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Abstract: The Bama Xiang pig (BM) is a unique pig species in Guangxi Province, China. Compared
to other breeds of domestic pig, such as the Debao pig (DB), it is smaller in size, better in meat quality,
resistant to rough feeding and strong in stress resistance. These unique advantages of Bama Xiang
pigs make them of great edible value and scientific research value. However, the differences in muscle
metabolites between Bama Xiang pigs (BM) and Debao pigs (DB) are largely unexplored. Here,
we identified 214 differential metabolites between these two pig breeds by LC-MS. Forty-one such
metabolites are enriched into metabolic pathways, and these metabolites correspond to 11 metabolic
pathways with significant differences. In Bama pigs, the abundance of various metabolites such
as creatine, citric acid, L-valine and hypoxanthine is significantly higher than in Debao pigs, while
the abundance of other metabolites, such as carnosine, is significantly lower. Among these, we
propose six differential metabolites: L-proline, citric acid, ribose 1-phosphate, L-valine, creatine,
and L-arginine, as well as four potential differential metabolites (without the KEGG pathway),
alanyl-histidine, inosine 2′-phosphate, oleoylcarnitine, and histidinyl hydroxyproline, as features for
evaluating the meat quality of Bama pigs and for differentiating pork from Bama pigs and Debao pigs.
This study provides a proof-of-concept example of distinguishing pork from different pig breeds at
the metabolite level and sheds light on elucidating the biological processes underlying meat quality
differences. Our pork metabolites data are also of great value to the genomics breeding community
in meat quality improvement.

Keywords: Bama pig; differential metabolites; identification; meat quality; LC-MS

1. Introduction

In recent years, there have been many aspects of research on pork quality. Driessen
and others said in their research articles that fasting before slaughter can affect meat
quality by increasing pH value [1]. Acevedo Giraldo’s study also described the impact
of premortem fasting on meat quality, and they suggested in their article that the total
fasting time should not exceed 12 h [2]. In addition, there are many studies on the impact
of different treatments before slaughter on pork quality [3–6]. It is not just the treatment
before slaughter that affects the meat quality of pork, but also the breeding environment
and feeding conditions during the fattening period [7–9]. In addition, there are many other
factors that will affect the meat quality of pork, such as the residual feed intake [10–12].
Ngapo and others summarized the factors that affect the meat quality of pork [13]. Because
of the diversity of influencing factors, we are required to evaluate the quality of pork. In
the past, we generally used meat quality traits to evaluate and describe pork, describing
pork meat quality in terms of external traits such as pH, meat color, dripping loss and shear
force [14–16]. However, with the development of science and technology, it is not enough
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to use these objective indicators to evaluate pork quality. Many new tests and indicators
are used to evaluate pork meat quality, such as proteomics, developed in recent years [17].
Since the quality properties of meat are greatly affected by the environment, biomarkers are
better than genetic markers for evaluating meat quality [18]. Some researchers have also
successfully screened some biomarkers that can be used for meat quality evaluation. Due
to the fact that some of the amino acids can provide pork flavor [19], which can improve
the flavor of meat, numerous studies also put forward methods to improve meat quality
based on this [20–23]. Similar metabolomics methods were used in this study. Through
non-targeted metabolomics, some metabolites related to pork meat quality traits were
preliminarily selected as biomarkers for the evaluation of pork meat quality. Some people
have used this method to search for biomarkers previously. Yu looked for biomarkers based
on the research of the impact of aging on meat quality through metabolomics [24], and Cao
looked for biomarkers to distinguish dead and live pork through the combination of non-
targeted metabolomics and pseudo-targeting [25]. Shuji Ueda [26] identified metabolites
in livestock meat through metabolomics, which ca be used as meat quality evaluation
indicators, and even used to distinguish cattle breeds.

Compared with other domestic pig breeds, the Bama Xiang pig has its own unique
advantages. The Bama Xiang pig (BM) is smaller, but it has the benefits of high meat quality,
rough feeding resistance, strong stress resistance and others. Many studies have shown
these advantages for the BM breed. In addition, BM is also used in numerous studies,
and in recent years, BM has been used for organ transplantation research. Owing to the
physical condition of BM, after knocking out the immune rejection-related genes, it can
be well matched with the human body to realize organ transplantation. BM has better
meat quality than other pigs, which means it has a higher edible value. This study aims to
compare the metabolites of the dorsal longest muscle of BM and Debao pig (DB) by LC-MS,
understand the interaction of these metabolites and related metabolic pathways, screen
the differential metabolism that can be used to identify these two kinds of domestic pigs,
provide a theoretical basis for the breed breeding and meat quality identification of BM,
and pave the way for further exploration of the biological causes of the formation of BM
pork quality.

2. Materials and Methods
2.1. Materials

Bama pigs and Debao pigs were purchased from the original breeding farm in Bama
County, Guangxi, after fresh slaughter. The breeding conditions of these pigs are the same.
They are three months old, castrated boars. Both were sampled after slaughter. We sampled
the longissimus dorsi after the slaughter at 5 am. The samples were put immediately
into liquid nitrogen for quick freezing for 15 min, then taken out and put into dry ice
and transported to the laboratory, and then the experiment was started in the laboratory.
The reagents used were methanol, formic acid, water and acetonitrile, which were pur-
chased from Thermo company, and l-2-chlorophenyl alanine was purchased from Shanghai
Hengchuang Biotechnology Co., Ltd. All chemicals and solvents are analytical grade or
chromatographic grade. The instruments used were: an automatic sample rapid grinder
(Wonbio-E Shanghai Wanbo Biotechnology Co., Ltd. Shanghai, China), an ultrasonic cleaner
(F-060SD Shenzhen Fuyang Technology Group Co., Ltd. Shenzhen, China), a desktop high-
speed refrigerated centrifuge (TGLl-16MS Shanghai Luxiangyi Centrifuge Instrument Co.,
Ltd. Shanghai, China), a freeze concentration centrifugal dryer (LNG-T98 Taicang Huamei
Biochemical Instrument Factory, Suzhou, China), a high-resolution mass spectrometer (QE
Thermofisher Technology Company, Waltham, Massachusetts, USA), a high-performance
liquid chromatograph (Nexera UPLC Shimadzu Company of Japan, Kyoto, Japan), and a
chromatographic column (ACQUITY UPLC HSS T3 (100 mm × 2.1 mm, 1.8 um) Waters).
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2.2. Detection of Metabolites by LC-MS

a. We accurately weighed 30 mg of longissimus dorsi into a 1.5 mL EP tube and added
an internal standard (l-2-chlorophenyl alanine, 0.06 mg/mL; methanol configuration)
20 µL. Joined 400 µL methanol–water (v:v = 4:1);

b. We added two small steel balls, pre-cooling them in the refrigerator at −20 ◦C for
2 min, and then putting them into the grinder for grinding (60 Hz, 2 min);

c. The next step was ultrasonic extraction in an ice water bath for 10 min, stood at
−20 ◦C for 30 min;

d. The sample was centrifuged for 10 min (13,000 rpm, 4 ◦C), 300 µL supernatant was
put into the LC-MS injection vial and evaporated;

e. Then 300 µL methanol–water (v:v = 1:4) was used for re-dissolution (vortexed for
30 s, ultrasound for 3 min); stood for 2 h at −20 ◦C;

f. The sample was centrifuged for 10 min (13,000 rpm, 4 ◦C), and 150 µL of supernatant was
removed with a syringe, then using a 0.22 µm organic phase pinhole filter, the supernatant
was transferred to an LC injection vial and stored at−80 ◦C until LC-MS analysis.

g. Quality control samples (QC) were prepared by mixing an extract of all the samples
in equal volumes.

(all extraction reagents were pre-cooled at −20 ◦C before use.)
Conditions for LC-MS:
Chromatographic column: ACQUITY UPLC HSS T3 (100 mm × 2.1 mm, 1.8 um);
Column temperature: 45 ◦C;
Mobile phase: A-water (containing 0.1% formic acid), B-acetonitrile (containing 0.1%

formic acid); Flow rate: 0.35 mL/min;
Injection volume: 2 µL.
The sample mass spectrum signals were collected by positive and negative ion scan-

ning modes.

2.3. Data Analysis Methods

The original data obtained by LC-MS were processed by metabolomics processing
software Progenesis QI v2.3 (Nonlinear Dynamics, Newcastle, UK) for baseline filtering,
peak recognition, integration, retention time correction, peak alignment and normalization.
Multivariate statistical analyses such as PCA, PLS-DA, and OPLS-DA were carried out on
the processed data (Supplementary Material Table S1). Principal component analysis (PCA,
Figure 1a) of metabolites could reflect the variability between and within sample groups,
observe the overall distribution trend between samples, and judge the possible discrete
points. The main parameter of the PCA model is R2X. The abscissa t [1] and ordinate t [2]
of the PCA score map represent the score values projected on the principal components
PC1 and PC2 of each sample, respectively. The projection score of each sample on the
plane is composed of the first principal component and the second principal component,
the spatial coordinate, which can intuitively reflect the similarity or difference between
samples. If the difference between the two samples is significant, the two coordinate
points are relatively far away on the score chart and vice versa. The prediction of sample
categories was performed by PLS-DA (Figure 1b). Adding grouping variables to PLS-DA
can make up for the shortcomings of the PCA method, and the parameter R2X (cum)
can evaluate the effectiveness of the model. In addition to the parameter R2X (cum),
PLS-DA also includes the interpretation rate R2Y (cum) and the prediction rate Q2 (cum).
The closer the two are to one, the better the PLS-DA model can explain and predict the
difference between the two groups of samples, representing the better prediction ability
of the model (Figure 1d). OPLS-DA (Figure 1c) was used to filter out the noise irrelevant
to the classification information, improve the analytical ability and effectiveness of the
model, and maximize the differences between different groups within the model. The
OPLA-DA score chart has two principal components: the predictive principal component
and the orthogonal principal component. There is only one predictive principal component,
while there can be multiple orthogonal principal components. OPLS-DA maximizes the
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difference between groups on t1, so it can directly distinguish the variation between groups
from t1, while the orthogonal principal component reflects the variation within groups.
There are significant differences between the two groups on the OPLS-DA score chart. In
the loading OPLS DA diagram (Figure 1e), the closer the metabolic ions are to −1 and 1,
the greater the concerns. The metabolites closer to the two corners in the Splot-OPLS-DA
diagram (Figure 1f) are also important. Then univariate analysis was carried out to obtain
the volcano map of metabolites. Finally, the metabolites were screened to obtain differential
metabolites. Correlation analysis was carried out on these differential metabolites, and
finally, the metabolic pathway and network diagram were analyzed.
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Figure 1. Statistical analysis of metabolites between BM and DB. Principal component analysis (PCA)
results (a) PLS-DA analysis result (b) OPLA-DA analysis result (c) showed that the clustering of each
group is strong, with little difference within the group, but the difference between groups is obvious.
All of these models were evaluated using parameter R2X (cum) (d). We used the Loading OPLA-DA
to find the most important metabolic ions close to−1 and 1 (e). We used the Splot-OPLS-DA to screen
the metabolites closer to the two corners (f). BM: Bama xiang pig; DB: Debao pig.

3. Results
3.1. Multivariate Statistical Analysis and Univariate Statistical Analysis

For the PCA (Figure 1a), the contribution rate of PC1 was 36.1%; the contribution
rate of PC2 was 14.9%, and the cumulative contribution rate was 51%. For the PLS-DA
(Figure 1b), the contribution rate of PC1 was 41.9%; the contribution rate of PC2 was
6.23%, and the cumulative contribution rate was 48.13%. For the OPLS-DA (Figure 1c),
the contribution rate of PC1 was 40.6%; the contribution rate of PC2 was 7.35%, and the
cumulative contribution rate was 47.95%. Colored ellipses represented 95% confidence
intervals. The results show that the two groups of samples were gathered into two clusters.
Through those analyses (Figure 1d–f), we obtained some important metabolites, such
as carnosine, orciprenaline, PC (16:0/20:3(8Z,11Z,14Z)), and PC (18:1(11Z)/16:0). These
metabolites were also screened out as differential metabolites by other methods later.

Through univariate statistical analysis of the data matrix, the volcanic map (Figure 2)
showed the distribution of different metabolites in the two kinds of pigs. Red indicated that
the content of metabolites in BM was significantly higher than that in DB, blue indicated
that it was significantly less than that in DB, and gray indicated that the content of metabo-
lites in the two kinds of pigs was not significantly different. These points represented
different metabolites.
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3.2. Differential Metabolites and Correlation Analysis

Next, the differential metabolites were screened. The screening conditions were
VIP > 1 and p < 0.01. A total of 213 differential metabolites of BM and DB were obtained
(Supplementary Material Table S2). From the differential metabolite heat map (Figure 3),
we know the content of differential metabolites in each sample detected. The color from
blue to red indicated that the expression abundance of metabolites was from low to high.
There was a significant difference in metabolite levels between BM and DB (Figure 3). The
darker the red, the higher the abundance of differential metabolites. There were obvious
differences between BM and DB. The correlation analysis chart (Figure 4) showed the degree
of correlation between the two different metabolites. Red indicates a positive correlation,
and the darker the color, the greater the correlation.
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We found that some metabolites in BM and DB had highly significant differences, such
as PC (18:1 (11Z)/0:0), PE (14:0/24:0), PE (18:0/0:0) and PC (18:1 (11Z)/16:0) and other
lipids and lipoid molecules; creatine, L-valine, alanyl-glutamine and other organic acids
and their derivatives. These were preliminarily screened differential metabolites that could
be used as biomarkers. Through the correlation analysis of metabolites, we can know that
among the lipids and lipid molecules such as PC (16:0/00:0) have a high correlation, while
they have a negative correlation with stearoylcarnitine and other fatty acyls. Among the
fatty acyls like stearoylcarnitine that show a positive correlation, L-valine has a negative
correlation with N-acetyl-L-histidine and carnosine and a positive correlation with citric
acid. All these are organic acids and their derivatives.

Therefore, the clustering heat map (Figure 3) of different metabolites accurately
screened the metabolites with significant differences in the pork samples. The two groups
of samples were clustered together by comparing the different metabolites of the two pig
muscles. The two kinds of pigs were distinguished according to the type and content of
different metabolites in their muscles.

3.3. Path Analysis and Network Diagram

The KEGG database was used for the pathway enrichment of metabolites. We only
focused on the analysis of differential metabolites that can be enriched into the metabolic
pathway. There are 41 differential metabolites that can be enriched in the metabolic pathway,
of which 26 are upregulated in BM (Figure 5a and Table 1), and 15 are downregulated
(Figure 5b and Table 2). According to classification statistics, more than half of the metabolites
are organic acids, such as amino acids (3-methyl-l-histidine, 4-hydroxyproline and their
derivatives). In the aminoacyl-tRNA biosynthesis pathway of BM, the expression of histidine
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was downregulated, and the expression of arginine, glutamine, lysine, proline and valine was
increased; In the ABC transporters pathway, as in the previous pathway, the expression of
4-hydroxyproline and taurine were also upregulated. We calculated statistics on differential
metabolites. The following figure shows the classification of metabolites that could be enriched
to the KEGG pathway. In addition, we also made statistics on other differential metabolites,
mainly lipids and lipid molecules, organic acids and their derivatives, as well as some
unclassified metabolites. Through the pathway enrichment diagram (Figure 6) and bubble
diagram (Figure 7), we found 11 signal pathways with highly significant differences. Most of
the other metabolic pathways are related to the biosynthesis of various amino acids, such as
glycine, threonine, and leucine. We noticed that there were 11 signal pathways with significant
differences. Finally, we used the network diagram to make a network diagram of metabolic
pathways and corresponding metabolites (Figure 8), which can further clarify the relationship
between different metabolites and metabolic pathways.
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Table 1. Upregulation of differential metabolites and their classification.

Metabolites KEGG ID Super Class

Hypoxanthine C00262 Organoheterocyclic compounds
L-Fucose 1-phosphate C02985 Organic oxygen compounds

Ribose 1-phosphate C00620 Organic oxygen compounds
4-Hydroxyproline C01157 Organic acids and derivatives

Beta-Alanyl-L-arginine C05340 Organic acids and derivatives
Citric acid C00158 Organic acids and derivatives
Creatine C00300 Organic acids and derivatives

D-Glutamine C00819 Organic acids and derivatives
Gamma-glutamyl-L-

putrescine C15699 Organic acids and derivatives
Isocitric acid C00311 Organic acids and derivatives
L-Arginine C00062 Organic acids and derivatives

L-Glutamine C00064 Organic acids and derivatives
L-Lysine C00047 Organic acids and derivatives
L-Proline C00148 Organic acids and derivatives
L-Valine C00183 Organic acids and derivatives

N-Acetylornithine C00437 Organic acids and derivatives
Oxidized glutathione C00127 Organic acids and derivatives

Taurine C00245 Organic acids and derivatives
6-Methylthioguanosine

monophosphate C16620 Nucleosides, nucleotides, and
analogues

Uridine diphosphate-N-
acetylglucosamine C00043 Nucleosides, nucleotides, and

analogues
PC (18:1(11Z)/0:0) C04230 Lipids and lipid-like molecules

PC (16:0/0:0) C04230 Lipids and lipid-like molecules
PC (18:0/0:0) C04230 Lipids and lipid-like molecules

PC (18:1(11Z)/16:0) C00157 Lipids and lipid-like molecules
PC (16:0/20:3(8Z,11Z,14Z)) C00157 Lipids and lipid-like molecules

PE (14:0/24:0) C00350 Lipids and lipid-like molecules
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Table 2. Downregulation of differential metabolites and their classification.

Metabolites KEGG ID Super Class

2-Hydroxycinnamic acid C01772 Phenylpropanoids and polyketides
4-[(Hydroxymethyl)nitrosoamino]-1-

(3-pyridinyl)-1-butanone C19563 Organic oxygen compounds

Kanamycin C01822 Organic oxygen compounds
N-Acetylneuraminate 9-phosphate C06241 Organic oxygen compounds

3-Methyl-L-histidine C01152 Organic acids and derivatives
1-methylhistidine C01152 Organic acids and derivatives

4-(Methylnitrosamino)-1-(3-pyridyl)-
1-butanol

glucuronide
C19605 Organic acids and derivatives

Anserine C01262 Organic acids and derivatives
Carnosine C00386 Organic acids and derivatives

L-Histidine C00135 Organic acids and derivatives

Deoxycytidine C00881 Nucleosides, nucleotides, and
analogues

Uridine 5′-monophosphate C00105 Nucleosides, nucleotides, and
analogues

Glycerophosphocholine C00670 Lipids and lipid-like molecules
LysoPC (22:5(7Z,10Z,13Z,16Z,19Z)) C04230 Lipids and lipid-like molecules

Palmitoylcarnitine C00547 Benzenoids
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4. Discussion

Metabolomics has become a new method for analyzing the chemical makeup of organ-
isms in recent years and has a broad range of applications. For example, metabolomics can
be used to explore the mechanisms of action for various pathogens, identify biomarkers
that can be used to predict the occurrence of disease, and monitor the course of the disease.
Some studies have also shown that metabolomics can be used to analyze the biological
processes of disease pathogenesis and provide a basis for disease treatment. In this study,
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metabolomics was used to explore the metabolite differences between BM and DB, and then
biomarkers were identified that could be used to grade the meat quality of BM. Further-
more, the key metabolites of pork meat quality formation and the biological processes of
these molecules were explored. Potential metabolites that can be studied further to identify
different pork varieties have been reported. We found a total of 26 upregulated metabolites
in BM that may be related to meat quality formation and could act as biomarkers for
the meat quality rating (Table 1). These metabolites are basically organic acids and their
derivatives, lipids, nucleotides and organic oxygen compounds (Figure 5a). When we
annotated these metabolites, we found that many of them were linked to the metabolic
processes of amino acids and purines. The network diagram (Figure 8) and metabolic path-
way enrichment analysis clarified these relationships, showing that 3-methyl-L-histidine
is involved in histidine biosynthesis, γ-glutamyl-L-putrescine in arginine and proline
metabolism, and creatine in arginine, serine, proline, glycine, and threonine metabolism.
Overall, these metabolites are usually responsible for meat quality. Moreover, metabolic
pathways with significant differences were also screened, and most of them are associated
with the digestion, absorption, and metabolism of proteins, amino acids, and lipids. Most
of these metabolic pathways are associated with the digestion, absorption, and metabolism
of proteins, amino acids, and lipids. In the metabolic pathway of protein digestion and
absorption, endogenous and exogenous proteins are digested by various enzymes into
various amino acids in the body. Among these amino acids are L-proline, glycine, β-alanine,
and L-lysine. In the aminoacyl-tRNA biosynthesis pathway, the levels of L-glutamic acid,
valine, L-lysine, L-proline and L-arginine were higher than the average level, and the
content of L-histidine was lower than average. L-lysine and other organic acids and their
derivatives are involved in the metabolic pathways of amino acid biosynthesis, protein
digestion and absorption; N-acetylamine plays an important role in arginine biosynthesis
by promoting the urea cycle [27]. The role of L-glutamine and citric acid in the metabolic
pathways of alanine, aspartate, and glutamate metabolism is to promote the biosynthesis of
glycine, threonine and other amino acids, which is consistent with previous research [28,29].
Glutamine can lead to protein synthesis and reduced muscle catabolism [30,31]. Altogether
these are the major amino acids involved in meat formation. Citric acid plays an important
role in the tricarboxylic acid cycle. Some of the detected amino acids come from daily diets,
such as feed, and have a profound impact on the quality of meat. Therefore, in addition to
the problems of pig breeds, feed ingredients also have a certain influence on pork; however,
in our study, no changes were made to the feed content. Significantly downregulated
metabolites (Table 2) also play an important role. For example, creatine can be converted
into phosphocreatine to become a ready-made source of ATP [31], and 2-hydrocinnamic
acid exhibits antioxidant properties [32]. The amino acid contents of the two pig types
were compared and analyzed. The results showed that the content of flavor amino acids
(aspartate, glycine, aspartate, alanine, isoleucine, proline, and serine) [33] and essential
amino acids (lysine, methionine, threonine, leucine, isoleucine, valine, and phenylalanine)
in BM were higher than those in DB. This directly shows that BM has better pork quality
and flavor.

In addition to amino acids and their derivatives, we also detected the presence
of other metabolites, such as lipids and organic oxygen compounds. The organic oxy-
gen compounds, L-fucose 1-phosphate, ribose 1-phosphate, and uridine diphosphate
N-acetylglucosamine, are involved in the metabolism of guanosine diphosphate, a key
substrate for carbohydrate and sugar ester synthesis. L-fucose 1-phosphate also showed
significant differences and plays a role in the metabolic pathways of amino sugar and
nucleoside sugars (Figure 8). Furthermore, we also screened several potential metabolites
that can be used for meat quality evaluation from those metabolites that have not been
enriched in metabolic pathways, such as alanyl-histidine, inosine 2′-phosphate, oleoylcar-
nitine, and histidine-hydroxyproline. Alanyl-histidine is a dipeptide carnosine, an effective
anti-saccharifying and antioxidant agent [34,35]; carnosine protects cell telomeres from
damage [36]. These metabolites play important roles in meat production. Further statistical
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analysis of the potential differential metabolites was performed to identify those that could
be significant biomarkers for pork identification. We screened six metabolites: L-proline,
citric acid, ribose 1-phosphate, L-valine, creatine and L-arginine, to identify BM and DB
breeds. Four potential differential metabolites, alanyl-histidine, inosine 2′-phosphate,
oleoylcarnitine and histidine-hydroxyline, were used as the identification metabolites for
the pigs.

In the follow-up experiments, we will explore the biological processes of meat quality
formation by analyzing the metabolic pathways of metabolites related to this process.
Moreover, metabolites that have not been annotated require further investigation.

5. Conclusions

The research and analysis of results showed that there are obvious differences in the
metabolites in the main metabolic pathways of the longissimus muscle of BM and DB.
We found 214 different metabolites and then preliminarily screened six to identify the
pigs. These consisted of L-proline, citric acid, ribose 1-phosphate, L-valine, creatine and L-
arginine. The four potential differential metabolites, alanyl histidine, inosine 2′-phosphate,
oleoylcarnitine and histidine–hydroxyline, were used as the identification metabolites for
BM and DB pigs. Significant differences were observed in the screened metabolites between
the two types of pork, indicating that they can be used to identify BM and DB. This study
details a basic research method for the identification of many kinds of domestic pigs and
may aid in the detection of more varieties of pork. Overall, this study data can provide a
basis for improved pork safety and traceability in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/foods12010005/s1, Table S1: Data Matrix; Table S2: Differential metabolite.
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