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Abstract: The viable but nonculturable (VBNC) state is a survival strategy for bacteria when encoun-
tered with unfavorable conditions. Under favorable environments such as nutrient supplementation,
external stress elimination, or supplementation with resuscitation-promoting substances, bacteria
will recover from the VBNC state, which is termed “resuscitation”. The resuscitation phenomenon is
necessary for proof of VBNC existence, which has been confirmed in different ways to exclude the
possibility of culturable-cell regrowth. The resuscitation of VBNC cells has been widely studied for
the purpose of risk control of recovered pathogenic or spoilage bacteria. From another aspect, the
resuscitation of functional bacteria can also be considered a promising field to explore. To support
this point, the resuscitation mechanisms were comprehensively reviewed, which could provide the
theoretical foundations for the application of resuscitated VBNC cells. In addition, the proposed
applications, as well as the prospects for further applications of resuscitated VBNC bacteria in the
food industry are discussed in this review.

Keywords: resuscitation; viable but nonculturable state; functional bacteria; application

1. Introduction

Since it was first discovered in Escherichia coli and Vibrio cholerae in 1982, the viable but
nonculturable (VBNC) state has been a widely known phenomenon adopted by microor-
ganisms when confronted with stressful environments [1]. Under this state, VBNC cells
lose the ability to grow on routine culture medium, but their metabolic activities and gene
expression capacities are retained, and the cytoplasmic membranes remain integrated [2].
However, this state is still controversial due to the suspicion that VBNC cells are actually
“dying” cells with residuary metabolic activities that cannot be cultured on media, or that
VBNC cells are “dead” cells with minor injuries on the membrane [3]. There are distinct
differentiations between death and the VBNC state: bacterial death is the point where
the injury extent is beyond the ability of a cell to resume growth; however, the VBNC
state postulates a specific program of a long-term survival state rather than a short-term
survival state followed by a further dead state [4]. In this circumstance, resuscitation is a
keystone of the VBNC state. The resuscitation phenomenon from the VBNC state was first
recognized in Salmonella enteritidis and E. coli in 1984 [5]. While providing VBNC bacteria
with favorable conditions, the transition from a VBNC state to a culturable state is termed
“resuscitation” [2]. Entry into the VBNC state can be considered as a survival strategy
under stresses only when the VBNC cells possesses the ability to resuscitate. In other words,
resuscitation is a requisite to prove the existence of the VBNC state [4].

VBNC bacteria are widely distributed in environments such as water, air, soil, foods,
medical facilities, food processing procedures, and so on [1]. A large proportion of bacteria
that can enter the VBNC state are pathogenic bacteria, which may still express toxins under
the VBNC state or regain infectivity and pathogenicity after resuscitation, causing human
illness or food spoilage [2,6]. The resuscitation of VBNC cells in foods may take place during
shelf-life storage, which could be associated with foodborne outbreaks [7]. For a long time,

Foods 2023, 12, 82. https://doi.org/10.3390/foods12010082 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods12010082
https://doi.org/10.3390/foods12010082
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0003-0216-9726
https://doi.org/10.3390/foods12010082
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods12010082?type=check_update&version=1


Foods 2023, 12, 82 2 of 15

researchers spent a lot of effort studying the risks of VBNC-state bacteria and resuscitated
cells to human health. Makino et al. proved that VBNC E. coli O157:H7 in salted salmon
roe could regain pathogenicity in germfree mice by resuscitating in the mouse intestine [8];
VBNC E. coli O157:H7 and VBNC Legionella pneumophila cells retained the ability to produce
toxin genes or virulence proteins [9,10]; VBNC Campylobacter jejuni retained the ability to
invade Caco-2 human intestinal epithelial cells in vitro [11]. Therefore, VBNC-state bacteria
and, more importantly, their resuscitation, are becoming hot areas in food safety research.
However, every coin has two sides. When functional bacteria enter the VBNC state, things
could be different; the prevention and control of resuscitation sometimes may be switched to
promotion and reasonable application, which may play key roles in ecological processes and/
or have great value in the food industry [12]. No matter for what reason, the exploration
and recognition of resuscitation mechanisms is necessary and of great significance.

In this review, the different aspects of resuscitation including the confirmation strate-
gies, resuscitation factors, resuscitation mechanisms, as well as the prospects for potential
application in the food industry have been comprehensively reviewed. This review aims to
provide updated and in-depth references for researchers and lay a foundation for investiga-
tions into the isolation and application of resuscitated VBNC bacteria.

2. Confirmation of Resuscitation from the VBNC State

Since the VBNC state is an ecologically significant state for bacteria, the ability of cells
to undergo a resuscitation process from this dormant state to an actively metabolizing
state must be possible to prove the existence of the VBNC state. There was skepticism that
the regrowth phenomenon might be due to the very few culturable cells rather than the
resuscitation of VBNC cells [13–15]. For example, Bogosian et al. thought that the resuscita-
tion of VBNC-state V. vulnificus induced by a low temperature was the regrowth of H2O2
sensitive culturable cells [13]. To contradict the above suspicions, several strategies were
adopted to exclude the impact of possibly existent culturable cells. For instance, the induced
VBNC-state bacterial suspensions were diluted serially to minimize the possible existence of
culturable cells before resuscitation [16,17]. When mixtures of culturable and nonculturable
cells are diluted to the point where only nonculturable cells are present, the revived cells
are resuscitated cells from the VBNC state [18]. In addition, antibiotics such as ampicillin
were added to the medium after VBNC induction to inhibit the proliferation of remaining
culturable cells, the actively growing cells during the resuscitation procedure were therefore
confirmed to be resuscitated cells from the VBNC state [19]. Furthermore, the possibility of
the regrowth of H2O2-sensitive culturable cells was excluded by the addition of an H2O2
scavenger including sodium pyruvates and catalases to the resuscitation medium [20,21].
Based on the above strategies, the resuscitation process from the VBNC state was confirmed
and the strategies were further applied in resuscitation-related investigations. With the
evidence proposed above, resuscitation is now widely accepted as the recovery of VBNC
cells, which is usually determined through plate counting or turbidity measurement [6,22].

The ability to resuscitate is dependent on the persistent period of the VBNC state and
external stress intensity. It was proposed that resuscitation ability was gradually impaired
with a prolonged VBNC-state duration time [20,23]. After an overlong time, bacteria might
even lose the ability to resuscitate [24]. Therefore, this period was defined as the “resuscitation
window” [25]. In addition, Zhao et al. discovered that the resuscitation ability of VBNC state
E. coli O157:H7 reduced significantly with an increased intensity of induction conditions [26].

3. Resuscitation: The Reverse Process of the VBNC State?

Plenty of factors are contributory to the resuscitation of VBNC cells, including, but not
limited to, external stress removal, supplementation with peroxidases, coculturing with
or being inoculated to the host of VBNC cells, and supplementation with resuscitation
promoting factors (Rpfs) (Table 1). In many cases, the simple reversal of VBNC-inducing
factors was sufficient to allow resuscitation, so the resuscitation process sometimes might
be simply regarded as a reverse process of the VBNC state. However, it may be inexact
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because the removal of stressful environments sometimes may not be contributory to
resuscitation [27]. In addition, other resuscitation factors such as Rpfs and autoinducers
(AIs) have also implied the existence of signaling pathways to stimulate resuscitation.
Therefore, the resuscitation process may be a complicated physiological process rather than
the simple reverse of the VBNC sate.

VBNC cells have distinct characteristics such as declined metabolic activity, decreased or
loss of pathogenicity, dwarfing, or abnormal morphology [25,28,29]. Stimulated by a variety
of environmental, biological, or chemical stimuli, VBNC cells may resuscitate and recover
their cell division ability with an elevated metabolic level, as well as pathogenicity and cell
morphology (Figure 1). The recovery of the abnormal morphology of VBNC cells to some
extent is a re-shape process, and the restored cell division ability during resuscitation from
the VBNC state requires the re-synthesis of cytoplasmic proteins and cell wall peptidoglycan.
Through supplementing chloramphenicol and penicillin, which inhibits protein and pepti-
doglycan synthesis, respectively, to the resuscitation medium, VBNC state V. vulnificus was
found unable to resuscitate [24,30]. In addition, after the inhibition of the penicillin-binding
proteins PBP1 and PBP5, which were involved in the late assembly of peptidoglycan, VBNC
state E. Faecalis cells could not resuscitate [31]. Therefore, resuscitation is not simply a reverse
process of the VBNC state; newly synthesized proteins and possibly a remodeling of the cell
wall to shape a normal morphology may be necessary in this process.
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Figure 1. The formation of the VBNC state and its resuscitation. While confronted with prolonged
stressful environments, a small proportion of viable bacteria will enter the VBNC state, under which
bacteria cannot develop into colonies on their culture medium, but cellular metabolic activities are
retained although significantly decreased. When provided with favorable conditions, VBNC cells
will resuscitate to the viable state with recovered metabolic activity and culturability.
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Table 1. Conditions that facilitate the resuscitation process of VBNC cells.

Resuscitation Factors Bacterial Species Resuscitation Conditions
References

VBNC-State Induction Condition Corresponding Resuscitation Condition

External stress removal Arcobacter butzleri, Aeromonas hydrophila,
Staphylococcus aureus, Vibrio vulnificus, E. coli Low temperature Temperature up-shift [24,32–36]

Salmonella bovismorbificans, Enterococcus faecalis,
Citrobacter sp., V. cholerae, Listeria monocytogenesisolates,

Enterococci sp., Pasteurella piscicida, Yersinia pestis,
V. shiloi, V. tasmaniensis, V. parahaemolyticus

Starvation Addition of nutrients [29,37–45]

Enterobacter cloacae Desiccation Rewetting [46]

E. coli O157:H7, S. enterica serovar
Typhimurium, L. monocytogenes Low pH Adjustment to the optimal pH [47]

Acetic acid bacteria, lactic acid bacteria O2 deprivation Addition of O2 [48]

E. coli O104:H4, Acidovorax citrulli, Erwinia amylovorain Copper Addition of chelating agent [49–51]

S. enterica, E. coli O157:H7 Food processing techniques Stress removal [26,52]

Supplementation
with peroxidases

Yeasts, Ralstonia solanacearum, E. coli O157:H7,
Enterococcus sp., Salmonella sp. S. aureus, V. cincinnatiensis Catalase, sodium pyruvate, SOD, GST, CAT, acetaldehyde [53–61]

Host of VBNC cells
Legionella pneumophila, E. coli O157:H7, Campylobacter jejuni,

Helicobacter pylori, L. monocytogenes, V. cholerae O1,
Francisella tularensis, E. faecalis, Campylobacter sp.

Yolk sacs of embryonated eggs/1-week-old chicks, Caco-2 human intestinal epithelial
cells, passage in the mouse intestine, co-culture with eukaryotic cells, injected

intraperitoneally into mice, mice stomachs, co-culture with
Acanthamoeba/Castellanii/Acanthamoeba polyphaga, ingestion by C. elegans,

inoculated in iron-dextran-treated mice

[9,11,62–79]

Supplementation with
substances that could
promote resuscitation

Salmonella typhimurium, E. coli O157:H7,
Vibrio sp., V. parahaemolyticus Supplementation with autoinducer (AI) [6,80–82]

H. pylori, Mycobacterium tuberculosisare, Rhodococcus sp.,
actinobacteria, M. smegmatis, Sphingomonas and

Pseudomonas, Rhodococcus biphenylivorans strain TG9T
Supplementation with resuscitation promoting factor (Rpf) [83–93]
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4. Mechanisms of Resuscitation

Previously, most VBNC-related studies focused on the exploration of formation mech-
anism [22,94–96], while studies on the mechanisms of resuscitation were rare. For the
purpose of preventing and controlling the hidden risk caused by VBNC cells (resuscitated
VBNC cells) or VBNC bacterial strain application after resuscitation, an explanation of
the resuscitation mechanism was necessary. Summarized from the existing studies, such
mechanisms can be classified into the following aspects: resuscitation promoting factors
(Rpfs), quorum sensing, pyruvates sensing and application, and mechanisms based on
global metabolism analysis.

4.1. Rpfs

The discovery and application of Rpf is a notable landmark in the resuscitation of
VBNC cells. Rpf protein was first discovered in M. luteus as a bacterial cytokine, which
promotes the resuscitation and growth of non-growing or dormant cells [97,98]. Rpf is a
muralytic enzyme revealed by its cell wall peptidoglycan lysis ability, which contains a
70-residue domain at the C-terminal that adopts a lysozyme-like fold, and the invariant
catalytic glutamate residue is conserved [99]. Similar proteins are widely occurred among
other high G+C gram-positive bacteria, including corynebacterial, mycobacteria, strepto-
mycetes, and fermicutes (contain Rpf analogues) [100]. It was reported that Rpf protein
with a picomolar concentration could increase the viable cell number of dormant M. luteus
at least 100-fold [98].

The resuscitation effect of Rpf was significant; however, its functioning mechanisms
were not thoroughly studied. Through analyzing the products from mycobacterial pepti-
doglycan hydrolysis reactions, RpfB was found to form a complex with a protein named
as resuscitation-promoting factor interacting protein (RipA) [101]. In this complex, RpfB
cleaves the β-1,4-glycosidic bond between N-acetylmuramic acid (MurNAc) and GlcNAc,
whereas RipA is predicted to be an endopeptidase that cleaves the stem peptide (D-iGlu-
meso-diaminopimelic acid (Dap)) [101,102]. Both proteins colocalize at the septum of divid-
ing cells and work synergistically to hydrolyze mycobacterial PG [103]. The complex of
RpfB–RipA was reported to be inhibited by penicillin binding protein 1 (PBP1): RipA would
form a complex with PBP1 and form a thick layer of PG at the septum. With the increased
concentration of RpfB, RipA might exchange PBP1 for RpfB to form a new complex with
a high efficiency of PG hydrolysis [104]. Some researchers thought that such a type of cell
wall hydrolysis would directly stimulate VBNC cell resuscitation, since the peptide moieties
of PG were crosslinked heavily in the VBNC state to resist external stresses [28,101,105].
Therefore, the recruitment of Rpf and RipA during PG remodeling is essential for cell
division and resuscitation (Figure 2A). Apart from that, the PG fragments derived from
cell wall hydrolysis could directly activate resuscitation [106]. However, how exactly PG
fragments activate the resuscitation process remains unclear and researchers have proposed
hypotheses to try to explain it. Panutdaporn et al. found that the addition of rabbit anti-Rpf
Ab inhibited the resuscitation effect by Rpf, thereby suggesting that Rpf might be a signal
molecule that could bind to the receptor to trigger the resuscitation process [107]. More-
over, the extracytoplasmic domain of Ser/Thr kinase PknB in Mycobacterium tuberculosis
could bind exogenous PG fragments hydrolyzed by Rpf with its muralytic activity, which
was conducive for PknB to localize at the mid-cell to stimulate growth [108] (Figure 2B).
Although possible mechanisms have been proposed, more evidence is still needed to prove
the activation process of PG fragments in resuscitation, which is a problem to be solved in
future studies.

Other Rpf analogues were also reported to possess resuscitation-promoting abilities.
The YeaZ protein in V. parahaemolyticus, V. harveyi, S. typhimurium, and E. coli has been shown
to have promoting effects on VBNC-state recovery [107,109–111]. The yeaZ gene was found
to be ubiquitous in the genome of bacteria such as Salmonella sp. and E. coli, which was
necessary for bacterial growth [112]. Zhao et al. proposed that YeaZ exhibited protease
activity, and muralytic activity was lower. Single amino acid mutation greatly affected
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protease activity, as well as resuscitation-promoting ability [113]. However, the impact of
mutation was much less on the muralytic activity of YeaZ, and the resuscitation-promoting
effect was not affected [113]. Hence, in contrast to Rpf, the promoting effect of YeaZ may be
correlated with its protease activities, but its function mechanism lacks further investigation.
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4.2. Quorum Sensing

Quorum sensing (QS) is a widespread communication system in bacteria, which is a
type of population density-dependent cell–cell signaling that triggers changes in behavior
when the bacterial population reaches a critical density [114]. QS signaling can result in
global changes in gene expression [115]. Typically, signal molecules are continually generated
with a low bacterial concentration, and the signal accumulates to a threshold concentration
as the population density increases. Afterwards, the signal will interact with its receptor
protein to cause a coordinated change in bacterial gene expression [115]. Such hormone-like
molecules are termed as autoinducers (AI), of which there are several types, including acyl-
homoserine lactone (AHL)-type signals (usually generated in G- bacteria), short oligopeptide
signals (in G+ bacteria), Streptomyces γ-butryolactones, and the AI-2 family (in V. harveyi and
S. typhimurium) [114].

QS signaling in bacteria can orchestrate an adaption to stressful conditions, and it has
been reported to play a role in the resuscitation of VBNC cells. Ayrapetyan et al. discovered
that the bacterial cell-free supernatants of V. vulnificus containing AI-2 molecules could
awake VBNC Vibrio populations within oysters and seawater, which was inhibited by the
QS inhibitor cinnamaldehyde [A]. Previous studies have indicated that the QS system was
involved in the activation of superoxide or catalase to regulate the antioxidation activities
in Pseudomonas aeruginosa [116]. Furthermore, Liao et al. (2019) also suggested that the
QS system triggered the expression of catalase to restore the growth of VBNC-state S. ty-
phimurium [80]. In accordance with that, AI-2 was found to be useless in the resuscitation of
the rpoS mutant of V. vulnificus, whose production of catalase was suppressed [82]. Hence, it
was suggested that RpoS is also an important factor in AI-2-mediated resuscitation [82,117].
Based on the above results, a model was proposed (Figure 3): during resuscitation, the
gradually generated AI-2 molecules synthesized by LuxS specifically bind to the periplas-
mic binding protein of LuxP, which forms a two-component sensing kinase system with
LuxQ [118]. With a low level of AI-2, LuxQ acts as a kinase, but it acts as a phosphatase
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while AI-2 is at a high level. Therefore, the phosphorelay of LuxO derepresses the expression
of LuxR (a transcription factor in the QS regulon), which can stimulate rpoS expression and
subsequently induces the expression of catalase (KatG) [82]. Through this regulation, cells
are allowed to persist under the toxic properties of H2O2 and revive to a culturable state [82].
To sum up, QS signaling may be critical for the resuscitation process of VBNC bacteria.
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direction of AI-2.

4.3. Pyruvates Sensing and Application

Sodium pyruvate (SP), a well-known intermediate key metabolite in glycolysis, is
known to be functional in the resuscitation of VBNC cells. VBNC cells are able to grow on
standard media, but they can revive on media supplemented with SP [26]. SP has long been
regarded as an H2O2-degrading compound that could facilitate the resuscitation of VBNC
cells under prolonged stress or the effects of toxic chemicals, such as H2O2 produced in a
culture media during autoclaving [54,119–121]. It was suggested that VBNC cells could be
resuscitated to a culturable state by SP or other substances such as catalase and superoxide
dismutase, due to their H2O2- or reactive oxygen-degrading effect [20,21].

More opinions have emerged recently. Apart from being an H2O2-degrading com-
pound, pyruvate is also a kind of carbon source that can be utilized by bacterial cells.
Morishige et al. found that pyruvate and its analogue α-ketobutyrate both showed restora-
tion activities; however, other well-known antioxidant or radical-scavenging reagents such
as N-acetyl-L-cysteine, α-lipoate, and D-mannitol were ineffective in resuscitating VBNC
Salmonella Enteritidis cells induced by H2O2 [57]. Through further investigation, it was
implied that α-keto acids and pyruvate were incorporated by VBNC cells, which were
related to the restoration of the biosynthesis of macromolecules, especially DNA, not just
degrading intracellular peroxide [57]. It was later shown that pyruvate was avidly taken up
by starved and cold-stressed VBNC E. coli cells through the high-affinity pyruvate/H+ sym-
porter BstT/YhjX, which was regulated by two pyruvate-sensing hidtidine kinase response
regulator systems, BtsS/BtsR and YpdA/YpdB, respectively [122]. BtsSR and YpdAB are
two-component systems (TCSs) which respond to extracellular pyruvate, composed of
a membrane-integrated histidine kinase (BtsS/YpdA) that can perceive pyruvate, and a
cytoplasmic response regulator (BtsR/YpdB) mediates btsT expression [123,124]. With the
import of pyruvate, cells then initiate DNA and protein biosynthesis for growth restoration
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(Figure 4). Therefore, VBNC cells may utilize pyruvate as an alternative carbon source and
correspondingly fine-tune their transport capacities and metabolism for resuscitation.
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Figure 4. The uptake and utilization of pyruvate to resuscitate VBNC bacteria. Pyruvate was taken up
through the high-affinity pyruvate/H+ symporter BstT/YhjX, which was regulated by two pyruvate-
sensing hidtidine kinase response regulator systems, BtsS/BtsR and YpdA/YpdB, respectively. BtsSR
and YpdAB are two-component systems which respond to extracellular pyruvate, composed of a
membrane-integrated histidine kinase (BtsS/YpdA) that can perceive pyruvate, and a cytoplasmic
response regulator (BtsR/YpdB) mediates btsT expression. With the import of pyruvate, cells then
initiate DNA and protein biosynthesis for growth restoration. The black thin arrows indicate that the
proteins/substances promote the synthesize of the transporter of BtsT/YhjX. The grey thick arrows
mean the promotion effect of pyruvate to resuscitation through biosynthesis of macromolecules. The
black thick arrows mean promotion effect of pyruvate to resuscitation through removing H2O2.

4.4. Mechanisms Based on Global Metabolism Analysis

On most occasions, the reported studies on resuscitation mechanisms were based on
the role of specific proteins or pathways, which may result in a less systematic and com-
prehensive investigation. With the extensive application of high-throughput sequencing
technologies in biomolecular frontiers, more research based on omics analysis has emerged
in the investigation of not only the VBNC-formation mechanism, but also the resuscitation
mechanism.

Up to now, most omics studies on resuscitation from the VBNC state were conducted
based on proteomics analysis. A thorough iTRAQ-based proteomic profile analysis of VBNC
and resuscitating cells of the plant-pathogenic bacterium Acidovorax citrulli was reported,
indicating that protein expression varied in the different resuscitation processes [125]. In
the early stage, the proteins associated with carbon metabolism, degradation of naphtha-
lene and aromatic compounds, and superoxide dismutase or catalase were significantly
enriched, while the proteins involved in oxidative phosphorylation, bacterial chemotaxis,
ABC transporting, and quorum sensing were significantly enriched at the late resuscitation
stages [125]. From this point, it is evident that as the resuscitation progress proceeds, the
metabolic activities may change to meet their different needs. In the early stage, heavily
stressed bacterial cells try their best to cope with the adverse environments to guarantee
their survival and gradually increase their metabolic activity for multiplication. With the
increase in the cell number, cell-to-cell signaling is enhanced to better adapt the environ-
ment for further revival. The proteomic profile of the resuscitating V. parahaemolyticus was
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compared with the VBNC state and the exponential phase cells, revealing that the metabolic
activity of resuscitated cells shared minor differences with exponential phase cells, but
when compared with VBNC cells, the differently expressed cells were comprehensively
upregulated, which mainly involved protein synthesis, secretion system, trans-membrane
transport, adhesion, movement, and other vital processes [126]. Debnath et al. suggested
that the most variably expressed proteins of resuscitating V. cholerae showed a combination
mode of adaptive and survival responses under conditions of nutrient limitation [127]. For
example, the expression of PhoX, PstB, and Xds might help in the utilization of extracel-
lular DNA to promote growth; the expression of AhpC addressed the significance of the
oxidative stress response; the upregulation of EctC, an enzyme related to the biosynthesis of
ectoine that is crucial for osmoadaptation, might be a response to the long-term stress of
high salinity [127]. The analysis of global metabolism provides an overall perspective of the
resuscitation mechanisms, which can also be a basic foundation for further investigation of
specific mechanisms.

5. Potential Application of the Resuscitation of VBNC Cells

Unculturable microorganisms exist as “dark matter” in ecological environments, which
greatly affects the exploration and utilization of microbial resources. This unculturability
is largely derived from the adverse natural habitat conditions of bacteria, since they are
always inconstant, and their inherent characteristics such as the oligotrophy of water,
desiccation of soil, and existence of pollutants greatly limit the normal growth of bacteria,
many of which are functional species. Therefore, resuscitating VBNC bacteria could provide
huge candidates for obtaining high-value strains.

At present, the resuscitation of VBNC bacteria has been proved to be effective in
shaping bacteria populations. With the resuscitation-promoting ability of the Rpf protein,
the abundance of specific taxa was significantly increased and 51 potentially novel bacterial
species were isolated from a nutrient-rich compost soil [128]. Su et al. also reported that
after resuscitation by Rpf, bacterial diversity was increased, especially in terms of functional
bacterial communities [91]. Since then, more studies have emerged on resuscitating VBNC
bacteria to search functional bacteria populations in samples of soil or water. Wang et al.
obtained a richer species diversity while resuscitating cells with Rpf protein, and two rare
actinobacteria were resuscitated and isolated [129]. It was proposed that resuscitating
VBNC bacteria through adding Rpf into polychlorinated biphenyl-contaminated soil ac-
celerated the biodegradation of Aroclor 1242, which was mainly due to the resuscitation
of key bio-degraders of the Sphingomonas and Pseudomonas genera [89]. In addition, bac-
terial populations were shaped, and 13 strains were resuscitated and isolated from river
sediments under the function of Rpf, which possessed nitrogen removal capacities [92].
Therefore, through resuscitating VBNC cells, environmental-friendly strains that possess
pollution control capacities were separated for further use, whose effect was notable. The
resuscitating effect was achieved through the functioning of the Rpf protein. However, the
Rpf protein is mainly derived from the culture supernatants of Micrococcus luteus or the
heterologous expression of the Micrococcus luteus gene [83,91,130]. Other species may also
express Rpf protein and have a significant resuscitation effect, and this area is therefore
worth further exploration.

The resuscitation and separation of VBNC cells in foods seems meaningful in another
aspect as well. For example, in fermentative foods, the lowered pH, lack of oxygen, and
particular metabolites may pose negative impacts on the normal growth of bacteria, and
some of them may enter the VBNC state. The resuscitation of the VBNC-state functional
strains such as flavor-producing strains, fermentation strains, and probiotics, through
adding resuscitation-promoting stimuli, is of great significance, and can be a research
aspect in the future (Figure 5). Therefore, inspired by the Rpf-induced resuscitation, the
application of VBNC-cell resuscitation may be conducted from two aspects. Except for with
Rpf, more resuscitation-promoting conditions can be used in the resuscitation of bacteria
in the VBNC state; in real food or other samples, bacterial strains can be separated and
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identified to search strains with the rpf gene (or Rpf protein), so that the strains could be
adopted to increase microbial diversity in the samples, through which the source of the Rpf
protein can be enriched.
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Figure 5. Assumption of VBNC bacteria resuscitation to separate novel species for application in the
food industry.

6. Conclusions

The formation of VBNC-state pathogenic bacteria is a great threat to food safety and
public health. However, when it comes to functional bacteria, entering a VBNC state makes
them become a hidden resource for potential industrial application. In this article, aspects of
the resuscitation of VBNC cells, including the definition and confirmation of resuscitation,
promoting factors, and the mechanisms of resuscitation, are thoroughly reviewed, which
could lay a firm theoretical foundation for the isolation and application of VBNC-state func-
tional populations, as well as the prevention of risks arising from VBNC-state pathogenic
bacteria. Attempts to resuscitate VBNC bacteria and the specific roles of the resuscitated
cells have been studied in various environments in recent years, the effects of which have
been proved to be profound. However, such studies in the food area are rare. Regarding the
universality of the emergence of the VBNC phenomenon in the food industry, waking up
the dormant and functional population may provide a new approach to obtaining valuable
microbial resources, which may have great value for the food industry. However, care
should be taken regarding the corresponding concerns. The microbial communities in food
products, especially in fermented foods, are always complicated, and whether the resusci-
tation process restores some “unfavorable” microorganisms at the same time is unknown.
Therefore, we think that the resuscitation of VBNC cells may be beneficial for the isolation
of rare species or functional populations from foods, but the direct supplementation of
resuscitation-promoting substances into foods should be rigorously evaluated to avoid the
occurrence of food safety events and serious alterations to foods.
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