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Abstract: The rapid detection of chestnut quality is a critical aspect of chestnut processing. However,
traditional imaging methods pose a challenge for chestnut-quality detection due to the absence of
visible epidermis symptoms. This study aims to develop a quick and efficient detection method
using hyperspectral imaging (HSI, 935-1720 nm) and deep learning modeling for qualitative and
quantitative identification of chestnut quality. Firstly, we used principal component analysis (PCA)
to visualize the qualitative analysis of chestnut quality, followed by the application of three pre-
processing methods to the spectra. To compare the accuracy of different models for chestnut-
quality detection, traditional machine learning models and deep learning models were constructed.
Results showed that deep learning models were more accurate, with FD-LSTM achieving the highest
accuracy of 99.72%. Moreover, the study identified important wavelengths for chestnut-quality
detection at around 1000, 1400 and 1600 nm, to improve the efficiency of the model. The FD-UVE-
CNN model achieved the highest accuracy of 97.33% after incorporating the important wavelength
identification process. By using the important wavelengths as input for the deep learning network
model, recognition time decreased on average by 39 s. After a comprehensive analysis, FD-UVE-CNN
was deter-mined to be the most effective model for chestnut-quality detection. This study suggests
that deep learning combined with HSI has potential for chestnut-quality detection, and the results
are encouraging.

Keywords: chestnut; hyperspectral imaging; quality detection; deep learning; important wavelengths

1. Introduction

Chestnuts have a long history as an agricultural product and are widely distributed
worldwide, but mainly concentrated in Asia and Europe. China is a major producer and
consumer of chestnuts, with production reaching 295,661 ha in 2021, according to FAO.
Chestnuts are rich in nutritional value, consisting of 42.2-66.5% starch, 40.3-60.1% moisture,
9.5-23.4% total sugar, 4.8-9.6% crude protein, 2.2-3.7% crude fiber, 1.8-3.4% ash, 2.8-3.2%
fat, and essential amino acids and minerals [1]. In recent years, the demand for chestnuts
has significantly increased due to the growing popularity of cooked chestnuts and various
chestnut-based foods. However, there are numerous low-quality chestnuts in the market
that are affected by factors such as planting terrain, ripening time, and storage conditions.
These low-quality chestnuts can pose a serious health risk to consumers after processing
and reaching the market.

In southern China, most chestnuts are planted in the hills and mountains, and these
chestnuts are planted by farmers and purchased by processing companies from the farmers
without forming large-scale plantation industrial parks, and the ripening time of chestnuts

Foods 2023, 12, 2089. https://doi.org/10.3390/foods12102089

https://www.mdpi.com/journal/foods


https://doi.org/10.3390/foods12102089
https://doi.org/10.3390/foods12102089
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0001-5371-9957
https://doi.org/10.3390/foods12102089
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods12102089?type=check_update&version=2

Foods 2023, 12, 2089

20f18

varies. Therefore, due to the lack of large-scale planting and inconsistent ripening time of
chestnuts, the quality of chestnuts procured by processing enterprises varies. As a result,
processing enterprises have an urgent need for technology that can identify the quality
of chestnuts.

The quality of chestnuts is affected by factors such as mold, stiffness, sweetness, insects,
and many others. Among these factors, mold has the greatest impact on the chestnut. The
moisture content of chestnuts after harvest will change with storage time and environment,
and they are susceptible to mold and mildew during storage and transportation due to
their rich nutrition and moisture [2]. Compared to other agricultural products, because
the chestnut has a hard shell and chestnut mold often occurs inside the chestnut, there is
no obvious change in the appearance; it is difficult to distinguish the internal mold of the
chestnut by the naked eye [3], which brings great challenges to the processing and eating
quality of chestnut.

Typically, several techniques are now available to determine the quality of chestnuts,
including machine vision [4], near-infrared spectroscopy (NIR) [1], and computed tomogra-
phy (CT) [3]. Machine vision technology is widely used to detect damage on the surface
of agricultural products, but damage to chestnuts often occurs internally, and cannot be
detected by machine vision technology when damage occurs inside the chestnut. Good
results were obtained using X-ray—CT chestnut defect experiments [3,5]. For example,
the accuracy of identifying healthy, severely, and slightly defective chestnuts was 0.929,
0.937, and 0.836, respectively [5]. However, it cannot yet be applied to large-scale chestnut
identification and production classification because CT requires theoretical analysis by
professionals, which is costly and inefficient. In addition, HIS has a unique advantage over
X-ray—-CT in that it can represent changes in reflectance in the near-infrared range as data in
the form of images [6]. The optical properties of chestnuts vary from quality to quality, and
even small changes in the diffuse reflectance coefficient due to optical properties can be
detected directly. This technique is more sensitive to slight changes in chestnut quality than
X-ray—CT using HIS. NIR has been combined with the chemometric approach for chestnut
quality classification [1], where the highest accuracy of 0.96 was achieved using the linear
discriminant analysis (LDA) model, but NIR combined with the chemometric approach
was not as efficient as the HSI technique for detection.

Differently from the above methods, HSI obtains both spectral and spatial information
about the sample over a wide spectral range, while also providing imaging data [7]. Itis a
non-contact, nondestructive, and rapid detection technique that takes advantage of the fact
that different constituents of the sample have different spectral absorption, and the image
will reflect significantly on defects at specific wavelengths [8]. In addition, HSI has the
advantage of capturing many narrower spectral bands in a continuous spectral range [9].
In recent years, with the rapid development of HSI, many excellent machine learning
and deep learning algorithms have been proposed to solve the classification problem of
nondestructive inspection of agricultural products. In quality detection [10], the prediction
coefficient of determination R? reached 0.84 when using PLSR combined with variable
selection for skin egg-quality detection. For lychee-browning detection [11], the highest
coefficient of determination was 0.946 when collecting six days of spectral data separately
and then establishing six lychee-identification models. In the wheat mildew classification
study [12], hyperspectral data were collected from wheat on the second and fifth day,
respectively, and an optimal classification accuracy of 0.91 was achieved. Many studies also
exist in spectroscopy combined with deep learning such as rice variety identification [13],
salmon adulteration identification [7], and heavy metal detection in oilseed rape [14].
These HSI, combined with deep learning models, all have an accuracy of 0.9 or higher, so
the application of deep learning algorithm models to identify chestnut quality is a very
promising direction.

The overall goal of this study is to explore the feasibility of hyperspectral methods
combined with deep learning networks for chestnut-quality classification and to attempt to
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find an optimal recognition model that can be easily applied to practical processing and
production. The main undertakings of this paper are as follows:

1. The feasibility of the hyperspectral method combined with the deep learning model
for chestnut quality classification was verified.

2. To determine the optimal identification band for different-quality chestnuts, the
important bands of chestnuts of varying quality were extracted and compared with
the full-band chestnuts. This allowed for verification of the impact of important band
classification on chestnut quality.

3. The visualization of chestnut-quality detection by hyperspectral data combined with
principal component analysis is presented.

4.  Hyperspectral detection has the potential to determine the quality of agricultural
products such as grapefruit, lychee, peanut, and mangosteen, which may not be easily
observable by the naked eye.

2. Materials and Methods
2.1. Material Acquisition and Processing

To ensure that the chestnut samples had a uniform level of freshness, all chestnut sam-
ples in this study were provided with 170 freshly picked chestnuts by chestnut-processing
companies. Chestnuts were transported by courier, and the first day of chestnut storage
(28 December 2022) was used as the starting time for chestnut storage, and the number of
days was recorded as “1st d”. Chestnut data was obtained by hyperspectral instrumenta-
tion on the first day of sample acquisition, and the chestnuts were stored normally after
the first phase of chestnut data collection. Chestnuts were stored in semi-enclosed boxes
at a temperature and humidity of 13 °C and 67%, respectively, for the first thirty days of
storage, and at a temperature and humidity of 20 °C and 80%, respectively, for the second
thirty days of storage. The average temperature and humidity were significantly higher
in the second thirty days of storage, and the trend of chestnut quality changes would be
accelerated when the chestnut was in a higher temperature and humidity environment in
the second thirty-day stage [15]. Spectral data of chestnuts were obtained on the 1st day,
30th day, and 60th day of storage, and recorded as fresh, sub-fresh (slightly moldy), and
rotten (severely moldy). This data was used for subsequent experimental analysis.

2.2. Spectral Image Acquisition and Correction

The HSI system mainly consists of a hyperspectral imaging lens (Specim FX17, Spectral
Imaging Ltd., Oulu, Finland), a light source, a mobile platform, and a computer, with
the hyperspectral imaging lens operating in the near-infrared band (935-1720 nm). The
hyperspectral imaging lens has an image resolution of 640 x 640 px and a spectral resolution
of 8 nm, and the light source is a 280 W halogen lamp. In order to obtain clear image
information, the height between the lens and the sample is 32 cm, and the specific workflow
is shown in Figure 1. During the spectral instrument data acquisition process, there is dark
current noise and the effect of uneven illumination [6]. To increase the accuracy of the data,
corrections are made by transforming the original image (I;4) into a reflectance image (I;)
using standard white reference images (Iyps.) and dark reference images (L)

Lraw — Lunite
I[f = ——F— 1
‘ Lynite — Iraw )
where I, is the original hyperspectral image, I is the corrected image, Iy, is obtained by

using a white PTFE rod with almost 100% reflectivity, and I, is obtained by completely
covering the lens with an opaque cap.
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Figure 1. Schematic diagram of hyperspectral acquisition system.

2.3. Moisture Loss Measurement

Immediately after each phase of spectral data collection, the samples were weighed
using an electronic scale (longbei, Home Electronic Scale, Guangzhou, China), and consid-
ering the consistency of each weighed sample, each chestnut sample was labeled with a
serial number to ensure that the same sample was measured each time. After each mea-
surement, the sample was stored at room temperature, and the weight of the 1st d sample
was measured as Wy, the weight of 30th and 60th d was measured as W, and the formula
of moisture loss was calculated as in Equation (2) [16]:

W W

W W,

@

The mean, maximum, and variance data of the experimental sample weights are
shown in Table 1.

Table 1. Results of sample weight measurements.

Time Number of Samples Max Min Mean SD!

1d 170 11.7 5.8 9.28 1.35
30d 170 9.7 34 6.99 1.27
60d 170 9 3.2 6.59 1.15

1 Standard Deviation.

2.4. Principal Component Analysis Method

Principal component analysis (PCA) is an unsupervised data dimensionality-reduction
method targeted at exploring the sample space and interpreting the sample space as an
effective statistical tool. An excessive number of variables can be transformed into a smaller
number of new potential variables, which are also called principal components (PCs) [17].
Each PC has a corresponding score, which is provided in the form of scatter plots which
illustrate the association between the samples. These score plots ensure that the spectral
data can be interpreted successfully. In this study, the cluster analysis of the spectral
data of good-quality chestnuts and poor-quality chestnuts was performed using principal
component analysis to achieve a qualitative analysis of chestnut-quality detection.
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2.5. Spectral Image Pre-Processing

Proper pre-processing of the spectral data can increase the correlated chemical peaks in
the spectra and reduce the effects of baseline shift and overall curvature [18]. In this paper,
four pre-processing methods are used, including standard normal-variables transformation
(SNV), multiplicative scatter correction (MSC), and first-order derivative (FD). The standard
normal variables transformation (SNV) can effectively eliminate the scattering problem and
provide high-quality data for building the identification model [19]. MSC can effectively
eliminate the spectral differences caused by different scattering levels and thus enhance the
correlation between the spectra and the data [20]. FD is used to amplify the trend of the
spectral images through the derivative processing of the spectral images [21]. In this study,
several pre-processing methods are compared to find an optimal pre-processing method.

2.6. Feature Selection Algorithm

Hyperspectral data are characterized by a strong correlation between adjacent bands
and high redundancy [22]. Appropriate use of feature-extraction methods can effectively
reduce the dimensionality of the spectral data and simplify the model. In this study,
three feature-extraction algorithms were used: competitive adaptive reweighted sampling
(CARS), the successive projections algorithm (SPA), and the uninformative variable elimi-
nation (UVE). SPA is a forward-selection algorithm designed for selecting spectral features.
It selects the least redundant band from the original spectrum in order to reduce the effect
of spectral covariance [23]. CARS is a feature-selection method that combines Moncatello
sampling (MC) and partial least-squares (PLS) model regression, and this approach uses
cross-validation (CV) for determining the subset with the lowest root-mean-square er-
ror [24]. The equation for root-mean-square error cross validation (RMSECV) is as follows:

RMSECV = \/ % Yo -y 3)

where y denotes the true value and y., denotes the predicted value in cv. UVE is a variable
selection method based on stability analysis of PLS regression models for eliminating
redundant or uninformative spectral parameters [25].

2.7. Traditional Machine Learning Methods

The partial least-square discriminant analysis (PLS-DA) model is useful for solving
classification problems in two stages. The first stage is the application of PLS components
for dimensionality reduction, and the second stage is the predictive model building, i.e.,
discriminant analysis. In classification, PLS-DA transforms categorical variables into
continuous variables, and then calculates the Latent Variable Scores (LVS) to fit the model
using covariance [26].

Support vector machine (SVM) is a well-established classification method that mainly
solves nonlinear classification, function-estimation, and pattern-recognition problems. The
basic idea is to transform the low infinitesimal indistinguishable variables into a hyperplane
that can correctly partition the training data set in a high-dimensional feature space with
maximum measurement intervals. In this study, the radial basis function (RBF) is chosen
as the kernel function, which has a better ability to handle nonlinear data [27]. Random
forest (RF) is an effective method for analyzing high-dimensional data by constructing
multiple decision trees in parallel to combine their results to produce an output [28], and
the decision trees and minimum number of leaves in this paper are set to 2.

2.8. Deep Learning Models
2.8.1. Convolutional Neural Networks
CNN is an unsupervised network, which is commonly used in visual image and

speech processing, for example. With the continuous research and use of CNN, many
applications using CNN for hyperspectral image classification have also emerged in the
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field of spectroscopy [29]. CNN consists of an input layer, convolutional layer, maximum
pooling layer, fully connected layer, and output layer. In this study, a chestnut quality
classification model called “1DCNN" is proposed and found to be effective. The structure
diagram of the one-dimensional CNN is shown in Figure 2. The 1IDCNN model comprises
of three convolutional layers with a kernel size of 2 * 1. The number of kernels used were
16, 32, and 32 respectively. The step size and padding were set at 2 and 0, respectively.
The maximum pooling layer has a size of 2 * 1 with a step size of 1. The fully connected
layer reduces the neuron parameters to 3, and finally the output is passed through softmax.
To speed up the training process and avoid the vanishing gradient problem, the rectified
linear unit (ReLU) is used as the activation function [30] (Equation (4)). For classification
problems, the cross-entropy function (Equation (5)) is often applied as a loss function,
and the cross-entropy function to measure the distance between the actual output and the
desired output [31].

£(x) = max(0, %) @

1 S q . .
Le(y.7) = Zl (— g yjlog (y}-)> ()
where L¢ represents the classification loss function; y is the label vector; 7 is the predicted
vector; s is the number of samples; and g is the number of classes. In a classification task,
the softmax operator is applied to the predicted output to obtain the predicted probability,
and the cross-entropy loss is then compared with the true label, which is presented in
Equation (6).

L= =)} yilogpip = softmax(y) (6)

L
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,,,,,,,,,,,,,,,,,
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Figure 2. Cont.
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Figure 2. Deep learning model structure diagram: (a) CNN structure diagram; (b) LSTM structure

Full Connected Layer

diagram.

2.8.2. Long Short-Term Memory Network

The long short-term memory network (LSTM) is a special kind of recurrent neural
network (RNN) that solves the general recurrent neural network long-term dependency
problem [32]. LSTM can perform a single operation across all sequence lengths and optimize
vanishing gradient problems through its gating features [33]. T Due to the advantages of
the LSTM model, it has also been more widely used in the field of spectroscopy in recent
years [9,34]. The LSTM model in this study is shown in Figure 2. The LSTM model consists
of an input layer, two LSTM layers, and one fully connected layer. Among them, ReLU
is chosen for the activation function, thus speeding up the learning speed and avoiding
the problem of vanishing gradients. The deep learning model in this study is executed in
MATLAB R2022a (Mathworks, Natick, MA, USA).

3. Results and Discussion
3.1. Change in Water Content

The study found that the moisture content of chestnuts decreased as the number of
storage days increased, and the rate of moisture loss was significantly faster during the
first 30 days than the last 30 days. Measurements taken of the weight of fresh, sub-fresh,
and rotten chestnuts led to this conclusion. The weight change and water loss of chestnuts
increased with the increase of storage days, as shown in Figure 3, and water loss slows
down for 30-60 days, probably because the chestnut mold develops during this period and
mold multiplies rapidly [35]. The average weight of chestnuts decreased by 2.68 g after
60 days of storage at room temperature, and the average moisture loss was 29.1%, which
also indicated that there was a large difference in the moisture of rotten chestnuts stored
for a long time compared to fresh chestnuts.

3.2. Spectral Overview

The average spectra of the different chestnut qualities are presented in Figure 4, with
the spectral wavelength range in the NIR band (935-1720 nm). In general, the three different
qualities of chestnuts have the same spectral curve waveforms with similar peaks and
troughs, but different reflectance values due to the consistent internal composition of the
chestnuts [22]. Among them, the sub-fresh and rotten chestnuts showed a more scattered
spectral curve, which may be due to the different degrees of quality variation in these
chestnuts.
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Figure 3. Weight and moisture loss of chestnuts: (a) weight variation; (b) moisture loss.
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Figure 4. Reflectance spectra of different quality chestnuts: (a) fresh chestnuts; (b) sub-fresh chestnuts;
(c) rotten chestnuts; (d) average spectrum.
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Compared to fresh chestnuts, sub-fresh chestnuts showed a higher reflectance due to
the water-absorption peak associated with the O-H bond at 970 and 1450 nm (Figure 4) [36].
The measurement of chestnut moisture loss W, also showed that chestnut moisture loss
was rapid during the first thirty days of storage, showing a large difference in spectral water
absorption peaks. In the second thirty days, it is likely that the moisture was produced
by the rapid multiplication of chestnut mold bacteria, as has been seen in some studies
on chestnut mold [35]. The appearance of an absorption peak at 1200 may be related to
C-H bonded sugars and starch [37]. Although the average spectra of different quality
chestnuts exhibit differences, it is clear from the overall spectral map that this is due to
large variations in individual chestnuts weighted to the average spectrum. Therefore, a
more reliable way to identify chestnuts with different degrees of variation needs to be
established.

3.3. PCA Qualitative Analysis

Before building the model, the raw spectral data were visualized and qualitatively clus-
tered using PCA. Since the cumulative contribution of the first two principal components
(PC1, PC2) reached 97.4%, with PC1 explaining 79.8% of the variance and PC2 explaining
17.6% of the variance, PC1 and PC2 were chosen to explain the clustering analysis of the
chestnut spectral data. As shown in the scatter plot of PCA scores in Figure 5, the distri-
bution of the three chestnut species can be effectively separated using confidence ellipses.
There is a certain degree of overlap between fresh chestnuts and sub-fresh chestnuts, and a
small overlap between sub-fresh chestnuts and rotten chestnuts, which may be caused by
the different change rates of different chestnuts.

T T T v T T . T . T
L]
9 - Fresh a
?  Secondary fresh
Corruption
,2 - —
T T T y T T : T X T
-4 =2 0 2 4 6

PC1 (79.8%)
Figure 5. PCA score graph of chestnut samples.

In the visualization of hyperspectral data, the first three principal component images
were obtained by PCA dimensionality reduction; as shown in Figure 6, there was no
obvious difference between the original images of fresh and sub-fresh chestnuts, while
there was a slight difference in the principal component images, and at this time when
moldy chestnuts appeared on the principal component images of sub-fresh chestnuts could
be distinguished more intuitively by means of images. When comparing the principal
component images of the sub-fresh and moldy chestnuts, there is a significant difference,
which further illustrates the feasibility of spectra for chestnut-quality differentiation.
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Figure 6. Sample raw images and principal component images: (a) fresh chestnuts; (b) sub-fresh
chestnuts; (c) rotten chestnuts; (d-f) images of the first 3 principal components of the corresponding
quality chestnut.

3.4. Chestnut Quality Identification Results Using Machine Learning Models

For the three pre-processing methods of RAW, MSC, SNV, and FD spectra (Figure 7), a
chestnut-quality classification model was developed at 224 wavelengths. The identification
models used PLS-DA, SVM, and RF for fresh (1st d), sub-fresh (30th d), and rotten chestnuts
(60th d), respectively. The data are divided into training and test sets in the ratio of 3:1,
where the training and test sets for RF are used in a disordered order to improve their
generalization ability. The recognition results of PLS-DA, SVM, and RF models for different
pre-processing methods are shown in Table 2, and Figure 8 shows the corresponding
confusion matrix for the test set with higher accuracy.

It can be observed that in most cases, the use of pre-processing can improve the
accuracy of the model for the spectra. The RF + SNV and RF + MSC approaches achieved
95.28% and 95.56% in the training set, respectively, while the RF + FD and SVM + SNV
approaches achieved the highest accuracy of 94% and 93.33% in the test set, respectively,
with good results in overall accuracy using both PLS-DA and RF models.

The confusion matrix was used to further analyze the degree of misclassification within
each model, with A, B, and C labels representing fresh, sub-fresh, and rotten chestnuts,
respectively. From an overall perspective, A and B are susceptible to misclassification,
while C is also somewhat susceptible to misclassification with B and C. This phenomenon
is analogous to the behavior of spectral curves, where fresh and sub-fresh chestnuts exhibit
similar curves, but curves of rotten chestnuts are considerably more dispersed, leading to a
higher likelihood of misclassification as fresh or sub-fresh chestnuts. It is because of the
similarity in spectral curve that it is more difficult for the traditional classification model to
obtain satisfactory accuracy directly [9], so further deep learning approaches are needed to
obtain satisfactory accuracy.
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Figure 7. Pre-processing curves: (a) RAW; (b) SNV; (¢) MSC; (d) FD.

Table 2. Recognition results of machine learning models based on different pre-processing methods.

Pre-Processing Method

M 1
ode RAW SNV MSC FD
Train 2 Test 3 Train Test Trian Test Trian Test
PLS-DA 88.61 90.67 88.89 90 88.89 90 93.33 93.33
RF 95.27 88 95.28 89.33 95.56 91.33 96.39 94
SVM 87.45 87.06 93.73 93.33 77.84 76.27 88.43 88.43

2 Train set; 3 test set.
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Figure 8. Confusion matrix for different recognition models: (a) PLS-DA + RAW; (b) SVM + RAW;
(c) RF + RAW; (d) RF + MSC; (e) RF + FD; (f) SVM + SNV.

3.5. Chestnut Quality Recognition Results Using Deep Learning Models

The dataset was partitioned using the same method as before, and data was random-
ized to enhance the model’s generalization ability. The CNN and LSTM deep learning
models were built to quickly detect different quality chestnuts, respectively, and the models
were trained for 500 rounds using segmented learning with a learning rate of 0.01 for the
first 80% iterations and a decreasing learning rate of 0.1 for the last 20%, respectively. The
recognition performance of the models is shown in Table 3. Observing the results in the
table shows that the use of deep learning models is significantly better than traditional
machine learning models, which is not an exception: in potato-disease detection [38],
CNN models outperform traditional models in terms of recognition results. The same
phenomenon is demonstrated in this experiment, where the CNN model also outperforms
the LSTM model in terms of deep learning in general. The CNN models achieved 100%
accuracy in the training set after pre-processing, and the highest accuracy of 98.67% was
achieved in the MSC-CNN test set. However, the FD-LSTM test set has the highest accuracy
of 99.72%, and the model accuracy and loss function are shown in Figure 9.

Although the recognition accuracy is improved by using a deep learning network, the
deep learning network requires constant iterations, and the network has a low recognition
efficiency with an average running time of 53 s. Therefore, it is important for practical use
to reduce the amount of input information and improve the model recognition efficiency
by screening spectral feature wavelengths.
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Figure 9. Loss function and accuracy curve of LSTM models: (a) training set; (b) test set.
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Table 3. The results of chestnut-quality recognition based on deep learning models.

Model

Time 4

Pre-Processing Method

RAW SNV MSC FD

CNN
LST™M

50s
56s

Tr

ain Test Train Test Train Test Train Test

99.17 96 100 96.67 100 98.67 100 98.33
98.33 95.33 99.44 97.33 98.33 94 99.33 99.72

—~~
()
~

RMSECV Variables

Regression coefficients

4 Average model running time.

3.6. Identification of Important Wavelengths

The accuracy of the traditional classification model does not achieve more satisfactory
results, and the deep learning model has good results in terms of recognition accuracy, but
the recognition efficiency is low. In this paper, we try to identify important wavelengths by
spectral feature selection to improve the recognition efficiency of the deep learning model
and improve the accuracy of the traditional model at the same time. The feature selection
is performed by the SPA, CARS, and UVE algorithms, and the important wavelengths
are recognized by the FD pre-processing method, which performs better in traditional
classification models and deep learning models, while RAW is used as a control.

Different algorithms for the extraction results are shown in Figure 10. From the figure, it
can be observed that although different feature wavelength-identification algorithms are used,
the identification results are mostly concentrated around 1000, 1400, and 1600 nm wavelengths,
which can be used as important wavelengths for chestnut = quality identification.
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Figure 10. Important wavelength extraction results: (a) CARS algorithm; (b) SPA algorithm; (c) UVE
algorithm; (d) important wavelength distribution.
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Real Labeling

3.7. Important Wavelength-Identification Results

RF and CNN, which have higher accuracy in machine learning and deep learning
models, were applied in further studies, and the specific results are shown in Tables 4 and 5.
The model confusion matrix is shown in Figure 11, where there is a small improvement in
the accuracy of the test set before the identification of important wavelengths using the RF
model. The RAW-UVE-CNN recognition model has a slight increase in the accuracy of the
test set, and a slight decrease in the accuracy of the test set of FD pre-processing, which is
likely to have been caused by the reduction of the network input parameters.

Table 4. Results of different important wavelength recognition algorithms based on RF.

Preprocessing Method
Method Variables >
RAW FD
Train Test Train Test
SPA 9,96 96.67 91.33 94.44 87.33
CARS 19, 44 93.89 90 96.94 92
UVE 121,54 97.5 89.66 96.94 90

5 The number of input variables in RF model. ¢ Denotes the RAW spectra and FD pre-processing mode input
variables, respectively.

Table 5. Results of different important wavelength recognition algorithms based on CNN.

Preprocessing Method
Method Variables Time
RAW FD
Trian Test Trian Test
SPA 9,9 8s 98.89 95.33 100 97.33
CARS 19, 44 10s 98.33 94 99.17 94
UVE 121, 54 11s 98.61 97.33 99.44 98
(b)
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Figure 11. Confusion matrix for RF models: (a) RAW-SPA; (b) FD-CARS.

However, although there is a slight decrease in accuracy by identifying significant
wavelengths using the deep learning network, this approach significantly reduces the
recognition time of the network and improves the network recognition efficiency. The
model results and confusion matrix are shown in Figure 12. The average running time of
the deep learning network was reduced from 50 s to 11 s. The improvement in recognition
efficiency offers potential for the practical applications of chestnut-quality detection.
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Figure 12. Model results and confusion matrix: (a) CNN training set accuracy and loss function;
(b) CNN test set accuracy and loss function; (c¢) FD-UVE-CNN model confusion matrix.

4. Discussion

In food processing, it is crucial to identify the quality of chestnuts quickly and non-
destructively. There have been previous studies on chestnuts investigating the identification
of quality, mold, and origin, and this paper builds on that to conduct a more in-depth study.
From the perspective of similar studies, researchers have studied chestnut origin and mold;
for example, one investigated the application of backpropagation neural network (BPNN)
to achieve the classification of healthy and moldy chestnuts with an accuracy of 0.99 [35].
Chestnut origin identification experiments using 1D-CNN and PLS-DA algorithms both
achieved an accuracy of 0.971 [39]. In addition, the overall accuracy of HIS combined with
deep learning for classification in nut-quality assessment was 0.958 [40]. This paper offers
significant improvements in chestnut quality detection, distinguishing itself from prior
research in the following ways. Firstly, a more accurate quality classification is utilized
to categorize chestnuts into three groups for detection, with the application of the latest
deep learning methodologies that further improve accuracy. Additionally, this paper shows
that the moisture loss value of chestnuts is strongly correlated with the 1450 nm water
absorption peak that increases as chestnuts are stored over time. Wavelength identification
algorithms such as SPA, CARS, and UVE are employed to identify that the key wavelength
range for chestnuts is mainly concentrated around 1200, 1400, and 1600 nm. Utilizing
the identified wavelength distribution characteristics, multispectral equipment can be
developed, making chestnut quality inspection more accessible and efficient.
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5. Conclusions

This paper utilized a combination of HSI and traditional classification models, as well
as deep learning models, to detect chestnut quality. By comparing the recognition effects of
different models, combined with different treatments, the best model for chestnut-quality
detection and the important wavelengths for chestnut-quality detection were identified.
It was observed that FD-RF achieved the highest accuracy of 94% in the traditional clas-
sification model, while FD-LSTM achieved the highest accuracy of 99.72% in the deep
learning network, with various pre-processing methods and different classification models
employed.

Furthermore, feature extraction was used to identify the important wavelengths for
chestnut-quality identification, which were mainly distributed around 1000, 1400, and
1600 nm. The significant wavelengths were identified with a slight increase in the original
spectral accuracy in the RF model, and the significant wavelengths were used as input
for the deep learning network, which had a slight decrease in accuracy but significantly
reduced the network identification time (39 s on average).

Overall, the aim of this paper is to investigate the possibility of using hyperspectral
imaging in conjunction with a deep learning model for chestnut-quality detection. Through
the identification of significant wavelengths, we were able to enhance the effectiveness of
the hyperspectral detection method. Furthermore, a FD-UVE-CNN model was developed,
which showed high levels of accuracy and recognition efficiency with percentages of 97.33%
and 11 s, respectively. These findings suggest that deep learning models have the potential
to be applied in the practical detection of chestnut quality.
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