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Abstract: Background: Encapsulation is a valuable method used to protect active substances and
enhance their physico-chemical properties. It can also be used as protection from unpleasant scents
and flavors or adverse environmental conditions. Methods: In this comprehensive review, we
highlight the methods commonly utilized in the food and pharmaceutical industries, along with
recent applications of these methods. Results: Through an analysis of numerous articles published in
the last decade, we summarize the key methods and physico-chemical properties that are frequently
considered with encapsulation techniques. Conclusion: Encapsulation has demonstrated effectiveness
and versatility in multiple industries, such as food, nutraceutical, and pharmaceuticals. Moreover, the
selection of appropriate encapsulation methods is critical for the effective encapsulation of specific
active compounds. Therefore, constant efforts are being made to develop novel encapsulation
methods and coating materials for better encapsulation efficiency and to improve properties for
specific use.
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1. Introduction

Different substances have great health benefits or function as a drug, but they cannot
be used directly or stored for a long period. This is due to their low solubility, low
bio-availability, tendency to oxidize, or their strong odor or flavor. Encapsulation is a
method that has been known for more than 60 years, but it still holds great interest among
researchers [1,2]. Typically, a substance is enclosed by a coating material which forms
a barrier to protect the substance from the environment and chemical interaction [3–6].
Encapsulated substances can be also called core, fill, or matrix substances. The coating
material is called a shell or wall material, as can be seen in Figure 1. Encapsulation can be
used for improving the mentioned properties of different substances as well as protecting
the core substance from, for example, light, moisture, and changes in pH [2,7–9]. Apart
from protecting of core, it can also be used in the prolongation of release. This can be
helpful with gradual and controlled release of drugs [10,11].

Encapsulation can be achieved by many methods, some of which are described in this
review. These methods can be divided into three main types: chemical, physico-chemical,
and physico-mechanical [7,12]. This review does not mention every encapsulation approach
since it is a very broad topic, but rather focuses on methods mostly used in pharmaceutical
and food industries. The global food encapsulation market has undergone continuous
growth and is expected to reach a value of USD 17 billion by 2027 [13].

With regard to encapsulation of pharmacologically active substances, it is important to
note that this technology can have broader applications beyond just the pharmaceutical and
food industries. Encapsulation can also be utilized in various other industries; for example,

Foods 2023, 12, 2189. https://doi.org/10.3390/foods12112189 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods12112189
https://doi.org/10.3390/foods12112189
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-8340-6246
https://orcid.org/0000-0002-9917-7310
https://doi.org/10.3390/foods12112189
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods12112189?type=check_update&version=1


Foods 2023, 12, 2189 2 of 17

it can be used in nutraceuticals or in the construction industry as a self-healing material
such as concrete [14,15]. Specifically, in concrete, types of bacteria can be encapsulated for
a self-healing effect [16]. The principle of self-healing materials is applied when the treated
material is mechanically damaged; the encapsulate is released after a rupture of capsules
and the core material is used to repair the damaged part [17–19]. In the same industry, the
encapsulation is also used for anticorrosive coating. An example of encapsulated food is
linseed oil [20]. The anticorrosive coating can have three mechanisms of protection. Firstly,
it is a basic barrier on top of the material; secondly, the coating material can carry corrosion
inhibitors; lastly, the coating can provide cathodic protection [21]. Self-healing materials
and anticorrosion coatings of materials aim to prolong material use and prevent and avoid
structural damage that may occur [22]. For example, marine infrastructure such as bridges
and tunnels are in hostile environments and are prone to micro-cracks [23].
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Figure 1. Substance encapsulated into a coating material.

Quantum dots (QDs) are closely examined within chemistry. QDs are between 2 and
10 nm in diameter and have a semiconductor core with a shell, together with ligands [24].
Quantum dots can be also used together with encapsulation methods to achieve better
properties, which are already unique. Quantum dots are widely used in the biomedical
industry [24,25], for example, in biomolecular tracking, tumor imaging, and photodynamic
therapy [24]. Encapsulated QDs can be used for the detection of heavy metals and other
possible harmful substances [26]. Table 1 provides specific examples of the encapsulation
methods described in this review, along with several examples from other industries that
demonstrate the diversity of encapsulation.

Table 1. Different methods of encapsulation.

Methodology Active
Substance Coating Vehicle

Dimension
Field of

Application Enhanced Property References

Emulsion
electro-spraying

assisted by
pressurized gas

Algae oil Wheat gluten
extract 3.34 ± 1.77 µm Nutraceutical

industry

Oxidation,
bioavailability,

organoleptic properties,
controlled

release

[27]

Extrusion

Polyphenols of
Piper Betel leaves Alginate -

Nutraceutical
industry, food

supplementation
industry

Stability,
oxidation, taste [28]

Polyphenols from
Mesona chinensis

Benth extract
Alginate 1516.67 ± 40.96 µm Traditional

medicine
Bioaccessibility,
bioavailability [29]

Phage SL01 Alginate/k-
carrageenan

2.110 ± 0.291–2.982
± 0.477 mm

Pharmaceutical
industry

Bioavailability, better
survivability (pH,

enzymes)
[30]
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Table 1. Cont.

Methodology Active
Substance Coating Vehicle

Dimension
Field of

Application Enhanced Property References

Nanoemulsion

Thyme oil Chitosan 50.18 ± 2.32 nm Bioinsecticides,
larvicides

Control
release [31]

Vitexin Medium-chain
triglyceride 108–166 nm Food application Water solubility,

bioavailability [32]

Emulsion Curcumin

Sunflower oil,
carboxy-

methylcellu-lose,
lecithin

~20 mm Food delivery
Bioavailability,

photochemical stability,
less degradation

[33]

Spray drying

Anthocyanins Maltodextrin - Nutraceutical
industry, colorant

Shelf life,
stability [34]

Saccharomyces
boulardii

Rice protein,
maltodextrin -

Functional foods
and beverages,
supplements,
animal feed

Effectiveness, prolongue
storage, less degradation [35]

Freeze drying

Blackthorn (Prunus
spinosa L.) extract Maltodextrin -

Functional foods,
supplements,

pharmaceutical

Shelf-life,
bioavailability,

physico-chemical and
biological

degradation

[36]

Propolis Whey protein
isolate

99.76 ±
21.56–242.22 ±

81.78 nm

Alternative
medicine, food,
cosmetic and

pharmaceutical
industries

Odor, taste,
bioavailability [37,38]

Lipid
encapsulation Gamma-oryzanol

Stearic acid,
sunflower oil/rice

bran phospholipids,
Tween 80

143 ± 3.46 nm Nutraceutical
industry

Water
solubility, size [39]

Internal phase
separation N-acetylcysteine Ethylcellulose 100–1000 µm Nutritional

supplement
Bitter

aftertaste,
astringency, sulfur smell

[40]

Self-assembly of
biopolymers Anthocyanins Whey protein

isolate, pectin ~ 200 nm Nutraceutical
industry, colorant

Molecular
instability [41]

Vacuum facilitated
infusion Curcumin

Geotrichum
candidum

arthrospores
-

Food industry,
pharmaceutical

industry

Water solubility,
chemical stability,

Bioavailability
[42]

Multiple step
preparation

including modified
Störber sol-gel

process

Mn3O4

Hollow carbon
sphere coated by
graphene layer

- Battery industry

Enhancing performance
of lithium-ion batteries,

specific
capacity

[43]

Synthesis of QD,
growth of iron shell,

and oxidation to
form iron oxide

shell

Quantum dots Iron oxide ~20 nm
Bifunctional

markers, virus
detection

Optical
properties [44]

Pelletization
process,
coating

processes

Calcium
acetate/sodium

carbonate (or
composite of two),

superabsorbent
polymers,

poly(ethylene
glycol)

Epoxy resin, fine
sand - Self-healing

concrete

Waterproof and alkali
resistance,

mineralization time,
durability

[14]

Sol-gel method SiO2 ZnO -
Cosmetics,
renewable

energy,
UV-protecting

Photoactivity properties [45]

A retrospective analysis was conducted in this review to evaluate advancements in en-
capsulation techniques used in the food industry over the last decade. The study identified
several methods utilized during this period, including liposomal, lipid, simple and double
oil/water emulsions, and extrusion. These techniques have shown significant potential in
enhancing food quality and safety by protecting and delivering active ingredients while
minimizing the degradation of nutritional and sensory properties.
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2. Physical-Chemical Approaches in Pharmaceutical Industry
2.1. Encapsulation of Bacteriophages

Encapsulation can be used for the treatment of bacterial infections [46]. Due to the
still-greater risk of bacteria obtaining resistance to antibiotics, the encapsulation of bacterio-
phages can be one of the main options to fight bacterial infection without antibiotics [46].
Bacteriophages are viruses that can infect and kill bacteria with high specificity and do
not threaten healthy human microflora [46–49]. Without encapsulation, the bacteriophages
have lower survivability in gastro-intestinal conditions; specifically, they can be affected by
gastric enzymes, bile, and the acidic environment when used orally [46,48,50].

2.1.1. Emulsification

This method is based on dispersing one liquid with the active compound into a
second liquid that is not miscible, and creating small droplets [51–55]. Emulsions tend
to be thermodynamically unstable and surfactants as emulsifiers need to be added to
decrease surface tension [56–58]. Solid particles, such as nanoparticles, can also function as
a stabilizer and emulsions stabilized in such a way are called Pickering emulsions [56,58,59].

The method mentioned by Anna Choinska-Pulit et al. includes a mixture of microor-
ganism cells and polymer, which is added to vegetable oil (canola, sunflower, and corn oil,
for example) [46]. Mixtures must be homogenous until a water-in-oil emulsion is formed,
and stirring of the emulsion is a key step to obtain droplets having the right size and shape.
Emulsification creates droplets called capsules, whereas extrusion droplets are called beads.
The capsule core is liquid, and the bead core is porous. Capsules are at least 100 times
smaller than beads [60].

Emulsifiers, for example, guar gum or lecithin, must be included for stabilization.
Settling is used to recover hardened capsules. Researchers in the publication from Dini
et al. used this method to encapsulate bacteriophages to reduce enterohemorrhagic E.
coli in the bovine gastric environment; methoxylated pectin was used as the material for
encapsulation and was emulsified by mixing with Tween 20 (Polyoxyethylene sorbitan
monolaurate) [61]. Homogenization was performed by mixing and oleic acid was added to
reach a final concentration of 10 vol%. Additionally, coating was carried out with 0.2 wt%
of high-methoxylated pectin or guar gum.

Double water-in-oil-in-water (W/O/W) emulsion was conducted by Kim, S. et al. [62].
PLGA microspheres were prepared using a bacteriophage solution of pAh-6C in phosphate
buffered saline (PBS), mixed with PLGA, and dissolved in dichloromethane to form a
W/O emulsion. To form a double emulsion, the primary W/O was homogenized together
with polyvinyl alcohol (PVA). A second set of microspheres comprised PLGA/alginate
composite. This composite was prepared by preparing W/O/W as before. Calcium chloride
solution was added and homogenized to crosslink the alginate. To the emulsion was added
deionized water and, after stirring and evaporating, microspheres were obtained [62].

2.1.2. Extrusion

The principle of this method is the forceful flow of material through a slit [8]. Extru-
sion is a suitable method for the preparation of capsules with hydrocolloids by adding
microorganisms. The cell suspension is extruded through a syringe needle in the form of
droplets into a bath or a hardening solution, which is mostly calcium chloride [46,63–65].

The group of Zhenxing Tang et al. used extrusion as the method to encapsulate Felix
O1 bacteriophages into alginate-whey protein microspheres [66]. In this work, researchers
focused on the growing problem of bacterial contamination in food poisoning. Worldwide
treatment of bacterial infections in food animals is carried out using antibiotics, which
causes the overuse of these drugs. Bacteriophage treatment can be a good substitute. Encap-
sulation is needed because gastric acidity decreases the viability of bacteriophages. Within
minutes, the phages were found to be inactive in the simulated gastric fluid. The viability
of Felix O1 increased to 2 h of incubation in alginate-whey protein microcapsules [66].
Encapsulation efficiency describes how much of the core material is successfully entrapped
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into the capsules. The encapsulation efficiency of bacteriophages is calculated as the quan-
tity released from capsules divided by the initial quantity in the capsules multiplied by
100% [67]:

EE =

(
ms

mt

)
·100% (1)

where mi is the initial mass and ms is the mass of the compound left in solution. Here
the encapsulation efficiency reached 99% for mixtures of alginate-whey proteins from 93%
of pure alginate microspheres. The extrusion method is simple and cheap but has a big
disadvantage for use at a mass-production scale [46].

In the publication by Savic et al., researchers encapsulated extracted antioxidants
from orange peel into alginate-chitosan microparticles [68]. The extrusion method with
coaxial airflow was used for encapsulation. To the solution of alginate 1.5% (v/v) was
added ethanol extract of orange peels. From the homogeneous solution, which was in a
plastic syringe, drops were torn using coaxial airflow. Droplets fell into the crosslinking
solution while stirring and solidifying. The crosslinking solution was prepared using
calcium chloride 2% (w/v) and chitosan 0.5% (w/v). The chitosan was prepared using 0.5%
(v/v) acetic acid. The encapsulation efficiency was 89.2% [68].

2.2. Probiotic Encapsulation by Chitosan-Gel Particles

Probiotics are helpful bacteria for maintaining a healthy bowel environment. A prob-
lem in administering probiotics is that they are prone to degradation because of humidity
and low pH in the human intestines. The group of Albadran H. et al. devised a novel
method to encapsulate probiotics in chitosan-coated agar-gelatin particles for releasing
probiotics into the large intestine [69]. This method should be scalable and thus more suit-
able than commonly used extrusion methods. Firstly, they prepared agar-gelatin particles
loaded with bacteria. This was undertaken by separately dissolving agar and gelatin in
deionized water for 2 h at 70–80 ◦C. Both substances were mixed together at a 1:1 ratio
and autoclaved. A small volume of cell suspension was mixed with agar-gelatin and
poured into a petri dish, left at room temperature to solidify, and cut into particles having a
size of approximately 6 mm. Secondly, particles were coated with chitosan. Agar-gelatin
particles were added into the chitosan solution and stirred. Particles were then collected by
filtration and washed with phosphate buffered saline (PBS). As a result, particles prepared
by the method described by Albadran H. et al. showed great potential for delivery of
probiotics into the large intestine [69]. Coated particles showed the ability to withstand
the environment of simulated gastric fluid (SGF) for 2 h of incubation and 3 h in simulated
intestinal fluid (SIF). X-ray diffraction analysis showed a change in the physico-chemical
properties of agar. This change caused by thermal treatment resulted in a strong and tight
polymer network.

2.3. Nanoemulsion

The definition of a nanoemulsion system can vary as some sources describe that
the droplet size is smaller than 500 nm whereas others claim the droplet size is up to
1000 nm [70–74]. The system is made of two immiscible liquids, as stated previously,
which are stabilized using surfactant [75–78]. Nanoemulsions, as opposed to macro and
microemulsions, have improved physico-chemical stability [79]. The immiscible liquids
used most are water and oil [74,80]. There are two main types of nanoemulsion. The
first type can be formed as oil-in-water (O/W); the second type is water-in-oil (W/O),
depending on the dispersed liquid. Apart from these, they are also water-in-oil-in-water
(W/O/W), and vice versa, and bi-continuous types [55,72,81,82]. Two main approaches
are used for preparation, the so-called high and low-energy methods [83,84].

High-energy methods include high-pressure homogenization, microfluidization, and
ultrasonication [74,85,86]. With these methods, mechanical energy is used to break large
droplets. The main disadvantage of high-energy methods is cost, due to energy demand.



Foods 2023, 12, 2189 6 of 17

Conversely, the advantages are good control of droplet size and possibility of choosing the
formulation composition [85,87].

Low-energy methods include the phase inversion temperature and the emulsion
inversion point [74,85]. Their principle uses internal chemical energy and formation of
droplets with a change in, for example, temperature or chemical composition [86–88].

Particles are spheres with amorphous, lipophilic, and negatively charged surfaces [73,89].
A significant number of newly investigated drugs have problems with water solubility and
thus their bioavailability is very low [78]. In the study by Dey et al. [90]., it was found that
nanoemulsion enhances the absorption of lipids in the small intestine of rats more than
conventional emulsion.

The group of Oh et al. [91]. developed a lecithin nano-liposol system loaded with
astaxanthin (ASTA). Like other antioxidants, ASTA is susceptible to degradation and thus
needs to be encapsulated. The method used for preparation was emulsion evaporation.
Chloroform with different concentrations of ASTA was added to lecithin and mixed for 2 h.
The final mixture was then added to deionized water and homogenized. Chloroform was
removed by drying. The last steps were carried out using ultrasonication and purification
by centrifuge. The best results were achieved with a loading of 15 wt% as it had a similar
hydrodynamic diameter to that prior of loading. The diameter was around 140 nm ± 4 nm.
The encapsulation efficiency for 15 wt% was 98.8% [91].

The publication by Tayeb and Sainsbury describes different uses of nanoemulsion in
the pharmaceutical industry [78]. For the delivery of the drug, different ways of application
can be used, i.e., nasal, ocular, oral, and parenteral [78,92]. The application of drugs through
the skin can be challenging because of the protectiveness of skin layers. Nanoemulsion
encapsulation can improve both bioavailability and penetration chance because of the
nano-dimensions and low surface tension [78]. Quercetin as a well-known antioxidant
with various health benefits, which can be encapsulated. It is necessary to do so because
of its poor water solubility, skin absorption, and penetration ability, which are improved
by nanoemulsion encapsulation [78,93,94]. Oral drug intake is specific because of the
acidic environment and enzymes [95,96]. Encapsulation can decrease the impact of the
environment and help with absorption of active substances [97].

3. Physical-Chemical Approaches in Food Industry
3.1. Spray Drying

The spray-drying process is a common encapsulation method used for the food and
pharmaceutical industries due to its cost and ability for use in industrial conditions, for
which it has been used since the 1950s [46,98–101]. The principle of the spray-drying
method is the induction of particle agglomeration due to elevated temperatures. Partial
melting of the particles and increasing their kinetic energy results in multiple particle
collisions [102]. One of the examples of spray-drying encapsulation in the food industry
is the encapsulation of oils. This is carried out to protect the oil from oxidization, light,
evaporation, and many more effects. One of the side benefits of encapsulating oils or
vitamins and antioxidants for supplementation is covering their possible undesirable smell
and taste, especially with fish oil [98,103–105].

This method is based on three steps. The first is to make small droplets from an
emulsion of the core substance with a coating material. This step is called atomization. By
producing small droplets, the surface area increases, resulting in faster and easier solvent
evaporation [99,106–108].

Secondly, this emulsion is then applied and mixed in hot air (100–300 ◦C) for evapora-
tion of water or another solvent. Liquid is sprayed using various types of nozzles, such
as a centrifugal or rotary wheel atomizer, a pressure nozzle, or a two-fluid or pneumatic
nozzle [99,100,109].

The last step in spray drying is the separation of dried powder [98,99]. This step is
mostly executed by cyclones, which use centrifugal forces to collect particles [100].
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Spray drying was used, for example, in encapsulation of flaxseed oil with up to 84%
encapsulation efficiency in a study of Fioramonti et al. [110]. In this work, double-layer
O/W emulsion was prepared using whey protein concentrate and sodium alginate. The
study of Santana Aguiar et al. describes the production of microcapsules using a spray-
drying process [111]. Microcapsules loaded with orange essential oil using gelatin and
lignin as biopolymers were prepared under optimized conditions. The most important
parameters for the atomization efficiency were the inlet air temperature (150 ◦C), low
flow transfer rate (0.15 L/h) of the colloidal suspension, and a higher drying air flow rate
(536 L/h). The average particle size was less than 4 µm.

One of the main limitations of spray drying is reduced yield. The reasons for this
are associated with the accumulation of powder on the walls during drying. Losing
powder through the exhaust air is another reason [7]. Another limitation is due to the
high temperature used, and therefore decreased viability can occur for some active sub-
stances [46,103,112–114]. The encapsulation efficiency, among other things, is affected
by the wall material and the material’s physico-chemical properties, such as solubility,
viscosity, and thermal stability [104,115].

3.2. Freeze Drying

Freeze drying, or lyophilization, is a technique used to retrieve moisture from frozen
samples by using sublimation. Sublimation is the phase change when a solid (ice) directly
converts to a vapor phase. The process requires heat energy and low pressures for the frozen
product to occur. It consists of three main steps: freezing, primary drying, and secondary
drying [7,116–118]. The first step involves freezing moisture, i.e., crystallization [117]. The
product in a vial or a flask is frozen at atmospheric pressure. The result of this phase is the
formation of ice crystals. In the second step, the frozen product is placed under a vacuum
and the sublimation process takes the main part in primary drying. Lastly, secondary
drying is conducted using desorption to remove moisture that was not frozen. Freeze
drying is mostly used for food samples and samples with bioactive compounds that are
prone to degrading in higher temperatures [7,119–121].

The downside of freeze drying is its high operating cost together with a longer process.
The freeze-drying process can also cause cell injury, but this can be prevented by using
cryoprotectants [7,119,122]. Generally, disaccharides, polyalcohols, amino acids, or pro-
teins function as cryoprotectants [122,123]. To ensure the cryoprotection of the liposomes’
structure, sugar macromolecules (sucrose, lactose, trehalose) are typically included in the
liposome systems. Due to the rehydration process, molecules of water are able to replace
sugars and reconstitute the liposomes without remarkable changes in their sizes. Sugars
such as trehalose are capable of imitating the presence of water and protecting the integrity
of dry liposomes and membranes [124].

In a study performed by Li and Deng, a phospholipid t-butyl alcohol water-sucrose
solution was initially frozen for 8 h at the temperature T = −40 ◦C; then, the sample was
dried for 48 h at the same temperature, and finally the product was dried at T = 25 ◦C for
10 h [125]. As a result, the size of the liposomes and polydispersity decreased with the
increased concentration of sucrose [124].

The study conducted by Ghasemi et al. focused on encapsulation of orange peel
oil [126]. Orange peel oil (OPO) is commonly used as a flavoring in the food industry.
Encapsulation is needed because of high volatility and low stability. Pectin solution, whey
protein concentrate solution, and maltodextrin solution were mixed to create a biopolymer
solution. Tween 80 was added to the solution and mixed until it completely dissolved.
OPO was added and homogenized. The resulting solution was created using freeze drying
converted into powder. The encapsulation efficiency was in the range from 70% to 88%
based on the altered pH of samples. The mean size of particles ranged between 20 and
110 nm.
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3.3. Encapsulation Using Liposomes

Liposomes are particles made of at least one lipid bilayer shaped into spheres. The
bilayer is mostly made of phospholipids and contains hydrophobic and hydrophilic
parts [127–130]. Liposomes, due to their character, can encapsulate substances in both
hydrophobic and hydrophilic parts [131,132]. Apart from these two substances, liposomes
can be used to encapsulate substances with an amphiphilic character [133,134]. Liposomes
are great in drug delivery. High biocompatibility, variability in structural properties, and
simple preparation are only a few of the advantages mentioned for the use of liposomes
in the biomedical and nutraceutical fields [124]. The group of Hudiyanti, Fawrin, and Sia-
haan encapsulated vitamin C and beta carotene simultaneously in sesame liposomes [128].
A mixture of beta-carotene and phospholipid was prepared with a ratio of 20% (w/w).
Cholesterol was added to the mixture with the same ratio. For preparation of a thin layer,
chloroform was added. Lastly, the vitamin C in the phosphate buffer was added and the
mixture was centrifuged. The encapsulation efficiency was different based on the choles-
terol used. The highest EE for vitamin C was 89% with 20% (w/w) of cholesterol used. The
highest EE for beta-carotene was 77% without the use of any cholesterol [128].

The researchers Tripathy and Srivastav prepared an extract of Centella asiatica leaf
encapsulated in liposome [135]. Soy lecithin and stigmasterol were mixed together with
ethanol. The solvent was evaporated using a rotary evaporator. To hydrate the newly
formed thin lipid film, phosphate buffer solution with the extract was used. Particle sizes
ranged from 512.67 to 787.78 nm. The encapsulation efficiency ranged between 40.36 and
67.80% depending on the ratio of used chemicals.

In the work from Mohammadi et al., Spirulina protein hydrolysates were encapsu-
lated [136]. For preparation, lecithin and γ-oryzanol were dissolved in ethanol. With the
use of a rotary evaporator, the solvent was removed and a thin phospholipid bilayer was
created as the coating of the container. After adding hydrolyzed Spirulina, the liposomes
were spontaneously formed. The final size was achieved using a probe sonicator. The
encapsulation efficiency reached 90% and the size of particles was approximately 100 nm.

3.4. Lipid Encapsulation

Apart from using liposomes as a shell material for encapsulation, lipid nanoparticles
can be also used. The main difference can be seen in Figure 2. Liposomes encapsulate
active substances in an aqueous environment. By comparison, the lipid nanoparticles do
not have a continuous bilayer and the active substance is not encapsulated in an aqueous
environment.
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Lipids are suitable for encapsulation of drugs and can be used as a drug delivery
system [138]. Based on the matrix of lipids they can be separated into different categories.
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Firstly, if they are composed of only liquid lipids, they are called nanoemulsions. Secondly,
those that are made only by solid lipids are called solid lipid nanoparticles (SLNs). Lastly,
there can be a crossover of the above. Nanostructured lipid carriers have liquid as well as
solid lipids, which are stabilized by the use of surfactants [102,138–140].

SLN has some disadvantages, for example, it is prone to gelation and polymorphic
transition, and has a low encapsulation efficiency [139]. Based on these disadvantages,
the NCL was developed. Physical, chemical, and colloidal stability, as well as the release
of the drug, are based on the ratio of solid and liquid lipids in NCL. The ratio can vary
from 70:30 in favor of liquid lipids up to 99.9:0.1 [97]. For preparation of SLNs and NCLs,
nanoemulsion preparation can be utilized. It is essential to ensure that these procedures
are carried out above the melting temperature of the lipid used [141].

Researchers from the group of Lin et al. prepared lipid nanoparticles with entrapped
krill oil [142]. Solid lipids were melted with krill oil to form the lipid phase. To form the
water phase, distilled water was mixed with lecithin. Both phases were homogenized
together and dispersed using an ultrasonic cell crusher. The particle size varied based on
the type of solid lipid used. In their work, the scientists achieved a particle size from 112.4
to 989.4 nm. EE was then from 72.86% to 99.37%. The lipid used with the smallest particle
size and highest EE was glycerol 1,3-distearate.

3.5. Microoemulsion

In the study performed by Ziani et al., the scientists focused on encapsulation of
vitamin E, vitamin D, and lemon oil [143]. They used colloidal systems based on surfactants
to protect the substances. Emulsion was prepared using 1% (w/w) of the chosen surfactant
and by dissolving it in an acidic buffer solution consisting of 0.8% citric acid and 0.08%
sodium benzoate with a final pH of 2.6. A quantity of 10% (w/w) oil-in-water emulsion was
prepared by blending 10% w/w oil phase with 90% w/w aqueous phase using a high-speed
blender and passing the emulsion through a high-pressure homogenizer [143].

The emulsion titration method was used for preparation of the microemulsion. Emul-
sion droplets were titrated into aqueous micelle solution. First, the oil solubilized into the
surfactants; after a critical concentration of the oil, its droplets remained in solution. In this
study it was found that lemon oil was successfully encapsulated into the microemulsion.
Both vitamins were not able to form microemulsions [143].

3.6. Electrospinning and Electrospraying

Electrospinning and electrospraying are relatively new non-thermal methods produc-
ing micro- and nanofibers or particles [144]. These techniques rely on a strong electric field
between a polymeric or biopolymeric solution and a grounded collector [145]. One of the
primary advantages of these methods is their non-thermal encapsulation, which makes
them useful in food and nutraceutical applications [146].

3.6.1. Electrospraying

This method is capable of producing micro/nano thin films, particles, or capsules
using a high-voltage electric field [144]. The process is based on atomization while applying
an electric force. The solution is pumped into a nozzle where it is further forced by an
electric force to create droplets [146]. The surface of the solution is subjected to shear stress
because of the high electric potential. As soon as the electrostatic force in the solution is
greater than the surface tension, droplets move to the collecting plate [147]. The solvent
then evaporates. Electrospraying is used to encapsulate unstable and poorly water-soluble
bioactive substances or drugs [148]. Using this method, homogenous nano-sized particles
can be formed. It is possible to control particle size by changing the operating parameters;
for example, the carrier material has a significant impact on the process [148]. Such a
material can be protein-based, which provides aggregation stability, the possibility of
different structure forms, and better water dispersibility [148]. Other parameters that have
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an impact on particle size are electric potential, flow rate, collector distance, viscosity,
electrical conductivity, and surface tension [149].

In the study by Mahalakshmi et al., electrospraying was used for encapsulation of
curcumin into whey protein [148]. First, they prepared an oil-in-water emulsion. The
water phase was achieving by dissolving whey protein in distilled water. For preparation
of the oil phase, different quantities of curcumin were dissolved in coconut oil. As an
emulsifier in the water phase, Tween 80 was used. Both phases were mixed together to
form the final O/W emulsion. The emulsion was sprayed through a needle with the use
of electrospraying to obtain nanoparticles. The particles were formed with the use of a
14 kV voltage source at a flow rate of 0.2 mL/h. The particles had a size of less than 500 nm
and the electrospraying method achieved 5 to 7% better encapsulation efficiency than the
same experiment conducted with conventional spray drying. The encapsulated particles
produced using spray drying had a size ranging from 2 to 10 µm [148].

3.6.2. Electrospinning

The electrospinning method produces continuous nanofibers by applying an electrical
charge to a polymeric solution. The solution forms a cone on the tip of nozzle because of
the electrification. A fluid jet is ejected from the cone toward the grounded collector [150].
Based on different parameters, the size and morphology of fibers can be changed. Apart
from this advantage, the electrospinning method manufactures nanofibers that are light,
with high porosity and excellent mechanical properties [151]. This method has found
application in, for example, food packaging, drug delivery, water treatment, antibacterial
and antioxidant materials, catalysis, and wound healing [151,152].

In the study by Pires et al., electrospinning was used for the encapsulation of curcumin
into potato starch [153]. The starch solution was mixed with formic acid and shaken for
24 h. Curcumin was added to the starch solution at different dry base concentrations. After
different periods of time, the polymer solution was used in electrospraying. The flow of the
solution was 0.60 mL/h with an applied +23 kV voltage. The fibers had a mean diameter
ranging from 94 nm to 464 nm. The achieved loading capacity was 79.01% to 97.09%.

The advantages and disadvantages of encapsulation methods are summarized in
Table 2.

Table 2. Advantages and disadvantages of encapsulation methods.

Method Advantages Disadvantages References

Extrusion
Cost-effective, high production

capacity, no organic solvents or high
temperatures

Difficult scaling up, lower
entrapment, problematic with

viscous solutions, larger
particles,

[46,119,154]

Freeze drying
Highly porous material, higher

entrapment, low operating
temperature

High cost, time consuming,
possible cell injury [144,154,155]

Spray drying
Large scale method, continuous,

flexibility, rapid use, high efficiency,
low cost

Possible thermal degradation,
poor size control [119,155–157]

Lipid encapsulation Scalable, biodegradability,
biocompatibility, controlled release

SLNs—low drug loading,
possible gelation, drug

expulsion during storage
[158,159]

Microemulsion Scalable, easy preparation, low cost low stability, poor delivery
properties [144,157,160]

Nanoemulsion Kinetic stability, better optical
properties Rapid-release [160,161]

Encapsulation using liposomes
Controlled release, greater stability,

high bioavailability, biocompatibility,
and biodegradability

High cost, low physico-chemical
stability, variation in particle size [154]

Electrospinning/electrospraying
No thermal degradation, possible

size control, simplicity, low starting
cost

Not yet in larger scale, specific
equipment [144,148,151,152,162,163]
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4. Future Trends

As previously mentioned, the encapsulation approach holds a promising future in
pharmaceutical, food, cosmetics, biomedical, construction, biophysical, and biochemical
industries. The most significant advantage would come from developing systems that
deliver ingredients precisely where and when they are needed. A controlled and prompt
release of the ingredients would also be advantageous. Vitamins, minerals, and other bioac-
tives, which are highly volatile, can be encapsulated to help extend the shelf life and quality
of food. In addition, the clever improvement in the sensor-empowered exemplification
of medications and prescriptions for constant observation and input of the embodiment
frameworks would be a significant advancement, thus enhancing the preparation of the
well-being ventures and improving their applicability.

5. Conclusions

The process of encapsulation is a highly effective method for preserving and enhancing
the physico-chemical properties of active compounds in a range of different applications.
These can be, for example, in food, pharmaceutical, nutraceutical, and other industries. In
food and pharmaceutical applications, encapsulation has gained more attention in recent
years, as evidenced by the increasing number of publications in the Web of Science and the
growing market demand. In this review, we focused mainly on food and pharmaceutical
industries, where we looked at the methods most commonly used in the past decade.
Future research aims are to develop methods with higher encapsulation efficiency that can
be easily scaled up for different industries to reduce costs. The selection of an appropriate
encapsulation method for a specific group of active compounds is crucial. Therefore,
ongoing research is likely to be focused on developing new encapsulation methods and
coating materials.

Author Contributions: Conceptualization, L.L. and D.Ř.; methodology, D.Ř. and Y.M.; resources,
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