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Abstract: Meat by-products such as bones, skin, horns, hooves, feet, skull, etc., are produced from
slaughtered mammals. Innovative solutions are very important to achieving sustainability and
obtaining the added value of meat by-products with the least impact on the environment. Gelatin,
which is obtained from products high in collagen, such as dried skin and bones, is used in food
processing, and pharmaceuticals. Chitosan is derived from chitin and is well recognized as an edible
polymer. It is a natural product that is non-toxic and environmentally friendly. Recently, chitosan
has attracted researchers’ interests due to its biological activities, including antimicrobial, antitumor,
and antioxidant properties. In this review, article, we highlighted the recent available information on
the application of gelatin and chitosan as antioxidants, antimicrobials, food edible coating, enzyme
immobilization, biologically active compound encapsulation, water treatment, and cancer diagnosis.

Keywords: gelatin; chitosan meat-by product; biological activities; antioxidant; edible coating

1. Introduction

Among the many meat by-products studied in the literature, gelatin and chitosan
are the most abundant polysaccharides in nature [1]. Their use has attracted attention
because they possess antimicrobial, non-toxic, and antifungal properties [2–4]. They are
considered perfect animal by-product materials for the application and development of
many products [5]. Gelatin is a protein that is obtained from the processing of animal
bones and connective tissues. It is a colorless gel that cracks when dried due to the
breakdown of collagen in tissues and bones. Gelatin is used in the food, pharmaceutical,
and cosmetic industries [6].

Gelatin is a natural ingredient derived from animal by-products such as cattle bones,
pork skins, and split cattle hides. It has healthy properties and has many applications, such
as in confectionery, pharmaceutical products, meat, cosmetic and health care products,
desserts, dairy products, and juices [7]. Chitosan is a natural polysaccharide that is created
by deacetylating chitin (poly (-(1 4)-Nacetyl-D-glucosamine) [8]. Chitosan is a commercially
available and cheap polysaccharide that is semi-crystalline and most commonly solvable
in weak organic acids, such as lactic, acetic, formic, citric, tartaric, and malic acids [9,10].
Chitosan is synthesized by deacetylation of chitin (poly (β-(1→ 4)-Nacetyl-D-glucosamine),
a natural polysaccharide [11]. It is a reasonably priced and easily accessible polysaccharide.
In the solid phase, chitosan presents as semi-crystalline and soluble in dilute organic acid
such as lactic, citric, acetic, formic, malic, and tartaric acids [12]. Gelatin and chitosan
became more popular because of their applications in various industrial fields [13,14].
Chitosan and chitosan nanoparticles are considered promising bio-based polymeric materi-
als and have received much attention in the medical and pharmaceutical fields in recent
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decades. Their applications are mainly focused on biomedical and tissue engineering
fields [15–17]. They have extensive potential for application in the pharmaceutical [18] and
medical fields as nanocarriers for drugs or active compounds that encapsulate substances,
provide a controlled release, and deliver them to a specific place or site [19]. Several re-
search studies have extensively investigated chitosan applications in various medicine
and pharmaceutics fields. They are biocompatible and allow encapsulation of drugs and
active medical ingredients [20]. In addition, chitosan and gelatin have other excellent
properties, such as reducing damage to non-targeted cells or tissues and preventing the
enzymatic degradation of drugs [21–23]. These properties make gelatin and chitosan great
materials in the fields of cancer treatment, biological imaging and diagnostics, and drug
delivery systems [24–26]. Furthermore, the slow biodegradation of gelatin and chitosan
nanoparticles has been reported to ensure controlled and continuous drug release due to
the highly positive surface charges that provide stable carriers that transport substances to
the target position of the human body [27,28]. Recently, many studies have been conducted
with the aim of using gelatin and chitosan as important animal by-products in various
industrial trends [29–41]. The aim of this review is to summarize the recent advances in
the applications of gelatin and chitosan as animal by-products in food, pharmaceutical,
and medical fields. However, prospects for the application of gelatin and chitosan are
also highlighted.

2. Properties of Gelatin and Chitosan

Gelatin is mainly derived from untanned bovine hide wastes or by-products, fish skins,
pigs, and poultry. It can be used in packaging and coatings, whereas chromium-tanned
leather waste can be used in agriculture as fertilizer [42]. Gelatin is widely used in the food,
pharmaceutical, cosmetic, and photographic sectors because it has special functional quali-
ties. Gelatin is a food additive that is used in the bread, dairy, beverage, and confectionary
industries to provide gelling, stability, texturization, and emulsification [43]. Chitosan, a
natural linear bio-polyaminosaccharide (Figure 1), is produced from the major constituent
of the protective cuticle, chitin, which is alkaline deacetylates in various crustaceans such as
shrimp, crab, and lobster [44,45]. Chitosan is biodegradable, cheap, and non-toxic to mam-
mals, which makes it applicable for use as an additive in the food industry [46]. Chitosan
is a weak base and insoluble in water and organic solvents [47,48]. It forms a gel when
it precipitates in an alkaline medium or with polyanions at low pH level [49]. Because
of chitosan’s biodegradability and biocompatibility, it has been studied in a wide range
of applications [50–52].
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Figure 1. Structure of chitosan.

Collagen (Figure 2) is well known to be the most abundant protein in animals and is
recognized as being the main component in leather. Due to its excellent bioactivity, high
biocompatibility, and low antigenicity, collagen is a protein material that finds utility across
many sectors, including those of medicine, leather, and cinema [53]. Although collagen is
employed in the construction of scaffolds as well, it is always crucial to protect the bonding
points throughout the collagen chain to prevent the loss of biocompatibility. Collagen
has also been used to insert dental implants, speed up healing, and treat oral wounds
by allowing cells with the capacity to regenerate to repopulate the damaged area [54].
Additionally, collagen casings are used to package meat and meat-related items. With the
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aid of nanotechnology and other strengthening processes, the case is formed of skin-derived
collagen fibers [55].
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Animal-derived collagen is used in the food industry, as well as gelatin in its denatured
form which, traditionally, is derived as a by-product of meat rendering from connective
tissue. In the food industry, gelatin is used to form gels, gums, emulsifiers and as a
polyelectrolyte to aid flocculation.

2.1. Gelatin and Chitosan as Good Antioxidant

It is recognized that oxidation is one of the most significant problems in the quality of
food products, and during the high-temperature processing of protein foods, heterocyclic
amines are generated, which are known as carcinogenic substances [57]. Some factors, such
as processing conditions, the presence of antioxidants, cooking methods, time, and temper-
ature may influence the production of heterocyclic amines, and therefore, the reduction
or inhibition of the formation of these carcinogens, has become an important issue [58].
The gelatin extracted from skipjack tuna (Katsuwonus pelamis) canning by-products was
purified to give nineteen peptides that showed a high level of antioxidant activity. A
high concentration of amino acids gives the gel exceptional clarity and strength. These
results indicated that the antioxidant peptides generated from this gelatin might be used as
possible additives in health-beneficial goods to prevent ultraviolet-A injury [59]. Chitosan
added to food products as a food additive can act as an antioxidant agent. This prevents
the formation of heterocyclic amines in foods [60]. Oz et al. [61] examined the impact of
applying chitosan in concentrations of 0.25, 0.50, 0.75, and 1% w/w on the meatball’s qual-
ity and heterocyclic aromatic amine production. The meatballs were prepared at various
temperatures (150, 200, and 250 ◦C). The results showed that increasing the temperature
from 150 to 250 ◦C increased the content of heterocyclic amine in the meatballs. However,
increasing chitosan concentration showed a significant decrease in the content of the hetero-
cyclic amine. Similarly, Mirsadeghi et al. [62] showed that adding acid-soluble chitosan in
the concentration of 1% to Huso fillets during cooking effectively reduced the production
of heterocyclic amines and had an inhibitory effect of 68.09%. The antioxidant properties
of an edible chitosan–galactose complex were investigated by combining chitosan and
galactose (0, 0.5, 1, and 1.5 g). An in vitro test was also performed to evaluate the coating
and determine the parameters for measuring antioxidant activity using the DPPH (2,2-
diphenyl-1-picryl-hydrazyl-hydrate) method [63]. The IC50 values decreased slightly with
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increasing amount. The strongest antioxidant in the treatments, a mixture of chitosan and
1 g galactose, had the lowest IC50 value of 43.20 ppm. Similarly, Zhang et al. [64] published
the findings of studies using chitosan with high molecular mass for radical scavenging
activity, demonstrating that high-molecular-weight chitosan had strong hydroxyl radical
scavenging, while low-molecular-weight chitosan had higher superoxide anion radical
and DPPH scavenging. Adiletta et al. [65] evaluated the activities of enzymes such as
polyphenol oxidase and peroxidase, catalase, and ascorbate peroxidase to determine the
impact of the chitosan-based coatings on the freshness of figs. The results revealed that the
addition of chitosan coating significantly increased the flavonoids, anthocyanins, and total
polyphenol contents and antioxidant activity of the stored figs, reduced oxidative stress,
and prevented browning reactions compared to the untreated group. The antioxidant capac-
ity and shelf life of strawberries were studied by Martínez-González et al. [66] to assess the
impact of the propolis/nano-chitosan coating on the film-coated strawberries. At the end of
the preservation period, the strawberries in the nano-chitosan/propolis-coated group had
greater overall phenolic and flavonoid levels and antioxidant capacity than the strawberries
in the untreated group. Because chitosan lacks hydrogen atoms that can be readily added
to make it a potent antioxidant, chitosan-based basic films have relatively little ability to
scavenge free radicals [67]. Several naturally occurring active substances, such as volatile
oils, green or black tea extracts [68], apple extract [69], banana peel extract [67], purple
and black eggplant extracts [70], and black and purple rice extracts [71] can increase the
antioxidant capabilities of chitosan. This phenomenon has been attributed to the fact that
the polyphenols contained in the extract can scavenge free radicals by releasing phenolic
hydrogen atoms [72].

2.2. Gelatin and Chitosan as Antimicrobial

Kavoosi et al. [73] discovered that gelatin films infused with thymol had extremely
potent antibacterial properties, making them suitable for use as antibacterial nanowound
dressings against pathogens that cause wound burns. This makes them suitable for use
as antibacterial nano wound dressings against pathogens caused wound burns [74]. They
absorb exudates, sustain a moist environment on the wound surface and imitate the ex-
tracellular matrix structure and have an antibacterial effect [75]. Because gelatin films
with bergamot and lemongrass essential oils have good antibacterial properties and dis-
play better heat stability with higher breakdown temperatures, they can be employed as
active packaging materials [76]. Chitosan is a cheap and non-toxic compound; it is also
used as an antifungal in agriculture, as a food additive in the food industry, and as a
wetting agent in cosmetics, in addition to its use in the synthesis of some medicines in
biomedicine [77]. Chitosan nanoparticles and liposomes containing ethanolic cinnamon
extract were prepared by Elwakil et al. [78]. They studied their physical and chemical
properties before determining how well they healed wounds. They created a gel using
chitosan and liposomes that contained ethanolic cinnamon extract and tried it on diabetic
mice. They discovered that treating bacterial infections and blocking enzymes required the
liposome/cinnamon gel to be more successful. Chitosan is more efficient against Gram-
positive bacteria than Gram-negative bacteria, as demonstrated by earlier studies, and can
inhibit the growth of a variety of bacteria and fungus [79]. The use of chitosan and essential
oil formulation in chitosan-based edible packaging films increased the effectiveness of
antimicrobials against gram-negative bacteria, including Escherichia coli [80], Pseudomonas
aeruginosa [81], Pseudomonas fluorescens [82], Klebsiella pneumoniae [83], Shewanella putrefa-
ciens, Shewanella baltica, Serratia spp. and Gram-positive bacteria such as Staphylococcus
saprophyticus [84] and Staphylococcus aureus [85]. However, yeast, fungus, and mold are
also inhibited [86]. Chitosan sheets were tested against Penicillium italicum in combina-
tion with bergamot essential oil and showed a great inhibitory effect, but the inhibitory
potency of the composite sheets decreased during the storage period [87]. The volatile
oils of cinnamon inhibited the growth of Aspergillus oryzae, Botrytis cinerea, Aspergillus
niger, Penicillium digitatum, and Rhizopus stolonifera fungi on chitosan films [88,89]. Li
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et al. [90] observed that the use of essential oil of turmeric in chitosan resulted in significant
anti-aflatoxigenic activity thanks to the observed antifungal properties against Aspergillus
flavus. The application of Eucalyptus globulus essential oil–chitosan matrix successfully
inhibited yeasts such as Candida parapsilosis and Candida albicans [81]. Chitosan was also
studied when incorporated into extracts of polyphenols to enhance its antimicrobial prop-
erties and such polyphenol include pomegranate peel extract [91], green tea extracts [92],
spirulina extract [93], propolis extract [94], black plum peel extract [64], and purple corn
extract [95]. It was claimed that the powerful antimicrobial activity of essential oils when
incorporated in chitosan was because they contain terpenes, which affect bacterial mem-
brane permeability in addition to various functions and cause the death of bacterial cells
by raising the amount of lipid peroxides such as alkoxyl, alkoperxyl, and hydroxyl radi-
cals [96]. The blended films of gelatin and chitosan showed good antioxidant properties in
the Trolox equivalent antioxidant capacity assay test and incredible growth suppression
against Staphylococcus aureus and Escherichia coli, indicating that such blends’ ethanolic
extract sensitivities could provide a substitute as effective packing for applications in the
food industry [97]. According to Kurczewska, [98], gelatin and chitosan, as well as their
derivatives, are biodegradable polysaccharides that are biocompatible, non-toxic, and have
antimicrobial and antifungal properties. Recently, they have been used in intelligent food
packaging as active ingredients to enable shelf life to be extended and guarantee quality
and food safety [64]. They act as active scavenger systems, including oxygen scavengers,
moisture scavengers, and ethylene scavengers [99], leading to an extension of shelf life
and preservation of food quality [100]. Chitosan–polyphenol extract was investigated
against Gram-negative bacteria such as Salmonella typhimurium, E. coli, Proteus mirabilis,
Salmonella enterica, P. aeruginosa, and Proteus vulgaris and showed significant antibacterial
activities [93,101]. Chitosan–polyphenol extracts also demonstrated effective antibacterial
activity against Gram-positive bacteria such as Streptococcus mutans, S. aureus, Bacillus cereus,
Bacillus subtilis, Listeria monocytogenes, Bacillus thuringiensis, Lactobacillus sakei, Lactobacillus
plantarum, and Listeria innocua [64,92,93,102].

2.3. Gelatin and Chitosan as Food Edible Coating Source

Recently, gelatin and chitosan have been used in food packaging because the use
of petroleum-based materials has detrimental effects on the environment because they
are not sustainably sourced, reusable, recyclable, or renewable [103,104]. Research on
food packaging must address the environmental problems caused by the careless use and
handling of non-biodegradable components and provide new, environmentally friendly
options. Biodegradable natural polymers that have been investigated for potential uses in
the food packaging sector, among them chitosan and gelatin [105], have attracted a great
deal of interest in recent decades. Active films made of 15% gelatin, 30% glycerol, and 1%
green tea extract were prepared by Hamann et al. [106]. These films were added to the fresh
sausages’ coating. Their findings demonstrated that during cold storage, TBARS levels in
sausages coated with active gelatin film were reduced. Finally, they concluded that gelatin
films infused with green tea extract are a promising substitute for extending sausages’ shelf
lives [106]. Dehghani et al. [107] produced coating dispersions with fish gelatin, conjugates,
or bitter almond gum (1:2, 2:1, 1:1). They looked at how the coating suspensions affected
the physicochemical and qualitative indicators of tomatoes stored at 20 ◦C for 28 days.
These authors found that the conjugation of fish gelatin with a higher bitter almond gum
ratio could be promising for producing coating dispersion and maintaining fruit quality
during storability. According to a study by Jusoh et al. [108], virgin coconut oil can be used
with gelatin film to create active film packaging or edible film packaging for some culinary
applications, such as packing material for protein-rich foods like meat. Singh et al. [109]
created chitosan-based films with oxygen-scavenging capabilities by incorporating sodium
carbonate and gallic acid into the polymer chain. The incorporation of TiO2 nanoparticles in
chitosan sheets imparts ethylene-scavenging properties [110]. Chitosan-based smart films
were developed by Nandeesh and Kalpana [111], including two main groups of chitosan
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smart packages: (1) sophisticated biosensors; and (2) films with a visual color change
due to colorimetric reactions. These packages include time–temperature indicators, pH
indicators, and freshness indicators. Nevertheless, Wang et al. [112] employed a chitosan–
gold nanoparticle combination to show the frozen state and temperature history of food
through the color difference that appears when gold nanoparticles clump together because
of their localized surface plasmon resonance. Additionally, because of the physicochemical
changes in the food, chitosan-based materials designed to monitor pH variations in food can
also identify bacterial load and oxidative food deterioration. Singh et al. [109] added sodium
carbonate and gallic acid to the chitosan film to develop oxygen-scavenging material.
The results showed a decrease in mechanical parameters of the chitosan films as the
concentration of the added sodium carbonate and gallic acid increased. This may be due to
the large amount of sodium carbonate disrupting the inner matrix of the chitosan film [102].
Another use of chitosan in food packaging is as humidity sensors, which are based on
chitosan-zinc oxide, and single-walled carbon nanotubes. The chitosan swelling impact
that surrounds the nanotubes in this usage is thought to be the sensing mechanism, altering
the hopping conduction channel between nanotubes [113]. Zhang et al. [67] developed
moisture sensors based on a quartz crystal microbalance coated with chitosan multi-walled
carbon nanotubes. The optimized sensor can be used to detect food moisture with the
features of negligible humidity hysteresis, high response sensitivity, fast response and
recovery times, repeatability, remarkable reversibility, and long-term stability and selectivity.
However, the addition of quercetin to chitosan films enables the intelligent detection of
aluminum (Al 3+) in food based on colorimetric reactions [114], because quercetin can
form bonds with Al 3+, resulting in a colored complex. A graphene oxide/chitosan
nanocomposite-coated quartz crystal microbalance sensor for the detection of amine vapors
was investigated [64]. The sensor displayed high aliphatic amine sensitivity at ambient
temperature, containing methylamine, dimethylamine, and trimethylamine. Although
there are instances of controlling CO2 production by developing a pH-CO2-generated
link, these substances are primarily used as markers of food pH and freshness. The most
significant category of flavonoids and a significant component of phenolic compounds is
anthocyanins. These dyes exhibit color alterations in response to pH variations. However,
further research is required before chitosan-based biosensors can be used in intelligent
food packaging. Depending on variations in impedance, sophisticated humidity and
temperature sensors were created using chitosan and CuMn2O4 spinel nanopowder. The
reduction in the sensor’s impedance with rising temperature is due to charge carrier
production, which is influenced by temperature [115]. Research analyzing active and smart
materials having both anthocyanins’ capabilities is frequently found, as they also have
powerful antioxidant effects. For packaging chicken breasts at 4 ◦C, a curcumin-loaded
chitosan and polyethylene oxide nanofiber film was created as a freshness marker. The
nanofiber film’s hue altered from light yellow to reddish, enabling even the inexperienced
consumer’s naked eye to identify color variations [116]. El-Gioushy et al. [117] studied nano-
chitosan as an active edible coating film in concentrations of 1, 2, and 3 cm3/L for enhancing
the shelf life and quality properties of date palm fruits (Barhi cultivar) during cold storage
at ±2 °C for 70 days and discovered that at the end of the storage period, spraying the
Barhi date fruit with 3 cm3/L of nano-chitosan achieved the best results. The usage of
chitosan in enriched chitosan packing films has been found to have worse mechanical
resistance characteristics than pure chitosan treated samples, including lower values of
percent elongation at break (%E) and tensile strength (TS) [118]. This effect was observed
with the addition of essential oils such as Artemisia campestris [118], Perilla frustescens [119],
basil [84], ginger (Pimpinella anisum L.) [120], and Artemisia campestris [118]. The addition
of polyphenol-rich extracts to chitosan-based films, such as green tea extracts [121], apple
extracts [69], banana peel extract [67], Chinese chives [122], root extract [123], mango kernel
extract (honeysuckle flower extract [124], Pistacia terebinthus leaf extract [125], syringic acid,
and purple pulp sweet potato extract [126], protocatechuic acid [127], resulted in an overall
trend of decreasing TS and % E values.
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2.4. Gelatin and Chitosan in Microencapsulation Technology

Microencapsulation technology is used to prevent product base materials from deterio-
rating by enhancing the active components’ bioavailability, which increases their solubility
and enables the preparation of solid formulations of oils. The efficiency of the capsule is
determined by the properties of the wall and the base materials. Excellent results can be
obtained by using the mixture of the wall material to prepare the microcapsules. Rosmarinic
acid and carvacrol, the two main active components in Turkish oregano extract, have been
found to release more readily in vitro when gelatin, gum arabic, Tween 20, and cyclodextrin
were used as coating materials [128]. Chitosan’s qualities make it an ideal coating material
for encasing a variety of bioactive substances. This makes it useful in the biomedical, food,
agricultural, pharmaceutical, environmental, and industrial fields [129]. This polymer
is used to encapsulate food ingredients, essential oils, vitamins, lipids, drugs, vaccines,
microbial metabolites, and hemoglobin [130]. Chitosan and its encapsulated compounds
are widely used in agriculture in some ecological alternative products such as organic fertil-
izers, biopesticides, soil conditioners, seed treatment, and growth promoters’ agents [131].
Chitosan has been used as a co-encapsulation material for resveratrol and curcumin [132].
Chitosan is also used in the development of nanocomposite active compounds in films to
inhibit the growth of fungi such as Aspergillus flavus, Aspergillus parasiticus, Aspergillus niger,
and Penicillium chrysogenum, resulting in the control and inhibition of these pathogens [133].

2.5. Gelatin and Chitosan in Water Treatment

Heavy metals such as copper, nickel, lead, zinc, cadmium, mercury, arsenic, chromium,
bismuth, cobalt, and iron are harmful to the environment and human health even when
present in trace amounts [134]. Eliminating these heavy metals from wastewater is of
paramount importance, as they not only pollute water bodies, but are also toxic to the
ecosystem [135]. Gelatin has been combined with yeast to create the GelYst biosorbent,
which is used to improve the extraction and biosorption of Cr (VI) from water. This biosor-
bent’s applications in water treatment have been successful [136]. Chitosan is used as an
inexpensive dye remover and heavy metal biopolymer [137]. Compared to other commer-
cial adsorbents, chitosan has received much attention in water treatment applications due
to its specific properties, such as high adsorption capacity, cationicity, macromolecular struc-
ture, low price, and abundance [76]. Various metals and other pollutants have been reported
to be effectively removed by chitosan or various modifications of this biopolymer [138].

2.6. Gelatin and Chitosan in Tissue Engineering

Gelatin methacryloyl (GelMA) hydrogels with cell-responsive arginylglycyl aspartic
acid and matrix metalloproteinases peptide sequences have been frequently used in tissue
engineering because of their adaptable mechanical, superior processing performance, and
outstanding biocompatibility properties. GelMA-based hydrogel microstructures can
be precisely controlled using modern production techniques such as 3D printing and
electrospinning. GelMA hydrogels with different microstructures have been designed and
studied to mimic the natural extracellular matrix and to control the proliferation, migration
and differentiation of different cell types [139]. Chitosan can act as an ideal agent for wound
dressing due to its positive charge and mild gelation properties, film-forming ability, and
strong tissue-adherent properties with improved blood coagulation [140]. It supports
wound healing by increasing the functions of inflammatory cells such as polymorphic
nuclear leukocytes, macrophages, and fibroblasts [141]. Chitosan also has potential use
in skin repair and regeneration after injury or burns, as it can be cross-linked with silica
(SiO2) particles. It was found to be non-cytotoxic to L-929 cell culture when used in
extraction forms in engineered membranes. Furthermore, the macroporous membrane
showed excellent cell adhesion and proliferation after 24 h and 48 h of cultivation [142].
Chitosan-based materials have also been shown to have the potential to maintain and
stimulate cell phenotypes [143].
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2.7. Gelatin and Chitosan in Drug Delivery

The potential use of chitosan and gelatin as drug delivery carriers has been reported in
several studies [144–146]. Gelatin was applied to increase the efficiency of drug delivery into
cancer cells by coating drug-encapsulating liposomes with gelatin [22]. The investigated
liposomes were coated with gelatin using electrostatic interaction and covalent bonding
methods. The coated drug was compared with polyethylene glycol liposomes in terms of
encapsulation efficiency, size, stability, zeta potential, cell uptake, and dissolution profile.
The results showed high drug-encapsulation efficiency and sustained release depending
on the degree of gelatin coating. The cell uptake studies showed that the gelatin-coated
liposomes were superior to polyethylene glycol liposomes in terms of cancer cell targeting
ability. Alginate, chitosan, pullulan, and their combination nanoemulsions were developed,
optimized, and characterized by Fard and his research team [147] as promising drug
delivery platforms for melanoma. A unique nanoemulsion delivery method was developed,
and its effectiveness was evaluated using confocal microscopy, in vitro drug release, cell
survival, and cellular death. The results obtained show the significance of the polymeric
mixture of the drug carrier and the effect of the drug release pattern on the effectiveness of
the therapy.

2.8. Summary of Gelatin and Chitosan Potential Applications

Gelatin and chitosan could be used in many industrial fields, including in foods,
medicines, and pharmaceuticals (Tables 1 and 2). They have been used to replace disposable
plastic packaging materials that pollute the environment [148]. They can be used to
create biodegradable packaging materials for use in favor of plastic packaging materials.
Furthermore, inorganic nanoparticles of some materials, like silica, metal, and carbon
nanomaterials, have been studied and have shown successful applications in the field
of nanocomposites [149,150]. They can be incorporated into biodegradable packaging
materials to improve their quality. In addition, gelatin and chitosan possess powerful
properties such as antimicrobial and antioxidant activities that could help extend the
shelf life of the packaged materials [151]. Chitosan and gelatin contain hydroxyl and
amino functional groups, making them interesting materials for removing a wide range of
pollutants, such as pesticides, dyes, and heavy metals [152].

Table 1. Selected applications of chitosan in the food industry.

No Type of Gelatin &
Chitosan Application Purpose of the Application References

1 Edible coating
Limit oxygen uptake, reduce moisture transmission, retard ethylene

production, reduce respiration, exhibit selective gas permeability, exhibit
resistance to fat diffusion, and trap volatile flavor compounds.

[107]

2 Emulsifier agents

Gelatin is an important natural amphiphilic macromolecule and can act
as an emulsifier in oil-in-water emulsions due to its surface-active
properties. Chitosan nanoparticles as a special emulsifier for the

production of stimulus-dependent Pickering emulsions—oil-in-water
and stable emulsions.

[153]

3 Shelf-life extension

Chitosan/pectin multilayer packs increase the shelf life of tomatoes.
Chitosan coating papaya and mango slices also helped extend their shelf

life by delaying water loss and a drop in sensory quality. The tomato
conjugate with bitter almond gum and fish gelatin (2:1) received higher

impression and sensory scores.

[154]

4 Antioxidant

Inhibition of DPPH, ABTS, and their protective effects on human
erythrocytes. Gelatin and antioxidant peptides derived from it could

serve as potential ingredients to be used in health-promoting products to
prevent ultraviolet-A injury.

[155]
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Table 1. Cont.

No Type of Gelatin &
Chitosan Application Purpose of the Application References

5 Food biosensors

Electrochemical chitosan-based biosensor: application for the
determination of acrylamide in food product samples. In the realms of

food testing, medical diagnosis, and environmental control, gelatin with
biosensors is frequently employed for the detection of numerous analytes
such as glucose, urea, amino acids, hydrogen peroxide, and pesticides.

[156,157]

6 Antimicrobial

Gelatin films integrated with thymol are very powerful antimicrobial.
Thus, they can be used as antibacterial nanowound dressings against

pathogens that cause wound burns. Chitosan micro and nanoparticles
have been shown to be effective against pathogens such as E. coli O157:
H7, S. enterica, E. coli, Klebsiella pneumoniae, Vibrio cholerae, S. choleraesuis,

Streptococcus uberis, and S. aureus.

[99]

7 Anticholesterol agents Chitosan is used to reduce low-density lipoprotein (LDL) cholesterol
levels and its fat-binding capacity. [158]

8 Food additive
In the food industry, gelatin is used as a gelling, thickening, or stabilizing

agent. Chitosan-grafted hydrogels are useful for those with lactose
intolerance due to the controlled release of galactosidase.

[43]

9 Diet Supplementary

Dietary supplementation with pyridoxine-loaded vanillic acid-grafted
chitosan microspheres and thiamine enhances metabolic, immune, and

growth performance responses in experimental rats. Gelatin may be
used as a supplement to reduce the risk of osteoporosis, or a thinning of

the bones.

[159,160]

10 Purification of water
A gelatinous yeast biosorbent is used to improve the extraction and
biosorption of Cr(VI) from water. Removal of metal ions, phenols,

pesticides, dyes, PCBs, DTT, amino acids, proteins, oil, and greases.
[161]

Table 2. Selected other applications of chitosan in different fields.

No Application Area Benefit of Application References

1 Regeneration technology
Chitosan can be used in neural regenerative technology, bone

regeneration, cardiac regeneration therapy, corneal regeneration
technology, and skin regeneration technology.

2 Immune therapy Chitosan can activate CD 4+ cells, the complement system, and
humoral immunity. [162]

3 Environmental protection
Chitosan is used in the removal of various inorganic and organic

pollutants from the environment, as well as heavy metals and
harmful pesticides

[163]

4 Drug absorption enhancer The Caco-2 and intestinal cells can take in more drugs with the help of
hydrogel-based superporous systems and other chitosan complexes. [164]

5 Cells immobilization Cells such as E. coli can be immobilized by the application of
chitosan beads. [165]

6 Gene therapy Delivering various genes that are used in gene therapy, siRNA and
cancer therapy technology [163]

7 Paper manufacture Production of water-resistant papers, biodegrading packages, and
filter papers. [166]

8 Energy production Chitosan can provide ionic conductivity in an acetic acid solution and
can be used in the production of solid-state batteries. [167]

9 Cosmetics Due to its UV absorbing ability, biocompatibility, antifungicidal
activities, and chitosan can be used in various cosmetic industries. [14]

10 Wood industries Chitosan is used as a wood quality enhancer, wood adhesive, and
antifungal agent. [168]

3. Conclusions

In this review, we highlighted recently available information about chitosan and
gelatin and their applications in food, medicine, pharmaceuticals, and wastewater treat-
ment. Gelatin and chitosan are attracting great interest due to their numerous applications
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in food, medicine and pharmaceutical products. They are interesting biomaterials for
product development of widespread application due to their excellent inherent properties
including biodegradability and food ability nature. With the development of technology
and the economy, gelatin and chitosan are often produced according to legislation or stan-
dards that consider safety and health. Gelatin derived from meat by-products is an ideal
material for food packaging due to its many advantages such as low price, polymerization,
biodegradability, and good antibacterial and antioxidant properties. However, the gelatin
film has poor water and mechanical resistance, which is an obstacle to its development
and application in food packaging. The application of gelatin and chitosan as alternative
biomaterials for edible biodegradable polymers for packaging is considered to be one of
the best ways to reduce plastic pollution in the environment.
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