the perception of salty and sour taste in the mouth to a
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certain extent. This is a good opportunity for high-salt food companies to adapt themselves
to the trend of low-salt healthy diet.

5. Conclusions and Future Perspectives

This review systematically summarized and discussed the interaction between the
perception of pungency and basic tastes. It includes common natural pungency ingredients,
the perception and transmission of pungency, and the influence and possible mechanism
of the perception of pungent and basic tastes. Pungency stimuli are perceived through
TRPV1 and TRPA1 channels. Stimuli generally contain vanillyl alcohol, amides and other
similar structures that activate channel proteins and cause cationic current effects. The
neurotransmission induced by channel activation secretes substance P and CGPR, which
modulate the sensitivity of nerves near the taste buds and thus affect taste perception at
the neural level. In addition, pungency stimuli affect the physiological state of saliva and
various taste receptors in the oral cavity. Pungency substances enhance saltiness perception
at low concentrations and have a reciprocal inhibitory effect with sweet and bitter taste.
The ATP produced by TRCs, and 5-HT produced by synaptic cells have feedback regulation
on umami perception together with substance P, making the effect of pungent stimuli on
umami perception insignificant. Due to the overlap of pungency and sour taste perception
channels, there is mutual inhibition between them, and they can be desensitized quickly.
It is worth mentioning that since pungency perception involves the action of multiple
neurons, there is also a correlation between its intake and the psycho-emotional state of
the person consuming it. This may add reverie to the development of food quality in
multiple dimensions.

At present, the study of the interactions between pungency taste sensations and their
mechanisms still needs to be explored in depth, and the existing research is not sufficiently
systematic, which needs to be further studied at the organism, cellular, and genetic levels.
The diversity of pungent substances and the structural complexity of TRPs and taste
receptors also render the study of the mechanism of their interaction difficult. In terms of
practical application, the use of pungent components affects the taste perception threshold,
changing the sensitivity of taste bud cells to various tastes for enhancing, masking, or
inhibiting other tastes. For example, if pungent ingredients are used to enhance salty
taste perception and reduce the salt content in food industry products, the food industry
will more cater to the concept of healthy eating. This study also provides new ideas
for the development of palatable products in the food industry. However, the dose and
characteristics of these pungent substances remain unclear, and their safety needs to be
considered in clinical practice.
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