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Abstract: Arabica coffee, one of Indonesia’s economically important coffee commodities, is commonly
subject to fraud due to mislabeling and adulteration. In many studies, spectroscopic techniques
combined with chemometric methods have been massively employed in classification issues, such
as principal component analysis (PCA) and discriminant analyses, compared to machine learning
models. In this study, spectroscopy combined with PCA and a machine learning algorithm (artificial
neural network, ANN) were developed to verify the authenticity of Arabica coffee collected from four
geographical origins in Indonesia, including Temanggung, Toraja, Gayo, and Kintamani. Spectra from
pure green coffee were collected from Vis–NIR and SWNIR spectrometers. Several preprocessing
techniques were also applied to attain precise information from spectroscopic data. First, PCA
compressed spectroscopic information and generated new variables called PCs scores, which would
become inputs for the ANN model. The discrimination of Arabica coffee from different origins
was conducted with a multilayer perceptron (MLP)-based ANN model. The accuracy attained
ranged from 90% to 100% in the internal cross-validation, training, and testing sets. The error in the
classification process did not exceed 10%. The generalization ability of the MLP combined with PCA
was superior, suitable, and successful for verifying the origin of Arabica coffee.

Keywords: Arabica coffee; authentication; spectroscopy; principal component analysis;
multilayer perceptron

1. Introduction

Coffee (Coffea sp.), one of the most important national plantation commodities, is
critical to Indonesia because it boosts foreign exchange and social welfare. In 2019, coffee
was grown on state plantations (14.5 thousand ha), private plantations (9.71 thousand ha),
and smallholder plantations (1.215 million ha), with a total production of 741,657 tons. A
total of 359,052 tons of coffee were exported abroad with foreign exchange earnings of USD
883 million [1]. The five provinces of Sumatra Island, namely South Sumatra, Lampung,
Aceh, North Sumatra, and Bengkulu, were the top national coffee producers, followed by
East Java on Java Island, and South Sulawesi on Sulawesi Island. Two species of coffee are
widely cultivated due to being geographically and climatologically well-suited for growing
in Indonesia: Robusta (Coffea canephora) and Arabica (Coffea arabica).

Arabica coffee is the most cultivated coffee species, accounting for roughly 70% of the
global coffee market’s availability. Arabica coffee is also one of the most popular coffee
beverages. It has a rich flavor, is less bitter, and contains low caffeine. Arabica coffee trees
grow well at an altitude of 1000–2100 m above sea level with an air temperature of 18–22 ◦C
and an annual rainfall of at least 1500 mm [2,3]. Several locations became major Arabica
coffee production zones in Indonesia, including Aceh, North Sumatra, Sulawesi, Flores,
Bali, and East Java [4]. The quality of Arabica coffee is affected by a variety of factors,
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including cultivar genetics, agro-climatic conditions, agricultural practice management,
and postharvest processing. The growing locations of Arabica coffee determine its quality
regarding physical aspects and chemical composition [5]. Coffee quality is evaluated
based on chemical, organoleptic, and physical attributes. Chemical assessments of coffee
beans are complex, owing to the wide range of chemical compounds (nonvolatile and
volatile) formed and contained [6]. Organoleptic properties are related to the aroma,
flavor, sweetness, acidity, or overall taste of coffee. Shape, thickness, weight, and color are
examples of physical characteristics [7].

Variability in coffee quality, taste, and body can be caused by the region where the
coffee plants are grown. This variability aspect affects the commercial value of the product
and has led to fraud such as mislabeling and adulteration. Mislabeling coffee means
disguising the right geographical origin of coffee beans, while adulteration mixes and sells
less-qualified coffee as pure-graded-expensive coffee [8]. As a result, coffee producers
and industries are concerned about preserving their market reputation to overcome these
issues. The examination of coffee beans becomes important to affirm the authenticity of
coffee and to declare whether the coffee is, in fact, what it is declared to be or belongs
to the defined geographical origin. This outcome will also mean that the coffee quality
meets technical/regularity documentation [9]. In addition to the purposes of trading and
purchasing, producers and industries need information that correlates to coffee quality
from bean to cup (beverages) [10].

Several analytical techniques have been used to examine the authenticity of coffee
dependent on its chemical composition, such as gas and liquid chromatography, mass
spectrometry, and nuclear magnetic resonance spectrometry [8]. In recent studies, spec-
troscopic techniques have also been used to ensure accurate outcomes in evaluating the
chemical composition and discrimination of agricultural products, including coffee. They
are green, simple, rapid, robust, inexpensive, and nondestructive (do not need sample
pretreatment) in the evaluation [8,11]. Regardless of these methods, several chemometric
tools are usually needed to improve a series of classification models, such as principal
component analysis (PCA) [12], hierarchical cluster analysis (HCA) [13], soft independent
modeling by class analogy (SIMCA) [14], linear discriminant analysis (LDA) [15], and
partial least square discriminant analysis (PLS-DA) [16]. The effective models can generate
classification accuracy close to 100% [17]. The use of these methods for coffee authenticity in
recent studies has gained the best accomplishment accuracy according to the geographical
origins of Indonesian coffee in the form of green beans [8,18,19], roasted beans [20,21], and
powder [22].

Artificial neural networks (ANNs) are classified as supervised learning in which a
certain number of groups are determined based on feature data and labeled datasets trained
to produce correct results [23,24]. Inspired by the functional characteristics of human
brains, ANNs are able to work such complex functions, including learning, recognition,
classification, and decision-making [25,26]. ANNs are a simplified model of biological
neural networks, where billions of neurons are interconnected, organized, and processed
any information provided. The neurons in ANNs are organized in layers, namely (1) an
input layer, where the data are fed, (2) one or more hidden layers, where the learning process
takes place, and (3) an output layer, where the decision is generated [25,27]. The structure
of this network is a variant of the original perceptron model proposed by Rosenblat in
1950 and is mentioned as multilayer perceptron [28]. Multilayer perceptron (MLP) is a
feed-forward neural network where the information is propagated through the network
feed-forwardly from the input layer to the output layer [27,29]. Every neuron in a layer is
connected to all neurons in the next layer (not inter-connected in the same layer). MLP also
often uses a back-propagation algorithm to handle errors generated during the forward
pass. The algorithm feeds the losses backwardly through the network by improving the
weights and bias.

This study aimed to develop a classifier for authenticating coffee beans using a combi-
nation of a dimensional reduction technique, principal component analysis (PCA), and a
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nonlinear model, artificial neural network (ANN). The green coffee samples were from the
same species, Arabica, and were grown in different regions of Indonesia, including Temang-
gung (East Java), Toraja (South Sulawesi), Gayo (Aceh), and Kintamani (Bali). Coffees from
these origins were regarded as extensively cultivated in coffee plantations, top-graded, and
widely exported abroad. PCA was employed to obtain the most important information,
decrease the dimensionality of the spectroscopic data, and express that information as a
dataset called principal components (PCs) [30]. The PCs scores were used as input for the
MLP model. An ANN based on multilayer perceptron (MLP) was used in this study, which
was a powerful learning system with superior pattern recognition ability [24,25]. The use of
an MLP model to discriminate food and agricultural products dependent on spectroscopic
techniques has been reported in several studies [25,26]. Two spectrometers will be used in
this work, including a visible to near-infrared (Vis–NIR) spectrometer (400–1000 nm) and a
shortwave near-infrared (SWNIR) spectrum (970–1630 nm). Several spectral pretreatment
methods were employed to lessen noise and remove the light scattering effect in raw
spectra [31].

2. Materials and Methods
2.1. Material Preparation

Arabica green beans were purchased from trusted local markets in Indonesia and
harvested in 2022. The samples were collected from various locations, including Temang-
gung (Middle Java), Toraja (South Sulawesi), Gayo (Aceh), and Kintamani (Bali). All beans
were from full-washed coffee processing. The beans (100 g each) were cleaned manually
to remove endocarp/parchment and dirt and separate them from uniform and damaged
beans. Before the spectral acquisition, the samples were placed in plastic boxes at controlled
temperature of 25–28 ◦C to maintain the coffee quality.

2.2. Spectral Acquisition and Pre-Processing

The reflectance spectra were obtained using a Vis–NIR spectrometer (Flame-T-VIS–
NIR Ocean optics, Orlando, FL, USA, 400–1000 nm) and an NIR spectrometer (Flame-NIR
Ocean optics, Orlando, FL, USA, 970–1630 nm). A tungsten halogen light (360–2400 nm,
HL-2000-HP-FHSA Ocean Optics, Orlando, FL, USA, nominal bulb power 20 W, typical
output power 8.4 mW) and a reflectance fiberoptic probe (QR400-7 VIS–NIR Ocean Optics,
Orlando, FL, USA) were used in both spectrometers. A black box was used during spectral
measurements to eliminate light interference from external sources. The distance between
the samples and the sensor probe was 5 mm. Prior to spectral acquisition of each sample,
white-dark reference spectra were measured, one from a white-background ceramic (WS-1,
Ocean Optics, Orlando, FL, USA) and the dark reference came from the off-light source
of the instrument system. Coffee spectra were collected using OceanView 1.6.7 software
(Ocean Insight, Orlando, FL, USA) with an integration time of 1600 ms and a boxcar width
of 1. In order to ensure the accuracy of spectral data acquisition, both spectrometers were
preheated for 15 min before testing to maintain the instrument’s internal system stability,
and a self-check was carried out to see if the instrument worked normally. A total of
2400 spectral data points of green coffee beans were collected from 4 origins × 600 beans.
The raw spectral data were stored in CSV format.

This study used raw and preprocessed spectra for the classification model. Several
techniques were carried out to attain precise information from spectroscopic measure-
ments [32]. The simple moving average (SMA) and Savitzky–Golay (SG) filters were
employed to denoise and smooth the spectral information. The number of points to be
averaged in the spectrum at the SMA filter was 50 for Vis–NIR and 5 for SWNIR. The
SG smoothing (SGS) and first derivatives (SG-1D), polyorder = 2, with a window size of
50 (Vis–NIR) and 5 (SWNIR), were also used. The multiplicative scatter correction (MSC)
and standard normal variate (SNV) were used to deal with scattering disturbance by
eliminating baseline effects caused by translation and offset in the spectrum.
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2.3. Data Dimensional Reduction

PCA was used to extract important information from spectroscopy data and express
it as a set of new orthogonal variables known as principal components (PCs) [30]. By
plotting PCs based on the characteristic wavelengths from the original and preprocessed
spectra, the clustering between the different groups of samples was evaluated [33]. The
evaluation of PCA was discovered through the interpretation of scree plots, scores plots,
and loading plots. The scree plot interprets the variance values of individual PCs versus
the PC number. In this study, it was performed on the explained variance ratio of PCs.
The score plot interprets the sample coordinates projected onto the new successive axes
(PCs). The PC scores with the explained variance ratio >0.5% will be used as input data
for the classification model. The loading plot equates the contribution of variables in these
same spaces [34].

2.4. Structure of Classification Model

This study developed an artificial neural network (ANN) model based on a multilayer
perceptron (MLP). This model uses a sequential model to arrange all layers in sequence, it
specifies a neural network, to be precise, sequential: from input to output, passing through
a series of hidden layers, one after the other. The MLP in this study consisted of an input
layer, two hidden layers, and an output layer. The MLP architecture is shown in Figure 1.
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Figure 1. MLP architecture for multiple classifications of coffee origins.

This study used p features in the input layer (X); the number of p was obtained from
PCs scores generated. In order to achieve the best classification results, the structure of the
hidden layers in the MLP model was determined as i neurons in hidden layer 1 (h) and
j neurons in hidden layer 2 (H). The number of i and j was determined as equal. The output
layer had multiple nodes as it would classify four origins of coffee beans. With the one-hot
encoding technique, each categorical value in the output layer was converted into a new
categorical column and assigned a binary value of 1 or 0 to the column, 4-class classification
problem: class 0 (temanggung)→ [1, 0, 0, 0], class 1 (toraja)→ [0, 1, 0, 0], class 2 (gayo)→
[0, 0, 1, 0], class 3 (kintamani)→ [0, 0, 0, 1].

Several parameters must also be considered during building this model, including
activation function, method of weight initialization, loss function, validation method,
batch size, the number of epochs, etc. All these values and parameters were defined
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experimentally to generate the best outcomes for the model which will also be elaborated
on in the experimental results and discussion sessions.

2.5. K-Fold Cross-Validation

In this study, the dataset was split into two parts—a training set and a testing set.
About 2/3 of random samples were put in the training set, and the remaining 1/3 was
assigned to the testing set. K-fold cross-validation evaluates the model’s ability in certain
data to classify new data and flag problems such as overfitting [35,36]. The training data
were divided into k subsets (folds). k refers to the number of folds that a given dataset
that will split into. This study determined k = 10. Since we had about 1600 training data
and k = 10, each fold contains around 160 data. In these partitioned folds, training and
testing subsets were performed in k iterations such that in each iteration, we put one fold
for validation and left the remaining k − 1 folds to train the model [37,38]. The total
effectiveness of the model was ascertained by calculating the average of each iteration
and the estimation error generated. An illustration of this validation method is given
in Figure 2.
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2.6. Model Evaluation

The confusion matrix was used for model performance evaluation [39]. First, we
must compute a set of predicted targets and compare them with actual targets [29]. The
predicted targets represent the values of the class as a result of the model, while the actual
class represents the original values of the initial class [40]. The general idea is to count the
correct/incorrect classifications of positive samples and the correct/incorrect classification
of negative samples [41]. A schematic representation of multi-class confusion matrix of
coffee origin is shown in Table 1. The determination of TP, TN, FP, and FN are calculated
using formulas given in Table 2. The TP (True Positive) values represent the number of
correctly classified positive examples; the TN (True Negative) values estimate the number of
correctly classified negative examples; the FP (False Positive) values represent the number
of correctly classified negative examples; and the FN (False Negative) is the number of
actual positive examples grouped as negative [35].

Table 1. Four-classes confusion matrix.

Predicted Classes

C1 C2 C3 C4

Actual classes

C1 T1 F12 F13 F14
C2 F21 T2 F23 F24
C3 F31 F32 T3 F34
C4 F41 F42 F43 T4
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Table 2. Determination of TP, TN, FP, and FN.

Class TP TN FP FN

C1 T1 T2 + T3 + T4 + F23 + F24 + F32 + F34 + F42 + F43 F21 + F31 + F41 F12 + F13 + F14
C2 T2 T1 + T3 + T4 + F13 + F14 + F31 + F41 + F34 + F43 F12 + F32 + F42 F21 + F23 + F24
C3 T3 T1 + T2 + T4 + F12 + F14 + F21 + F24 + F41 + F42 F13 + F23 + F43 F31 + F32 + F34
C4 T4 T1 + T2 + T3 + F12 + F13 + F21 + F23 + F31 + F32 F14 + F24 + F34 F41 + F42 + F43

The performance of the MLP model was determined by calculating performance
metrics. The most commonly employed indicators are accuracy, specificity, precision, recall
or sensitivity, and F-score; the formulas are given in Table 3. Accuracy (AC) estimates the
proportion of correctly classified samples, whereas Misclassification error (E) estimates the
proportion of incorrectly classified samples. Specificity (SP) counts the ratio of incorrectly
classified samples to all negative samples. Recall (R) or sensitivity calculates the ratio
of correctly classified samples to all positive samples. Precision (P) measures the ratio
of correctly classified samples as positive to all the positively classified samples. F-score
(FS) combines the precision and recall scores of a model. While ‘accuracy’ remains valid
for balanced data, F-score works well on imbalanced data. The AC evaluates the correct
classified samples, and the values shall be close to 100%. The SP, R, P, and FS are declared
as ‘good’ when they are close to 1. The E evaluates wrongly classified samples, which shall
be as low as possible, ideally close to 0% [36].

Table 3. Performance metrics.

Metrics Formula Metrics Formula

Accuracy AC = TP+TN
TP+FP+TN+FN Precision P = TP

TP+FP

Misclassification error E = FP+FN
TP+FP+TN+FN Recall or sensitivity R = TP

TP+FN

Specificity SP = TN
TN+FP F-Score FS = 2·R·P

(R+P)

The area under the curve (AUC) and receiver operating characteristic (ROC) curve
were also determined to check or visualize the performance of this classification model. The
ROC curve for the multi-class problems contains a graph that represents TPR (true positive
rate) on the y-axis against FPR (false positive rate) on the x-axis [42,43]. The proportion
of true positive comes from the value of sensitivity, while the proportion of false negative
comes from 1-specificity [44]. A ROC curve starts at point (0,0) and ends at point (1,1). The
point at coordinate (0,0) (TPR = 0, FPR = 0) represents that the classifier never predicts a
positive class. Point (1,1) (TPR = 1, FPR = 1) represents the opposite situation, the classifier
classifies all samples as positive and produces a possibly high number of false positives.
The perfect coordinate is at (0,1) while TPR = 1 and FPR = 0. Figure 3 shows an example
of an ROC graph with three ROC curves. Classifier A performs far better than the other
two (B and C). Classifier C is useless as its performance is no better than chance [37].

The area under the curve (AUC) summarizes each ROC curve in the form of numerical
information. The AUC is calculated by summing the area under the ROC curve; the larger
the area, the more accurate the model is [44]. The AUC value lies on the interval 0 to 1.
The greater the AUC value, the better the classification model. Since a better classification
model should lie above the ascending diagonal of an ROC graph (curve C in Figure 3), the
AUC must exceed the value of 0.5 [37].

All data analyses in this work—from spectral preprocessing to PCA analysis to the
development and evaluation of the MLP model—were conducted by PyCharm 2022.3
(Professional Edition for educational use) as an IDE platform for Python code (v3.10).
In addition, a number of libraries were used, such as Pandas (v2.0.0), NumPy (v1.24.2),
Matplotlib (v3.7.1), SciPy (v1.10.1), Scikit-Learn (v1.2.2), and Keras (v2.11.0).
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3. Results
3.1. Spectral Profiles of Arabica Coffee

The averaged raw spectra of four Arabica beans are shown in Figure 4. Visible
near-infrared (Vis–NIR) spectra ranging from 400 to 1000 nm contain 3182 variables,
whereas shortwave near-infrared (SWNIR) spectra ranging from 954 to 1700 nm con-
tain 128 variables. The spectral profiles of the four Arabica coffee origins are similar and
characterized by differences in curve trends. These spectral properties are determined
by how samples interact with light radiation. The light can be transmitted, absorbed, or
reflected when it strikes coffee samples [45]. The amount of radiation interacting with the
samples is determined by their chemical and physical properties [46].
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Using original Vis–NIR spectra (Figure 4a), all coffee gives similar trends, with differ-
ences in the reflectance (or absorbance) intensities. Toraja coffee has the highest absorbance
(lowest reflectance) followed by Temanggung, Kintamani, and Gayo coffee. Reflectance
peaks and valleys can be noticed at 460 nm of lignin [47], 670 nm of chlorophylls [48], which
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are present in coffee [48]. Other low absorbance peaks appear at 750–850 nm of O-H of
water [43] and 900–1000 nm of C-H groups of coffee [49].

Based on SWNIR spectra, all coffees show a similar pattern (Figure 4b). The highest ab-
sorbance is displayed by Toraja coffee, followed by Temanggung, Bali Kintamani, and Gayo
coffee. More distinct absorption peaks are observed than Vis–NIR profiles. The fundamen-
tal absorptions at particular bands occur, including the 3rd overtone at the 900–1000 nm
region, the 2nd overtone at 1100–1200 nm, and the 1st overtone at 1400–1500 nm [11]. These
absorption bands have been linked to the main compounds found in coffee, including
carbohydrates, lipids, proteins, caffeine, chlorogenic acid, and water [50]. According to
Figure 4a,b, it is challenging to draw a conclusion and associate the spectral properties of
four coffee origins because they generate similar curve trends. Therefore, further chemo-
metric methods and machine learning models are required for the classification purpose.

3.2. Principal Component Analysis

Teye et al. [51] define principal component analysis (PCA) as an unsupervised pattern
recognition method for visualizing data trends in dimensional space. PCA is employed
in this study to analyze spectroscopic data from coffee samples in which observations
are described by several dependent variables, which are generally intercorrelated. PCA
will extract the important information from the data, express it as a set of new orthogonal
variables known as PCs, and display a pattern of similarity between the observations and
variables as points on maps [30]. In the spectroscopic analysis, new variables (called PCs)
are a linear combination of the original wavelength variables and show the maximum
variation contained within them [52,53]. The PC1 is a set of variables that explain the largest
variance, and PC2 is independent of PC1 and defines the second-largest variance. Other
PCs can be specified as well [52]. A score plot was obtained by plotting the PCs to visualize
the data trends, and it explained the maximum variances or weights. These PCs weights
versus PC number then explain more than 0.5% variance given in Table 4.

Table 4. Explained variance ratio of PCA.

Explained Variance Ratio (%)
Number of PC

1 2 3 4 5 6 7

Vis-NIR
Original 91.73 3.38 1.35 0.53 4
SMA 97.16 1.84 0.54 3
SGS 94.26 3.38 1.29 3
SNV 37.18 17.57 5.46 4.83 2.74 2.24 1.66 7
MSC 37.46 17.58 5.39 4.81 2.71 2.23 1.65 7
SG-1D 59.50 15.02 4.74 3.76 2.44 2.27 1.47 7

SWNIR
Original 99.05 0.54 2
SMA 99.26 0.41 2
SGS 99.06 0.54 2
SNV 58.67 28.23 5.65 3.06 1.81 0.83 6
MSC 58.74 28.22 5.64 3.06 1.81 0.83 6
SG-1D 86.74 9.56 1.47 0.53 4

Figure 5 shows the results of the PCs score plot from the original spectroscopic data.
The sum of PC1 and PC2 can explain more than 95% of the variances for Vis–NIR and
SWNIR spectra. It reveals that there are separations in the samples. The chemical properties
of coffee beans differ significantly depending on their geographical origins. According
to Figure 5, the first two PCs (PC1 and PC2) already accounted for >90% of the total
contribution. The smoothed spectra from the moving average filter and SG smoothing
produced the best outcome in explaining the maximum variance since it aimed at advancing
signal quality [31]. In contrast, the maximum explained variance did not occur in the first
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two PCs for preprocessed spectra from SNV, MSC, and SG-1D in VisNIR spectra. The MSC
and SNV try separating multiplicative interferences in the spectra, such as light scattering
effects. In contrast, the SG-1D is commonly used to eliminate baseline offset variations
within a set of spectra [31,54].

Foods 2023, 12, x FOR PEER REVIEW 9 of 20 
 

 

two PCs for preprocessed spectra from SNV, MSC, and SG-1D in VisNIR spectra. The MSC 
and SNV try separating multiplicative interferences in the spectra, such as light scattering 
effects. In contrast, the SG-1D is commonly used to eliminate baseline offset variations 
within a set of spectra [31,54]. 

Table 4. Explained variance ratio of PCA 
  Explained Variance Ratio (%) Number 

of PC   1 2 3 4 5 6 7 
Vis-NIR          
 Original 91.73 3.38 1.35 0.53    4 
 SMA 97.16 1.84 0.54     3 
 SGS 94.26 3.38 1.29     3 
 SNV 37.18 17.57 5.46 4.83 2.74 2.24 1.66 7 
 MSC 37.46 17.58 5.39 4.81 2.71 2.23 1.65 7 
 SG-1D 59.50 15.02 4.74 3.76 2.44 2.27 1.47 7 
SWNIR          
 Original 99.05 0.54      2 
 SMA 99.26 0.41      2 
 SGS 99.06 0.54      2 
 SNV 58.67 28.23 5.65 3.06 1.81 0.83  6 
 MSC 58.74 28.22 5.64 3.06 1.81 0.83  6 
 SG-1D 86.74 9.56 1.47 0.53    4 

 

 
(a) 

 
(b) 

Figure 5. PCA score plots for original spectra: (a) Vis–NIR and (b) SWNIR. 

The loading plots were also obtained to evaluate the areas of spectra that contribute 
to the variance of samples. The loading matrix includes the original variables’ contribu-
tions in the same space [34]. This contribution affects the clustering between samples [55], 
indicating that the chemical compositions between groups of Arabica coffee were consid-
erably different. The loadings plot for the first PCs from the original spectroscopic data is 
shown in Figure 6. The second overtone of the O–H and N–H stretches was found in the 
small region 850–1050 (PC1,3,4) of Vis–NIR spectra [56]. At 940 nm, the spectral variable 
corresponds to the third overtone absorbance band of the –CH3– group [31]. Major valley 
(PC1) is found in the second overtone of C–H stretching for caffeine and carbohydrates in 
pure coffee at a wavelength of 1210 nm. The C–H stretching and deformation vibration 
for caffeine is also found at ~1300 nm. At 1450 nm, water, or the first overtone of the O–H 

Figure 5. PCA score plots for original spectra: (a) Vis–NIR and (b) SWNIR.

The loading plots were also obtained to evaluate the areas of spectra that contribute to
the variance of samples. The loading matrix includes the original variables’ contributions
in the same space [34]. This contribution affects the clustering between samples [55], indi-
cating that the chemical compositions between groups of Arabica coffee were considerably
different. The loadings plot for the first PCs from the original spectroscopic data is shown in
Figure 6. The second overtone of the O–H and N–H stretches was found in the small region
850–1050 (PC1,3,4) of Vis–NIR spectra [56]. At 940 nm, the spectral variable corresponds to
the third overtone absorbance band of the –CH3– group [31]. Major valley (PC1) is found
in the second overtone of C–H stretching for caffeine and carbohydrates in pure coffee at
a wavelength of 1210 nm. The C–H stretching and deformation vibration for caffeine is
also found at ~1300 nm. At 1450 nm, water, or the first overtone of the O–H stretch, can be
found. The amino acids and chlorogenic acid are related to the first O–H, and N-overtone
at ~1570 nm [57].

3.3. Multilayer Perceptron Model

In this study, developing a classifier was crucial to obtain the best accuracy outcome
in the classification process. The MLP model was organized into layers consisting of an
input, hidden, and output layers, Figure 1. The model was trained with a large number of
data samples (containing inputs and outputs) based on a supervised learning technique to
identify the geographical origins of Arabica coffee. Input data were obtained from the PCs
score which had the explained variance ratio >0.5%. The desired outputs were considered
as four coffee origins in the form of classes: class 0 for Temanggung, class 1 for Toraja,
class 2 for Gayo, and class 3 for Kintamani.

The problems regarding the hidden layer must also be considered carefully, especially
with regard to how many hidden layers to put in a neural network and how many neurons
will be in each of these layers. There is no theoretical reason to use one or more hidden
layers [58]. However, in practice, we can start with one hidden layer to get reasonable
results and gradually continue with two or more hidden layers until the model performs
better [29]. For more complex ones, we can gradually ramp up the number of hidden layers
until the model starts to overfit. However, it is recommended to train such networks from
scratch. It is much more common to reuse parts of a pre-trained state-of-the-art network
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that performs a similar task. Training will be a lot faster and require less data [29]. In this
study, we use two hidden layers due to their good ability to solve classification problems
based on an ANN model [58].
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In determining the number of input neurons, using too few neurons will result in
underfitting, while using too many neurons will result in overfitting and taking longer to
train the network [58]. As for the problem of determining the number of hidden layers,
we can gradually increase the number of neurons until the network starts overfitting [29].
The rule-of-thumb approaches that we can practically apply for determining the correct
number of neurons to use in the hidden layers [58], the number of hidden neurons should
be: (a) between the size of the input layer and the size of the output layer, (b) 2/3 the size
of the input layer plus the size of the output layer, and (c) less than twice the size of the
input layer. Thus, in this study, we determined the number of neurons in hidden layers
based on the number of nodes in input and output layers, as shown in Table 5.

The activation function is used to compute the weighted sum of input (z) and biases
and to decide whether a neuron can be activated. The activation function takes various
forms, i.e., linear or non-linear. Non-linear activation functions are mainly divided based
on their range or curves. This study proposed two non-linear activation functions: ReLU
(Rectified Linear Unit) and Softmax. The ReLU was used for two hidden layers, while the
softmax was for the output layer. ReLU maximizes the negative value z to become 0 and
allows the positive value z as the given value [40]. Softmax in the output layer is chosen
because it can predict a multinomial probability distribution. Hence, this activation func-
tion is appropriate for overcoming multiclass classification problems. Class membership
requires more than two class labels. Therefore, the target variable comprises the class label
encoded using the one-hot encoding technique.
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Table 5. Structure of the MLP model.

Parameters
Input Layer

Hidden Layer 1 Hidden Layer 2 Output Layer/Label
Vis-NIR SWNIR

Number of neurons Ori 4 2 6 6 4 class 0: temanggung
SMA 3 2 class 1: toraja
SGS 3 2 class 2: gayo
SNV 7 6 class 3: kintamani
MSC 7 6
SG-1D 7 4

Activation Function ReLU ReLU Softmax
Weight initialization glorot_uniform glorot_uniform he_uniform

Loss function : Categorical cross-entropy Max. epochs to train : 100
Optimizer : Adam Batch size : 100
Validation control : Metric ‘Accuracy’ Callback Function : EarlyStopping

The nodes in the MLP model are composed of inputs and weights used to calculate
a weighted sum of the inputs. The kernel initializer, also known as weight initializer, has
the main task of initializing the weights of a neural network. To function properly, the
variance of the outputs of each layer ought to be equal to the variance of its inputs, and
the gradients must have equal variance before and after flowing through a layer in the
reverse direction. It is actually impossible to guarantee both unless the layer has an equal
number of inputs and neurons [29]. Several papers [53,54,59,60] provided methods for
initializing weights for different activation functions with mathematical details. According
to Geron in his book [29], initialization parameters based on types of activation functions
for ReLU and softmax can be Glorot initialization and He initialization, respectively, with a
uniform distribution.

Feedforward neural networks are ANNs that connect inputs with outputs, see Figure 1.
This one-direction calculation generates the predicted value (ŷ) in the output layer. The
loss function is used to find errors or deviations in the learning process by comparing and
measuring the disagreement between the actual (y) and predicted (ŷ) output values. Since
we used one-hot encoding in the output class and transformed the class to categorical data,
we decided to use the ‘categorical_crossentroy’ loss function. The backpropagation algorithm
allows the computation of loss gradients with respect to updating the weights and bias
using the chain rule [61]. If the loss is still high, the feedforward and backpropagation
processes will continue until it generates a small value indicating that the predicted values
are very close to the actual values. The calculation only occurred once, passed forwardly
and backwardly through the ANNs, called one epoch [40]. The process of reducing the
loss function to a minimum is called optimization. The network will learn (iterative
and incremental updates on weights) patterns that can correctly predict a given input
sample to the correct output [61]. The optimizer takes action to update the weights by
optimizing the learning process of ANNs. The optimizer will stop when it achieves
optimal results in learning [40]. Adam (adaptive moment estimation), as we used in
this study, is the most popular choice recently for optimization in deep learning with
excellent and rapid results [40,61]. This approach combines the best ideas of stochastic
gradient descent, specifically AdaGrad and RMSProp. A paper by Kingma and Ba [62]
provides explanations with mathematical procedures and proves that Adam has shown
good performance in optimizing multilayer neural networks. The metric of ‘accuracy’
was applied in the compilation step to evaluate the performance of the MLP model as we
develop this model to solve the classification problem.

Lastly, we must define the number of epochs and the batch size to train our MLP
model. One epoch means that the overall dataset is passed forward and backward through
the network only once. Because this process affects updating weights, using one epoch
or single pass is insufficient. One epoch leads to underfitting. As the number of epochs
increases, this will lead from underfitting to optimal to overfitting. It is required to control
the number of epochs by using the ‘EarlyStopping’ callback function. The training will stop
when a monitored metric has stopped improving. The metric value of ‘validation loss’ was
used in this study as a quantity to be monitored. Training tends to stop when there is an
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increment in loss values. A total of 100 epochs were used in the algorithm as a maximum
control point. The number of epochs with no improvement after the training stops, or
called patience, was determined to be 5. Batch size is the number of sample data points in
a single batch. The number of iterations equals the number of single batches required to
complete one epoch. As we had 2400 data points and the batch size was determined to be
100, it took 24 iterations to complete one epoch.

Figure 7 shows the accuracy and loss during the learning process over the number
of epochs. The accuracy curve figures out how well the model classifies the samples by
comparing the predicted and actual classes. The loss curve depicts the error in classifying
the samples. These two curves also diagnose issues during the learning process that can
lead to underfitting and overfitting. Overfitting indicates that the model performed well in
training data but poorly in testing new data. Underfitting means that the model can neither
train data nor test new data. To overcome these issues, since we control validation errors
during the learning, ‘EarlyStopping’ tracks model parameters/weights and then halts the
learning after the best performance so far over the validation set does not improve over
increasing epochs [61]. Thus, all curves represent the number of epochs (x-axis) varied.
However, it is good to plot loss and accuracy across epochs instead of iteration because it
will be calculated across every data item (and give the quantitative loss/accuracy at the
given epoch) rather than over the entire dataset.
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Figure 7. Model accuracy and loss curves.

Figure 7 signifies the loss and accuracy curves of training and testing, providing
information on changes in the performance of the classifier learning process over the
number of epochs. The loss curve represents the summation of errors in our model’s
learning. If the error is high, the loss will be high, too; the learning process shows inadequate
performance. The accuracy curve examines how well the model classifies the samples by
comparing the model’s predicted results with the actual class. High accuracy indicates
that the model produces minor errors in the learning process. These two curves can also
diagnose any issues with the learning process that could be causing underfit or overfit
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models. Following Figure 7, the MLP model was performed with high accuracy and low
loss. High accuracy means the curve tends to closely reach 1 (or 100%), while at a low
loss, the curve decreases significantly and tends to flatten as it approaches 0. The loss and
accuracy of the Vis–NIR spectra produce more significance in training the data than the
SWNIR spectra. It was demonstrated from the loss curve that samples from Vis–NIR spectra
tend to flatten when they reach epoch 80. It can be implied that the MLP works better and
produces superior performance in training samples acquired with Vis–NIR spectra.

3.4. Model Performance

The MLP model’s performance was evaluated based on performance metrics and
ROC-AUC. The results of the matrices in Tables 6 and 7 were calculated using the confusion
matrix for the given dataset—training and testing sets. The confusion matrix was calculated
from two sets of spectral data—VisNIR and SWNIR—and the spectral preprocessing
algorithm applied. Because we used the k-fold cross-validation method to examine the
classification success of the model objectively, the training set was divided into training
and validation folds. As we determined the k value as 10, the k − 1 folds were reserved
for training, the one fold for validation, and the k number of iterations. This validation
process proceeded until each part of the data was used and the process was repeated k times
(10 iterations) [41]. The model validation process produced accuracies of more than 80%.

Table 6. Averaged values of performance matrices—Vis–NIR spectra.

Spectra
Metrics Cross-Validation

AC * SP P R FS E * Mean ± SD Accuracy *

Training
Original 97.89 0.99 0.96 0.96 0.96 2.11 95.15 ± 2.31

SMA 98.57 0.99 0.97 0.97 0.97 1.43 95.46 ± 6.82
SGS 96.51 0.98 0.93 0.93 0.93 3.49 92.04 ± 2.39
SNV 99.72 1.00 0.99 0.99 0.99 0.28 99.25 ± 0.54
MSC 99.69 1.00 0.99 0.99 0.99 0.31 98.75 ± 4.87

SG-1D 98.88 0.99 00.98 0.98 0.98 1.12 95.90 ± 3.80

Testing
Original 98.30 0.99 0.97 0.96 0.97 1.70

SMA 98.67 0.99 0.97 0.97 0.97 1.33
SGS 96.46 0.98 0.93 0.93 0.93 3.54
SNV 99.62 1.00 0.99 0.99 0.99 0.38
MSC 99.81 1.00 1.00 1.00 1.00 0.19

SG-1D 98.93 0.99 0.98 0.98 0.98 1.07

* units in percentage (%).

The confusion matrix values (TP, TN, FP, and FN) will be examined to obtain per-
formance evaluation parameters, such as accuracy, specificity, precision, recall, F-score,
and misclassification error. These parameters will enable us to comprehend how well the
model determines the classification process with the given data. The statistical results were
performed in average values as listed in Tables 6 and 7. The results clearly showed that the
MLP model achieved the best performance in the classification process of coffee origins,
where the average values of accuracy for both spectrometers and spectral processing al-
gorithms applied reached >90%, the error generated was lower than 10% and had values
close to 1.00 for specificity, precision, recall, and F-score.

The ROC (Figure 8) is a graphic plot that visualizes a classifier’s performance and tells
us how the model can distinguish between classes. The curve plots the true positive rate
(TPR, another name for recall) against the false positive rate (FPR). The FPR is the ratio of
negative samples correctly classified as positive, or equal to 1–TNR (true negative rate).
The TNR, also called specificity, is the ratio of negative samples that are correctly classified
as negative. Hence, the ROC curve plots sensitivity (or recall) versus 1—specificity [29].
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The model determines “bad” if the curve is close to the baseline that crosses from point
(0,0) and determines “good” if the curve is close to point (0,1). As we graph the dotted line
(the ascending diagonal of an ROC graph), a good classifier stays as far away from above
that line as possible (toward the top-left corner) [29]. According to Figure 8, spectroscopic
data from the Vis–NIR spectrometer were suitable as input data in the MLP model due to
its ability to generate AUC equals to 1.

Table 7. Averaged values of performance matrices—SWNIR spectra.

Spectra
Metrics Cross-Validation

AC * SP P R FS E * Mean ± SD Accuracy *

Training
Original 91.11 0.94 0.82 0.83 0.82 8.89 83.33 ± 3.41

SMA 96.70 0.98 0.93 0.93 0.93 3.30 92.04 ± 1.92
SGS 91.95 0.95 0.84 0.84 0.84 8.05 84.45 ± 2.00
SNV 97.54 0.98 0.95 0.95 0.95 2.46 94.34 ± 1.45
MSC 97.85 0.99 0.96 0.96 0.96 2.15 92.54 ± 6.57

SG-1D 98.54 0.99 0.97 0.97 0.97 1.46 96.27 ± 1.63

Testing
Original 90.59 0.94 0.81 0.82 0.81 9.41

SMA 95.83 0.97 0.92 0.92 0.92 4.17
SGS 90.72 0.94 0.81 0.82 0.81 9.28
SNV 97.47 0.98 0.95 0.95 0.95 2.53
MSC 97.22 0.98 0.94 0.94 0.94 2.78

SG-1D 98.36 0.99 0.97 0.97 0.97 1.64

* units in percentage (%).
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AUC is a single number or percentage of area under the ROC curve, ranging between
0 and 1, and evaluates the ranking regarding the separation of the multiple classes. The
higher the AUC value, the better the classifier’s performance. A perfect classifier will have
a ROC-AUC equal to 1 [29]. Figure 6 demonstrates the higher AUC value representing
the better performance of the classifier for four Arabica coffees. The AUC values were
1.00 for all samples at Vis–NIR spectra (Figure 8a), showing that the model could correctly
distinguish between all positive and negative classes. A significant change in Figure 8b
from SWNIR spectra implied that the model could distinguish positive class values from
negative ones. Nevertheless, the model could still predict more true positives and true
negatives rather than false negatives and false positives.
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4. Discussion

Spectroscopic data contain multiple variables that may have large amounts of infor-
mation and multicollinearity [63]. Reduction of dimensionality is required to map those
variables which are a high dimensionality to a lesser dimensionality [64]. In many spec-
troscopic studies, an unsupervised learning algorithm which is also one of the prominent
dimensionality reduction techniques in chemometrics analysis, is principal component
analysis (PCA). PCA converts and summarizes spectroscopic data (a group of correlated
variables) by forming new (uncorrelated) variables called principles components (PCs),
which are linear combinations of the original variables [52,64].

Chemometric methods became routinely applied tools to handle problems related
to spectroscopic data, including (a) determination of the concentration of a compound
in a sample, (b) classification of the origins of samples, and (c) recognition of the pres-
ence/absence of substructures in the chemical structure of an unknown organic compound
in samples. Currently, the chemometric approach is not only based on methods to solve
chemical problems but also is data-driven, which can be applied to solve problems for
other disciplines such as econometrics, sociology, psychometrics, medicine, biology, image
analysis, and pattern recognition. This method uses multivariate statistical data analysis to
analyze and restructure datasets, as well as to make empirical mathematical models that can
predict the values of important properties that are not directly measurable [65]. Principal
component regression (PCR) and partial least-square regression (PLSR) are methods to deal
with calibration problems, while the classifications are discriminant analysis (DA), SIMCA,
classification tree (CT), support vector machine (SVM), and machine learning algorithm
including artificial neural networks (ANN).

The use of an ANN model in spectroscopic research has been found, including in
identifying functional groups and qualitative analysis [66]. The backpropagation (BP)
algorithm is commonly used to train feedforward neural networks that have only inter-
layer connections and are fully connected from the input layer to the hidden layers and
to the output layers. Here, the spectral information is used as input variables, and the
analyte concentration, physical-chemical characteristic, or desired group of samples is
used as output. However, the disadvantage of the ANN model is related to the complex
infrastructure. To get robust learning results, it must use a large number of training
samples. The input variables must also be higher than the number of outputs estimated.
In spectroscopic data, the large number of spectral variables often renders the predicted
outputs, but methods of reducing the variable dimensionality are often required so the
model can work easier and take a few times to train the model [67].

The combination of PCA and ANN in the classification problems was demonstrated
by He et al. [52] to discriminate the five typical varieties of yoghurt by Visible/NIR-
spectroscopy (325 to 1075 nm). The first seven principal components (PC1 to PC7) from
original spectra gained 99.97% of explained variance and are applied as input variables
for BP-ANN. The distinguishment of five yoghurt types was performed satisfactorily.
Briandet et al. [68] used ANN to detect adulteration in instant coffee using infrared spec-
troscopy. Five types of samples were determined, including pure coffee, coffee + glucose,
coffee + starch, and coffee + chicory. The ANN model output was an improvement over
the classification results obtained by LDA.

A spectrum with a large number of variables is not recommended to be used directly
as an input variable for an ANN and should be compressed first [66]. PCA can be applied
to compress a large number of spectral data into a small number of variables defined
as PCs. These small variables represent the most common data variations that can be
attributed to the first, one, two, or three components and soon. These components can
replace the original spectroscopic variables without much loss of information [69]. To
obtain new data, generally, many scientists determine the number of PCs that explain
more than 85% of the cumulative variance ratio [21,52,65]. Practically, a value greater than
85% is not always necessary to be achieved. The number of PCs obtained can also be
changed to any extent according to the circumstance [52]. There is no definitive answer to
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the question of how many the number of components to retain. It depends on the amount
of total cumulative variance explained, the relative size of the eigenvalues (the variances
of the sample components), and the subject-matter interpretation of the components [69].
Referring to [68], we can consider the number of components by excluding eigenvalues
near zero because they are deemed unimportant and may indicate an unsuspected linear
dependency in the data. Therefore, in this study, we use PCs with an explained variance
ratio greater than 0.5% to overcome this issue. According to Table 4, the number of
components to be included in the model varies.

In special cases for calibration problems, applying PCA in data compression may
run the risk of ignoring some useful information correlated to the analytes, a relatively
large number of PCs should be used. Approaches for future studies in the classification
problems can be carried out by employing ANN not only combined with PCA but also
with LDA and PLS regression. LDA compresses spectroscopic data and produces less-
dimensional variables called linear discriminants (LDs). Spectral information also can be
compressed through a PLS regression, and the PLS factors were used as input for the ANN
model [65,70].

5. Conclusions

To ensure food safety and satisfaction, spectroscopic methods have emerged and
become a powerful technique in examining the chemical composition, quality, and au-
thenticity of food and agricultural products, including in the coffee industry. Efficient
chemometric analysis and machine learning models are required to obtain the best re-
sults. This work showed an accurate and non-destructive approach for authenticating
the origins of agro-products. The combination of PCA and MLP was established and a
superior classification process was conducted for Arabica coffee beans. PCA extracted
the important information from spectroscopic data and visualized the information in a
low-dimensional space, called PCscore. The MLP used the positions of samples in this
space as input variables. The performance results confirmed that the MLP model integrated
with PCA has proven to be superior, suitable, and successful for verifying the origin of
Arabica coffee.
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