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Abstract: Grape is a fruit rich in various vitamins, and grape quality is increasingly highly concerned
with by consumers. Traditional quality inspection methods are time-consuming, laborious and
destructive. Near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI) are rapid, non-
destructive and accurate techniques for quality inspection and safety assessment of agricultural
products, which have great potential in recent years. The review summarized the applications and
achievements of NIRS and HSI for the quality inspection of grapes for the last ten years. The review
introduces basic principles, signal mode, data acquisition, analysis and processing of NIRS and HSI
data. Qualitative and quantitative analysis were involved and compared, respectively, based on
spectral features, image features and fusion data. The advantages, disadvantages and development
trends of NIRS and HSI techniques in grape quality and safety inspection are summarized and
discussed. The successful application of NIRS and HSI in grape quality inspection shows that many
fruit inspection tasks could be assisted with NIRS and HSI.

Keywords: near-infrared spectroscopy; hyperspectral image; grape quality; machine learning

1. Introduction

The grape (Vitis vinifera L.) is a woody vine of the Vitis genus in the family of Vitaceae.
They are cultivated worldwide, and most are concentrated in the northern hemisphere [1].
Grape is a kind of world economic crop fruit, and it is one of the essential components of
the agricultural economy for immense dietary purposes [2]. It is popular due to its rich
vitamins and unique flavor. Grapes are consumed as fresh fruit (table grapes), dried fruit
(raisins), juice, and a large proportion of grapes are used to make wine [3]. Especially grape
quality and variety are the main determinants of wine quality, and pigments extracted
from the grape skin are reused as functional food ingredients in other food products [4].
Besides, it is adaptable, widely distributed, and easy to manage, with high yield, rich
nutrition, multiple uses and high economic benefits in the local and national economy.
Increasingly, consumers are concerned about quality, and it has a significant influence on
grape winemaking [5]. Therefore, grape quality detection is vital, and it is helpful for fully
utilizing grapes of all grades. Generally, good quality grapes are used for food, while poor
quality grapes are used as fertilizer or fuel, which also responds to environmental rules
and contributes to sustainable economic development [6].

Grape quality means the internal factors, such as sugar content (roughly equivalent
to soluble solids content, SSC), acidity and phenolic, and external factors, such as color,
firmness (Durofel index, DI) and surface defect. Grape safety refers to the pesticide residue
and decay on the surface here. Generally, the method of fruit quality detection has been di-
vided into conventional (destructive) techniques and advanced and green (non-destructive)

Foods 2023, 12, 132. https://doi.org/10.3390/foods12010132 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods12010132
https://doi.org/10.3390/foods12010132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0002-5811-3476
https://orcid.org/0000-0002-7781-3005
https://orcid.org/0000-0001-6760-3154
https://doi.org/10.3390/foods12010132
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods12010132?type=check_update&version=1


Foods 2023, 12, 132 2 of 23

techniques. Currently, the main conventional techniques include various chemical in-
spection methods, such as High-Performance Liquid Chromatography (HPLC) [7], Gas
Chromatography (GC) [8], Mass Spectrometry (MS) [9], and Gas Chromatography-Mass
Spectrometer (GC-MS) [10], etc. They are diagnostic analytical methods at the molecular
level, and are used combined with NIRS, HSI and other scientific studies. Besides, they are
time-consuming, laborious, cost and required the complex operation and process, and they
are unsuitable for the extensive detection of fruits in the real world. Thus, the development
of the fruit economy and application is seriously restricted.

Researchers have been exploring green, rapid and accurate non-destructive techniques
(NDTs) to monitor agro-product quality in the past decades. Common non-destructive
techniques are mainly imaging-based, spectroscopy-based, and other non-destructive
methods [6]. Among them, imaging-based approaches include RGB imaging, multispectral
imaging, hyperspectral imaging, backscattering imaging, thermal imaging (TI), fluorescence
imaging, magnetic resonance imaging, X-ray and Ultrasonic imaging. Spectroscopy-based
techniques contain NIR spectroscopy and Raman spectroscopy. Other non-destructive meth-
ods are the electronic nose, electronic tongue, dielectric, and acoustic [6]. Non-destructive
detection of quality would allow the fruit industry to provide better tasting grape fruit to
consumers, which would improve competitiveness and profitability in the market.

In recent years, near-infrared (NIRS) and hyperspectral imaging (HSI) have been
widely used in agriculture [11], the food industry [12] and the medical industry [13],
etc. However, comprehensive literature on grape quality inspection of NIRS and HSI
techniques has not been available to our knowledge. The review was conducted by reading
and analyzing the literature of the last ten years to comprehensively understand the quality
inspection for grapes using NIRS and HSI techniques. The basic principles, data processing
methods, calibration model and research results are summarized and analyzed. The
development trends and shortcomings of the NIRS and HSI techniques in fruit quality
inspection are discussed. Based on the NIRS and HSI, this is the first time that a comparative
study between entire grapes, skins and seeds has been evaluated with this purpose. The
frame of the review is shown in Figure 1.
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2. Introduction to NIRS and HSI Technologies
2.1. Basic Principles and Signal Mode

Near-infrared spectroscopy (NIRS) is vibrational spectroscopy, and it covers the wave-
length range of 780–2500 nm (12500–4000 cm−1), which presents the molecular bond
vibrations, including hydrogen-containing O–H, C–H, N–H and C-O groups [14,15]. It is a
commonly used technique for non-destructive quality inspection of agro-products. When
radiation hits a sample, the incident radiation may be reflected, absorbed and transmit-
ted. The relative contribution of each phenomenon depended on the sample’s chemical
constitution and physical parameters [16].

Hyperspectral imaging (HSI) is another commonly used advanced technique for the
non-destructive quality inspection of agro-products, which combines spectroscopy and the
conventional imaging technique. It can obtain three-dimensional (3D) data information
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from the sample simultaneously, including the one-dimensional (1D) spectral information
and two-dimensional (2D) spatial (image) information, achieving the unity of the map and
spectrum [17,18], which is helpful to obtain qualitative and quantitative information about
the product.

In signal mode, the interaction between light and biological tissues proves to be highly
complicated [19]. When the incident light hits the grape, the part of light will be reflected
on the surface directly, the remaining light penetrates the tissue interior, where they are
absorbed and scattered. Before the light is absorbed, light spreads out in all directions,
forming transmission or diffuse reflection. Among them, light exiting from the same side
(the angle between the incident light and the emergency light is less than 90◦) is defined as
diffuse reflection, and the light exiting from the other side (the angle between the incident
light and the emergency light is equal to or greater than 90◦) is called transmittance [20].

Generally, NIRS and HSI present the three detection modes, including reflectance,
transmittance, and interactance [21,22], as shown in Figure 2. Generally, reflectance refers
to diffuse reflectance, and illumination and the detector are on the same side, as is shown
in Figure 2a. The full transmission mode is usually configured with the illumination
and detector on opposite sides of the sample, and the illumination, detector and sample
are in one line, as is shown in Figure 2b. However, regarding partial transmittance, the
illumination, detector and sample are not in a line, as is shown in Figure 2c. In interactance
mode, the illumination and detector are installed on the same side of the sample and
parallel to each other. In addition, a light barrier is placed between the illumination and the
detector to prevent interference, as is shown in Figure 2d.
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2.2. Data Acquisition

Near-infrared spectroscopy (NIRS) data is acquired by a near-infrared (NIR) spectrom-
eter. Generally, it consists of four modules: A light source, detector, sample stage, and
light-isolating [23]. Based on the application, NIR spectrometers can be divided into labora-
tory, portable, and online spectrometers [14]. In recent years, portable vis/NIR systems
have been developed due to innovations in optical system design and miniaturization for
their friendly use directly in the field [24]. Specific online applications include laboratory
scale, semi-industrial pilot scale applications, and industrial conditions [19,25].

Hyperspectral imaging (HSI) data is obtained by a HSI system. A typical HSI system
generally contains four modules: An imaging unit, an illumination source, a carrier stage,
and a computer with corresponding control software [26]. The imaging unit consists of the
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charged-couple device (CCD) camera. The illumination unit is composed of a tungsten-
halogen lamp to provide illumination. A sample was presented in the sample stage, and
the data were acquired and processed in the computer equipped with relevant analysis
software. Three ways to obtain hyperspectral images are developed, including point scan
mode, line scan mode and area scan mode. To some extent, the NIR spectrometer and
hyperspectral image system have their advantages, disadvantages and application fields,
and the main similarities and differences are shown in Table 1.

Table 1. Summary of the difference and connection between the NIRS and HSI systems.

Tech 1 Difference Connection

Instrument Data Application Data Process

NIRS Lower cost;
portables Spectra Evaluate chemical parameters;

on-lining inspection, Rely on ML 2, chemo-metric model

HSI Higher cost;
ponderous Spectra and image Evaluate chemical and physical

parameters; visualize map,
Poor robustness and adaptability;

difficulty in valid information mining
1 Tech means NIRS and HSI techniques. 2 ML means machine learning.

2.3. Data Analysis and Processing

Data analysis includes qualitative and quantitative analysis. The qualitative analysis
of the sample provides non-quantifiable attributes, while quantitative analysis can extract
quantitative sample information from the NIRS and HSI data. Generally, the analysis
processing of NIRS and HSI data is shown in Figure 3. The main steps of data processing
are summarized as follows:
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(1) Division of sample set. When the sample set is divided, the sample’s content dis-
tribution, gradient, and physical and chemical properties should be considered to
improve the calibration model’s stability and expand the model’s practical applica-
tion. The main dividing methods include Kolmogorov-Smirnov (KS) [27], sample set
partitioning based on joint x-y distance (SPXY) [28] and random ratio.

(2) Collection and extraction of data. The NIRS and HSI data are obtained, and the
chemical analysis values are measured. NIRS acquires spectral data and directly
processes it later. Regarding HSI data, it will be corrected with a black and white
reference image to eliminate random noise signals caused by a light source or power
supply [29]. The region of interest (ROI) is extracted using masking to remove
the background.

(3) Data preprocessing. The spectral signal obtained by the detector includes various
non-target factors, such as high-frequency random noise, baseline drift, stray light, etc.
Therefore, the obtained spectra should be reasonably pretreated before data analysis
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for the specific spectral measurement and sample. Normalization, Savitzky-Golay
(SG) [30], Standard Normal Variate (SNV) [31], and Multiplicative Scatter Correction
(MSC) [32] have been used widely to reduce noise. Normalization is to map the data
to the range to unify the dimension and speed up the calculation. Besides, it could
reduce the spectral difference caused by the varying height of the sample surface.
SG can eliminate spectral noise, such as baseline offset, tilt, reverse, etc. SNV is
commonly used to attenuate the slope variation of spectra. MSC is applied to remove
the undesirable scatter effect. Besides, derivative processing, Fourier Transform (FT),
Wavelet Transform (WT), etc., are applied in some cases.

(4) Establishment of calibration models. For the qualitative analysis, the calibrations
are conducted by the classification model using the sample label (variety, origin,
year, etc.) as the dependent (Y) variable and grape spectra as the independent (X)
variable [33]. Classification calibrations models are built, such as Partial least squares
discriminant analysis (PLS-DA) [34], K-nearest Neighbor (KNN) [35], Support Vector
Machine (SVM) [36], K-means [37], Artificial neural networks (ANN) [38], etc. For
quantitative analysis, calibrations were developed by the regression model using the
fruit physicochemical attribute as the dependent (Y) variable and grape spectra as the
independent (X) variable [33]. Regression calibrations models are established, such as
Partial Least-square Regression (PLSR) [39], Multiple Linear Regression (MLR) [40],
SVM [36], ANN [38], Principle component regression (PCR) [41], etc. For NIRS, the
input data is the principal component of the grape spectra. Regarding HSI, it is spectra,
images, or a combination of spectra and image features.

(5) Evaluation of the calibration model. The model conducted is evaluated for its relia-
bility and generalization capability with external validation data sets or/and cross-
validation techniques. There are some evaluation indices: Accuracy (acc), precision,
recall, and F-score, etc., for qualitative analysis; the correlation coefficient (R), coeffi-
cient of determination (R2/RSQ), root mean squared error (RMSE), residual predictive
deviation (RPD), etc., for quantitative analysis.

(6) Prediction of unknown samples [42]. The unknown samples were scanned to ob-
tain NIRS and HSI data, and their contents were calculated by models established
and evaluated.

3. Applications

In recent years, NIRS and HSI technologies have been widely used to assess agro-
product quality, enabling a better understanding of the sample’s composition, physico-
chemical characteristics, and internal structure. In this section, qualitative research of NIRS
and HSI in grapes were analyzed, mainly including discrimination of the variety, vintage,
vineyard, maturity, quality grading, status evaluation, seeded or seedless, safety inspection,
etc., which are summarized in Tables 2–4. Quantitative analysis in grape berries, grape
seed, grape skin and grape pomace mainly consists of internal quality assessment, sensory
and preference analysis of consumers, biochemical component detection, etc., summa-
rized in Tables 5 and 6. Internal quality parameters discussed here consist of texture and
flavor, which are significant for determining the nutritional values and marketability of
agro-products. The relationship between spectra data and the sensory preference analysis
of consumers will be explored. Biochemical composition detection consists of evaluating
extractable polyphenols (total phenolic, anthocyanins and flavanols), amino acids and
glycosylated aroma compounds. Besides, NIRS obtains the spectra data, and HSI acquires
the spectra and image data. Thus, relevant research was summarized and compared in the
section based on the spectra feature, image feature (color space, texture and morphology)
and fusion feature.
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3.1. Spectral Feature Analysis
3.1.1. Qualitative Analysis
Variety Identification

Grape cultivars, especially wine grapes, play an essential role in winemaking, directly
affecting grape wine quality. Cheng et al. used HSI to identify varieties of six white and six
red wine grapes during the ripening period. The mahalanobis distance was employed to
remove outliers of the spectral data. Six different pre-treatments (MSC, S-G filter, 0–1 nor-
malization, SNV, first derivative and second derivative) were applied. Principal Component
Analysis (PCA) loading was used to select effective wavelength. SVM, Random Forest (RF),
and AdaBoost models were built with effective and full wavelength as prediction models.
The S-G Filter + PCA + SVM achieves the best classification result, with the accuracy of
81.09% and 90.01% for white and red grapes [43]. Xu et al. used HSI based on ensemble
empirical mode decomposition discrete wavelet transform (EEMD-DWT) to identify grape
varieties. EEMD-DWT, SG, DWT and EMD were applied to denoise, and Competitive
Adaptive Reweighted Sampling (CARS) and Successive Projections Algorithm (SPA) was in-
volved in extracting the feature wavelength. Finally, SVM was built to identify the varieties
of grapes, with the best accuracy of 99.3125% based on a model of EEMD-DWT-CARS-SPA
in Monte Carlo (MC) experiments [44]. Besides, the chemical composition of seeds changes
during grape ripening, affecting the wine’s sensory properties [45]. Zhao et al. used near-
infrared HSI with multivariate analysis to non-destructively and rapidly discriminate and
visualize different grape seeds. The effective wavelengths were extracted by the PCA
loadings of the first six PCs. SVM was applied to establish classification, with a calibration
accuracy of 94.3% and a prediction accuracy of 88.7% [46]. Rodríguez-Pulido et al. used
NIR hyperspectral imaging combined with multivariate analysis methods PCA and General
Discriminant Analysis (GDA) to predict the variety of grape seeds. The study shows a
good result, with the accuracy of 100% using full spectra and 96% using the six selected
wavelengths [47]. Quijada-Morín et al. successfully divided grape seeds into seven groups
through hyperspectral imaging characteristics with k-means [48].

Table 2. Qualitative analysis of near-infrared spectroscopy (NIRS) in grape.

Variety No Mod S/I Attribute Ext Object Model Application Best Result
(Accuracy%) Reference

‘Kyoho’ 86 inter S seed or seedless No berry PLS-DA
identify
seed or
seedless

acc = 93.10% [49]

Graciano
(two

origins)
84 refl S phenolic in skin

and seed No seed, skin,
berry DPLS identify the

origin

acc = 95%, 66%, 93%
(DPLS, seed, berry,

skin)
[50]

Manicure
Finger, Ugni

Blanc
341 inter S SSC, TP,

CIELAB No cluster PLS-DA quality
grade 77.00–94.00% [51]

Tempranillo,
Syrah (two

years)
400 drefl S TP, anth, flav No berry, skin LDA, DPLS,

Pearson
quality

assessment

acc = 87.0, 91.3, 91.3
(LDA), others are poor

result
[52]

Syrah,
Cabernet

Sauvignon
1008 refl S TSS, yellow

flavonoids, anth No berry

PCA-LDA,
PCA-QDA,

LDA_Mahalanobis,
PLS-DA

maturity
evaluation

acc = 93.15% (PLS-DA),
92.86% (LDA), 92.26%

(QDA), 92.26%
(LDA_Mahalanobis)

[53]

Manicure
Finger

Ugni Blanc
540 drefl S L*a*b, SSC, TP SPA,

CARS berry PCA
SVM-DA

maturity
evaluation

acc = 90.00% (MF)
acc = 100.00% (UB)

(SSC-CARS-SVM-DA)
[54]

Sangiovese 400 absorb S SSC, TA, DI
anth No berry PCA maturity

evaluation
clear clusters (PC1 for
93.42%, PC2 for 4.72%) [55]

Pedro
Ximénez,
Cabernet

Sauvignon

24 refl S

SSC, PH, TA,
MA,

reducing-sugar,
tartaric acid

No bunch PLS-DA maturity
evaluation acc = 79.00–100.00% [56]

Variety refers to grape varieties. No means the number of the sample in the research. Object means the object-wise:
single berry, a bunch, grape skin and grape seed. S/I means spectra and image features, respectively. Mod means
the signal mode: transmittance mode (trans), interactance mode (inter), reflectance mode (refl), diffuse reflectance
(drefl), and diffuse transmittance (dtrans). Ext means the approach to extracting effective wavelength. Best result
means the best perform of model in the research. Application means the main relevant research contents in this
cited literature. Reference means the reference resources.



Foods 2023, 12, 132 7 of 23

Table 3. Qualitative analysis of hyperspectral imaging (HSI) in grape.

Variety No Mod S/I Attribute Ext Object Model Application Best Result
(Accuracy%) Reference

Garnacha
(two

vineyards),
Graciano,
Mazuelo,

Tempranillo

50 refl SI
Chromatographic,

color, NIR,
fusion data

No berry Stepwise-
LDA

identify
grape

variety

acc = 88%, 54%,
100%, 100%

(internal
validation)

acc = 86%, 52%,
86%, 86%
(external

validation)

[57]

Six white and
red wine
grapes

5640 refl S No PCA berry
AdaBoost,

SVM,
RF

identify
grape

variety
acc = 81–93.00% [43]

Hutai, Kyoho,
Muscat,

Summer black

480(120 *
4

varieties)
refl S No

CARS,
CARS-
SPA,

MCCV

berry SVM
identity
grape

variety

acc = 99.3125%
(CARS-SPA) [44]

Tempranillo,
Syrah,

Zalem-a (two
soils)

56 refl S No PCA seed GDA
identity

grape seed
variety

acc = 100% (full
wavelength),

≥96%
(selected

wavelength)

[47]

Hongtizi,
Meirenzhi,

Jufeng
500 refl S No PCA seed SVM

identity
grape seed

variety
acc = 88.70% [46]

Tempranillo 1232 refl S Flavanolic PCA seed k-means predict
flavanolic

k-means
clustering great [48]

Variety refers to grape varieties. No means the number of the sample in the research. Object means the object-wise:
single berry, a bunch, grape skin and grape seed. S/I means spectra and image features, respectively. Mod means
the signal mode: transmittance mode (trans), interactance mode (inter), reflectance mode (refl), diffuse reflectance
(drefl), and diffuse transmittance (dtrans). Ext means the approach to extracting effective wavelength to build
mode. Best result means the best performing model in the research. Application means the main relevant research
contents in this cited literature. Reference means the reference resources.

Table 4. Safety inspection of NIRS and HSI in grape.

Variety No Mod S/I Attribute Ext Object Model Application Best Result
(Accuracy%) Reference

Chardonnay,
Grillo, Inzolia,

Viognier,
Nero’d’Avola,

Syrah

1235
healthy,

1324
diseased

refl S

Healthy
and

diseased
status

No bunch PLS-DA
phytosanitary

status
evaluation

acc = 89.80–94.00% [58]

table grape 686 refl S

no, single
and

double
dose of

pesticide

PCA,
LASSO,
Elastic

Net
regular-
ization

cluster
ANN,

SVM, RF,
XGBoost

identity
pesticide

level

acc = 91.98%
(SVM-LASSO) [59]

cabernet
sauvignon,
Red grape,
Munage

1071 refl S

four
mixed

pesticide
levels

No cluster
RF, LR,
SVM,

ResNet

identity
pesticide

level
acc > 93.00% [60]

Variety refers to grape varieties. No means the number of the sample in the research. Object means the object-wise:
Single berry, a bunch, grape skin and grape seed. S/I means spectra and image features, respectively. Mod means
the signal mode: Transmittance mode (trans), interactance mode (inter), reflectance mode (refl), diffuse reflectance
(drefl), and diffuse transmittance (dtrans). Ext means the approach to extracting effective wavelength to build
mode. Best result means the best performing model in the research. Application means the main relevant research
contents in this cited literature. Reference means the reference resources.
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Table 5. Quantitative analysis of near-infrared spectroscopy (NIRS) in grape.

Variety No Mod Attribute Ext Object Model Application Best Result(R2) Reference

Grape mash
(36 varieties) 168 refl

Fructose, PH
Glucose, TA,

Glycerol, MA,
Gluconic acid,

Ergosterol,
Ethanol, acetic
acid, Tartaric
acid, Laccase

activity

No berry PLSR

predict
grape

mashes
composition

R2 = 0.873 (Relative
density), 0.836

(Glycerol), 0.851
(Ergosterol), 0.345
(TA), PH (0.393)

[25]

Tannat
(3 years) 56 refl

glycosylated
aroma

compounds
No homogenized,

juice PLSR

predict
glycosylated

aroma
compounds

RPD > 1.5 (5 and 4
norisoprenoids
compounds, in

homogenized and
juice)

[61]

Cabernet
Sauvignon,

Syrah
1008 refl TSS, anth, yellow

flavonoids No berry PCR, MLR,
PLSR

quality
evaluation

≥0.90 (TSS and
anthocyanins); ≥0.70

(flavonoids)
[53]

Autumn royal,
Timpson,

Sweet scarlett
450 refl Dry matter (DM),

TSS/SSC No berry PLSR quality
evaluation

R2 = 0.83,0.81 (DM),
0.97, 0.95 (TSS) for
two spectrometers

[62]

Jufeng 115 dtran SSC No bunch PLSR quality
evaluation R = 0.83 [63]

Tempranillo
(laboratory,

field)
1643 refl TSS No berry PLSR quality

evaluation

RMSEP = 1.42◦Brix,
SEP = 1.40◦Brix

(laboratory);1.68◦Brix,
1.67 Brix (field)

[64]

Sangiovese 9600 drefl

Brix, Babo, TS,
glucose, fructose,

density, TA,
tartaric acid, pH,

MA, anth, TP,
gluconic acid,

assumable
nitrogenm

No berry PLSR quality
evaluation

R2 = 0.93 (◦Brix), 0.93
(◦Babo), 0.94 (TS), 0.93

(glucose), 0.55 (TA),
0.92 (fructose), 0.91
(density), 0.66 (PH),

0.76 (anth)

[65]

Tempranillo 144 refl TSS, anth, total
polyphenols PCA bunch PLSR

predict TSS,
anth, total

polyphenols
R2 = 0.95, 0.79, 0.43 [66]

Grenache 128 refl TSS, amino acid No cluster PLSR
predict

amino acids
and TSS

R2~0.60 (asparagine,
tyrosine proline in
570–1000; lysine,

tyrosine, proline in
1100–2100), 0.90 (TSS)

[67]

Ruby Seedless
grape 700 refl SSC No berry PLSR,

LS-SVM predict SSC
R2 = 0.889~0.918

(LS-SVM); 0.874~0.907
(P-LSR)

[68]

Syrah,
Tempranillo 400 drefl TP, anth, flava No berry, skin MPLSR quality

evaluation poor results [52]

table grape cv
Italia 682 drefl SSC No berry PLSR sensory

analysis

R2 = 0.85
(cross-validation);

0.82 (external
validation)

[69]

Autumn Royal,
Victoria 350 refl TSS/SSC, TA No berry PLSR

predict
consumer
preference

driving
factors

R2 = 0.5732 (TA),
0.8304 (TSS) [70]

Thompson
seedless, Regal
seedless, Prime

seedless

338 drefl TSS, TA, PH,
TSS/TA, BrimA No bunch PLSR

predict
maturity

and sensory
parameters

R2 = 0.71, 0.33, 0.57,
0.28, 0.77 [71]

Graciano red
grape
(two

vineyards)

150 refl
taste, texture,

visual, olfactory
feature

No seed
skin MPLSR

predict
sensory

parameters
and harvest

time

seed (4.5% for
hardness, 8.7% for

colour), skin (9.8% for
tannic intensity, 13.7%

for astringency

[72]

Corvina 300 refl TSS, DI, weight
loss No berry PLSR, PCA

predict
withering

quality

R2 = 0.62, RPD =1.87
(TSS); 0.56, 1.79

(firmness)
[73]

Manicure
Finger (MF),
Ugni Blanc

(UB)

540 drefl L*a*b, SSC
TP

SPA
CARS berry PLSR,

LS-SVM
quality

evaluation

R2 = 0.531~0.929
(LS-SVM), 0.520~0.897

(PLS); 0.897, 0.929 (
SSC, UB)

[54]

Sangiovese 400 absorb SSC, TA, DI, anth No berry Pearson quality
evaluation

R2 = 0.92 (SSC), 0.87
(TA), 0.89 (DI),

0.68~0.97 (anth)
[55]
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Table 5. Cont.

Variety No Mod Attribute Ext Object Model Application Best Result(R2) Reference

‘Kyoho’ grape 172 inter DI, SSC, PH, No berry PLSR quality
evaluation

R2 = 0.7427, 0.7804
(DI); 0.6276, 0.7676
(PH); 0.6926, 0.8052

(SSC)

[49]

Manicure
Finger, Ugni

Blanc
341 inter SSC, TP, LAB No berry PLSR quality

evaluation
R2 = 0.735, 0.823 (SSC,

TP) [51]

Variety refers to grape varieties. No means the number of the sample in the research. Object means the object-wise:
single berry, a bunch, grape skin and grape seed. S/I means spectra and image features, respectively. Mod means
the signal mode: transmittance mode (trans), interactance mode (inter), reflectance mode (refl), diffuse reflectance
(drefl), and diffuse transmittance (dtrans). Ext means the approach to extracting effective wavelength to build
mode. Best result means the best performing model in the research. Application means the main relevant research
contents in this cited literature. Reference means the reference resources.

Table 6. Quantitative analysis of hyperspectral imaging (HSI) in grape.

Variety No Mod S/I Attribute Ext Object Model Application Best Result (R2) Reference

Zalema,
Te-mpranillo 95 refl S flav No seed PLSR

predict
flavanols in
grape seeds

R2 = 0.88 (1
variety); 0.85 (2

varieties)
[45]

Syrah,
Tempranillo 99 refl S anth No berry MPLSR Screen

anthocyanins R2 = 0.86 [33]

Cabernet
Sauvignon 46 refl S anth PCA skin PLSR

detect
anthocyanin

concentration
R2 = 0.65 [74]

Cabernet
Sauvignon 120 refl S anth PLSR berry PLSR

SVR

predict the
anthocyanin

content
R2 = 0.94 (SVR) [75]

Touriga
Franca, Tin-ta

Barroca,
Touriga

Nacional

552 refl S anth, PH
sugar PCA bunch SVR

prediction of
oenological
parameters
for different
vintages and

varieties

R2 = 0.89
(anth);0.81
(PH); 0.90

(sugar)

[76]

Syrah,
Tempranillo 200 refl S TP, anth,

flav PCA skin MPLSR

screen of
extractable

polyphenols
in red grape

skins

R2 = 0.82 (TP),
0.79 (anth); 0.82

(flavanol),
[77]

Tempranillo 144 refl S SSC/TSS,
anth PCA berry SVM

Evaluate TSS
and

anthocyanin
concentration

R2 = 0.92 (TSS);
0.83 (anth)

[78]

Sangiovese 429 refl S SSC VIP berry PLSR,
PLS-DA

Evaluate SSC
and assess

harvest time

R2 = 0.77 (PLSR)
acc = 0.86–91%

(PLS-DA)
[79]

Kyoho grapes 240 refl S SSC/TSS
CARS,
IRIV,

V-MDRC
berry LSSVM,

PLSR detect TSS
R2 P = 0.93
(VMD-RC-

LSSVM)
[80]

Sangiovese 33 drefl S SSC No berry PLSR predict SSC in
the field

R2 = 0.75,
RMSECV = 0.84

[81]

Tempranillo 144 refl S

TSS, TA,
PH, anth,
MA, total
polyphe-

nols,
ftartaric

acid

No cluster PLSR
predict
internal

parameters

R2 = 0.82 (TSS),
0.81 (TA),

0.61(PH), 0.62
(Tartaric acid),
0.84 (MA), 0.88

(anth), 0.55
(Total

polyphenols)

[82]
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Table 6. Cont.

Variety No Mod S/I Attribute Ext Object Model Application Best Result (R2) Reference

Sugarone
Superior,

Thompson,
Victoria, Sable,

Lival,
Alphonse
Lavallée,

Black Magic

350 refl S flav, anth,
TSS,

VIP, re-
gression

coeffi-
cient
(PLS)

berry

PLS (full
bands),
MLR

(selected
bands)

predict TSS,
anth,
total

flavonoid

MLR: (flav, anth,
TSS, selected,
β-coefficient)

R2 = 0.93, 0.97,
0.97; 0.93, 0.98,

0.86
VIP-PLS:

R2 = 0.95, 0.99,
0.94

[83]

Touriga
Franca, Tint-a

Barroca,
Touriga

Nacional

2665 refl S sugar No berry
RR, NN,

PLSR,
1DCNN

predict sugar
content

R2 = 0.94
(1DCNN)

[84]

Touriga
Franca (2012

and 2013)
324 refl S sugar No bunch PLSR, NN

predict sugar
content in

new vintages

R2 = 0.93,0.92
(PLSR, NN,

2012); 0.95, 0.92
(PLSR, NN,

2013) for
external

[85]

Touriga
Franca (2012

and 2013)
324 refl S sugar No bunch NN

predict sugar
content

(satisfactory
generaliza-

tion)

R2 = 0.906,
RSME = 1.165
(2012); 0.959,

RSME = 1.026
(2013)

[86]

Touriga
Franca 240 refl S sugar, PH,

anth No berry NN
predict

maturity
parameters

R2 = 0.73 (PH),
0.92 (sugar),
0.95 (anth)

[87]

Touriga franca
(TF, 2012 +

2013); Touriga
nacional (TN,
2013); Tinta
barroca (TB,

2013)

465 refl S PH, anth No berry NN

predict PH
and

anthocyanin
for new

vintages and
varieties

R2 = 0.72 (2013,
TF, PH), 0.90

(2013.TF,
anthocyanin)

[88]

Zalema,
Syrah,

Tempranillo
213 refl S TP, TA,

sugar, PH No skin MPLSR

screen and
control

maturity
parameters

RSQ = 0.89 (TP),
0.99 (sugar),

0.98 (TA),
0.94(PH)

[89]

Globe grapes 360 drefl SI SSC

CARS,
S-PA,

UVE, GA,
CA-RS-

SPA,
UVE-SPA

berry PLSR predict SCC R2 c = 0.9775,
R2 P = 0.9762 [90]

4 white and 3
red/black
varieties

140 refl SI PH, TA,
SSC No berry PLSR

predict
physical-
chemical

content and
sensory

R2 = 0.95, 0.82
(TA); 0.94, 0.93
(SSC); 0.80, 0.90
(PH) for white
and red/black

grape

[91]

Kyoho grape 240 refl S DI, PH SAE, SPA,
CARS berry LSSVM,

PLS
predict DI

and PH
R2 = 0.923

(SAE-LSSVM)
[92]

Variety refers to grape varieties. No means the number of the sample in the research. Object means the object-wise:
Single berry, a bunch, grape skin and grape seed. S/I means spectra and image features, respectively. Mod means
the signal mode: Transmittance mode (trans), interactance mode (inter), reflectance mode (refl), diffuse reflectance
(drefl), and diffuse transmittance (dtrans). Ext means the approach to selecting effective wavelength to build
mode. Best result means the best performing model in the research. Application means the main relevant research
contents in this cited literature. Reference means the reference resources.

Maturity Identification

Maturity estimation is critical for determining the grapes’ optimal harvest timing and
storage mechanism. Study results have verified the possibility of maturity detection. Based
on the spectral feature, Costa et al. used Linear discriminant analysis (LDA), Quadratic
discriminant analysis (QDA), LDA_Mahalanobis and PLS-DA classification models to iden-
tify the three maturation stages of grapes (green, véraison, and ripe). PLS-DA performed
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best, with an accuracy of 93.15% [53]. Ribera-Fonseca et al. divided four different maturity
clusters according to an Index of Absorbance Difference (IAD) of visible and near-infrared
(VIS/NIR) spectroscopy (Cherry-Meter) by PCA, increasing level of maturity defined using
technological parameters and anthocyanins concentration [55]. Virginia et al. collected
white and red grapes in six stages according to the time. They divided them into three
groups according to reducing-sugar content: Insufficiently ripe (1), optimally ripe (2 and 6),
and overripe (3, 4 and 5) for white grape, and three groups: Young red wines (1), vintage
reds (2, 5 and 6) and even sweet reds (3 and 4), respectively. PLS-DA was built for classifi-
cation, and the percentage of correctly classified samples by the group was greater than
83% in all groups, except for the third stage in red grapes (79%) [56]. Baca-Bocanegra et al.
used the NIRS technique combined with LDA, Discriminant partial least square (DPLS),
and Pearson’s similarity index to predict the level of phenolic, flavanolic and anthocyanic
compounds (divided into two classes by the extractable pyhsical-chemistry content). How-
ever, the study shows unremarkable results except for internal validation in 2017 season
(especially for LDA, with an average accuracy of over 87%) [52]. Xiao et al. used VIS/NIR
spectroscopy combined with SVM-DA based on the full and effective wavelengths (CARS
and SPA) to discriminate five stages (green, pre-veraison, veraison, post-veraison, ripe).
The SSC-based CARS-SVM-DA model showed classification accuracies of 90% and 100%
for ‘Manicure Finger’ and ‘Ugni Blanc’ [54].

Seeded and Seedless and Geographical Origin Identification

Seedless grapes are essential factors affecting consumer preferences. The usual way is
to tear the grapes to check the internal conditions of the grapes, which are time-consuming
and laborious and cannot be used in large-scale industries. The spectral difference in the
interaction mode can reflect the internal composition of the fruit. Based on the spectral
feature, Kanchanomai et al. used the NIRS technique combined with the PLS-DA model to
distinguish seeded and seedless grapes in the laboratory and field, with the best accuracy
of 93.10% in the laboratory [49].

Attention to high-quality agro-products with a clear geographical origin is raising.
Identity preservation is significant for the wine industry and market sector owing to many
geographical classifications. There is a growing demand for analytical methods for tracing
grapes and wines. Ferrer-Gallego et al. used NIRS combined with DPLS to distinguish the
vineyard of origin using entire grapes, skin and seeds. The phenolic composition in grape
skins and the grape seed was measured by HPLC-DAD/MS, and that of grape skins was
regarded as phenolic in intact grapes. The model built by the seed obtained the best result,
with the accuracy of 95%, and the excellent result was presented with entire grapes, with
the accuracy of 93% [50].

Safety Inspection

Food safety has always been a concern for consumers. The food safety factors dis-
cussed here involve phytosanitary status evaluation and pesticide residues. There is an
urgent need to develop non-contact techniques such as NIRS and HSI for food safety
inspection. Based on the spectral feature, Beghi et al. used NIRS combined with PLS-DA to
identify the phytosanitary status (healthy, sunburn, botrytis cinerea, powdery mildew, and
sour rot), with the accuracy of 89.80%–94.00% [58]. Mohite et al. used HSI to detect grape
of the no, single and double does pesticide residue. PCA, LASSO and Elastic Net were
used to extract features, and ANN, SVM, RF and XGBoost were applied as the classification
model. LASSO-SVM showed the best result, with the accuracy of 91.98% [59]. Ye et al. used
VIS/NIR and NIR hyperspectral imaging to detect three grapes’ pesticide residues. SVM,
LR, RF and Residual Network (ResNet) were used as predictive models. An outstanding
performance was obtained, and the best result was over the accuracy of 90% [60].
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3.1.2. Quantitative Analysis
Quality Assessment

Based on the spectral feature of NIRS, many researchers have measured the physico-
chemical composition to evaluate the quality and determine the optimal harvest time of the
grape. Costa et al. used VIS/NIR reflectance spectroscopy to predict the quality and matu-
ration attributes (TSS, total anthocyanins and yellow flavonoids) in wine grapes. Several
pre-treatments were used, and PCR, PLSR and MLR were utilized as predictive models,
which showed promising results for TSS and anthocyanins (R2 ≥ 0.90), and flavonoid
content (R2 ≥ 0.70) [53]. Urraca et al. used NIR spectroscopy combined with PLSR under
field conditions to estimate the TSS in grape berries. PCA was applied to improve outlier
detection based on the 95% confidence ellipse. We used 1600 samples in the laboratory
to explore the influence of the number of samples for the model. The result of calibration
models built under laboratory conditions indicated that at least 700 berry samples are
required to ensure enough prediction accuracy. Under field conditions, the prediction
errors (RMSEP = 1.68◦Brix, and SEP = 1.67◦Brix) were close to those obtained with the
laboratory dataset (RMSEP = 1.42◦Brix, SEP = 1.40◦Brix) [64]. Baca-Bocanegra et al. used a
portable micro NIR spectroscopy combined with MPLS to screen extractable polyphenols
(total phenolic, anthocyanins and flavanols) in red grape skin. However, the study showed
poor results [52]. Xiao et al. used NIRS by comparison of benchtop Fourier-Transform (FT)
and portable grating scanning spectrometers to predict SSC, with the best R2 of 0.918 in
the region of 833–2500 nm [68]. Fernández-Novale et al. used on-the-go visible-short wave
near-infrared (VIS+SW-NIR) spectroscopy combined with PLSR to monitor the composition
(TSS, anthocyanin and total polyphenols), with the R2 of 0.95, 0.79 and 0.43 [66].

Besides, spectra data from HSI was used widely for quality assessment in grapes. For
the prediction of anthocyanin, Fernandes et al. [74] and Gutiérrez et al. [78] detected antho-
cyanin content using hyperspectral imaging in the range of 400–1000 nm with PLSR and
SVM, respectively, with SVM achieving a higher R2 of 0.83 (0.65 for PLSR). José et al. [33],
Chen et al. [75] and Nogales-Bueno et al. [77] detected anthocyanin content using hy-
perspectral imaging in the range of 900–1700 nm, and research involved the Modified
partial least squares regression (MPLSR), PLSR and Support Vector Regression (SVR), with
the best R2 result of 0.94 when using SVR. For SSC, Benelli et al. [79], Xu et al. [80] and
Benelli et al. [81] used HSI in the range of 400–1000 nm to detect the SSC content. PLSR,
LSSVM and PLSR, and PLSR were used in three studies, respectively. Three studies ob-
tained excellent results, and the best was the VMD-RC-LSSVM model, with R2 of 0.93 [80].
María et al. used on-the-go HSI in the vineyard to monitor grapes during ripening. TSS,
TA, PH, MA, tartaric acid, anthocyanins, and total polyphenols were measured. PLSR was
built to predict those parameters, with the R2

P (external validation) of 0.82 for TSS, 0.81 for
TA, 0.61 for pH, 0.62 for tartaric acid, 0.84 for MA, 0.88 for anthocyanins and 0.55 for total
polyphenols [82]. Gabrielli et al. used HSI to predict sugar, total flavonoid, and total antho-
cyanin contents. PLS with full wavelengths and MLR with optimal wavelengths selected
the regression coefficients and VIP score based on PLS were built to predict the grape
quality. RMSP based on PLS was 0.9, and this based on MLR with an optimal wavelength
of regression coefficients reduced to 0.7◦Brix [83]. Nogales-Bueno et al. used near infrared
HSI combined with MPLS to predict and evaluate TP, TA, PH and sugar. PCA was applied
to a preliminary inquiry for the latent structure of spectral matrix, all parameters obtained
the great R2 result (>0.89) [89]. Besides, Rodríguez-Pulido et al. used HSI to determine
flavanols in grape seed, and PLSR provide an R2 of 0.73 for total flavanols concentration,
and 0.85 for predicting flavanols extracted with the model solution, and 0.88 considering a
cultivar [45].

In addition to the above applications of traditional machine learning (ML) meth-
ods, deep learning (DL) is also used as a regression analysis model for quality evalu-
ation. Based on the neural networks (NN) or 1DNN, several studies used HSI in the
range of 380–1028 nm to detect the sugar content in grapes with different vintages and
vineyards, and satisfactory results were presented, with an R2 of over 0.90% [84–87]. In
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Gomes et al. [85] and Gomes et al. [86], models were tested from the sample data in 2013,
and satisfactory generalization was presented. In Gomes et al. [84], the external validation
was developed by an independent test set. Gomes et al. used HSI combined with NN in
estimating PH and anthocyanin content for new vintage and varieties and evaluated the
generalization ability of HSI. Touriga Franca (TF), Touriga Nacional (TN) and Tinta Barroca
(TB) were harvested in 2013, but only TF was collected in 2012. NN was built, trained and
validated to predict PH and anthocyanin from the 2012 sample, and TF, TN and TB from
2013 were tested to evaluate generalization ability. The best R2 for PH was 0.72 for TF, and
that for anthocyanin was 0.90 for TF. The study showed that if models are trained and
generalized well, they would successfully be applied in new vintages and varieties [88].

Parameters Sensory Prediction

Basile et al. used Fourier-transform (FT) NIR spectroscopy to predict the main maturity
parameters (SST and acid) and understand consumer preference driving factors in the
“Victoria” and “Autumn Royal” grapes. The result showed sugars and acid content in
“Victoria” were related to the appreciation. For “Autumn Royal”, there is no strong
correlation [70]. Daniels et al. used FT-NIR combined with PLSR to detect maturity
and sensory parameters (TSS, TA, TSS/TA, PH) and BrimA (TSS-K X TA) in different
vintages and varieties. The optimal preprocess method was decided by the result obtained
by the PLSR using 2016 data as the training set and 2017 as the testing set. The model
obtained the R2 result of 0.71, 0.33, 0.57, 0.28, and 0.77 for TSS, TA, TSS/TA, pH, and
BrimA, respectively [71]. Parpinello et al. used NIR spectroscopy to predict SSC and obtain
information about consumer preference in ‘Italia’ table grape. PLSR was established and
presented an acceptable result, with R2 of 0.85 for cross-validation and 0.82 for external
validation. Discriminant Analysis (DA) was conducted to identify the class of preference
by the NIR data, and the model performed a great result, with the accuracy of 78.5%, 98.7%
and 75% for class 1, class 2 and class 3 [69]. The results showed that sensory prediction is a
complex problem. It was mainly related to sugars, acids content, minor components and
other “not flavoring” properties like color and texture, such as crunchiness, gumminess,
etc., which is consistent with the literature [93].

3.1.3. Conclusions

Regarding the mode of data acquisition, the discussed studies on NIRS include interac-
tance, reflectance, diffuse reflectance and diffuse transmittance. Regarding HSI, the studies
discussed adopted the reflectance. In terms of data preprocessing, PCA, as an unsupervised
pattern recognition technique, has been widely used to reduce the dimension of spectra
data and select effective wavelengths by the scores of PCA loading, and it shows the
spatial distribution of the sample and presents and removes outliers [48,64,66,77]. Besides,
Normalization [69,70], SG [69], SNV [71], MSC [49,71] and derivative processing [70,71],
etc., have been applied in spectral data preprocessing methods to remove noise. Itera-
tively retains informative variables (IRIV) [80], Monte Carlo cross-validation (MCCV) [44],
LASSO [59] and CARS-SPA [44] have also been widely used to select effective wavelengths
to condense the data dimensions and to save computational time.

As for qualitative analysis, the results show a satisfactory performance for seeded
and seedless and geographical origin identification, with an accuracy of over 93% [49].
For maturity identification, maturity stages were divided by TP, SSC and other maturity
parameters. The classification method is most used by PLS-DA, and the results are accept-
able. Besides, maturity identification is conducted using NIRS in those studies. Concerning
the classification of grape and grape seed, the most widely used ML model is SVM, with
the accuracy of over 81% [43], and the best is 99.3125% based on an EEMD-DWT denois-
ing algorithm [44]. For safety inspection, the phytosanitary status and pesticide residues
discussed here showed satisfactory results.

Concerning quantitative analysis, the above research has shown that the prediction re-
sult of TSS was better than that of PH, TA and other components [49]. For sensory evaluation,
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it is challenging considering the inadaptability for every determination of complicated inter-
nal and external attributes. For calibration models, PLSR [33,74,75,77,82,83], SVR [75,76,78],
MLR [83] and Ridge regression (RR) are widely used. PLSR is the most popular chemomet-
ric method, followed by SVR and RR, with good results. However, PLSR does not always
show the best results. In Xiao et al. [54], the results indicate that the LS-SVM model showed
a better performance than PLSR. Besides, NN [87] and 1DNN [84] are widely applied,
with strong generalization ability and stable results. The performance in the laboratory
was better than the performance in the field [49,64]. This study presents the potential of
using the HSI technique directly in the field through measurements under natural light
conditions to predict the quality of grapes [64,81].

3.2. Image Feature Analysis
3.2.1. Qualitative Analysis

For qualitative analysis, research based on image features for grapes is rare here.
Grape grading is a vital sector in commercial production, and fine grading and exquisite
packaging could effectively improve the value of goods. Image features are often used in
qualitative analysis, such as identifying grape grades. Based on the image feature, Xiao et al.
measured values of SSC, TP and color space CIELAB. Three classes (Class I, Class II, Class
III) were established only by the values of SSC and TP due to poor correlation between
CIELAB and spectral data. PLS-DA was built using VIS/NIR Spectroscopy data to identify
four different grades of grape, and the accuracy was 77%–94% [51]. This study result is
consistent with the previous literature because it is difficult to classify and evaluate grapes
only by image features.

3.2.2. Quantitative Analysis

For quantitative analysis, most researchers also used spectra information to assess
grape quality, but image features were also applied to prediction. Firmness is the primary
textural attribute of fruit and is commonly used to predict the quality of the grape. Based
on the NIRS technology, Kanchanomai et al. used NIRS combined with PLSR to predict
firmness, and different preprocessing methods were used for comparison. The best model
the Savitzky-Golay first derivative (SGD1) for firmness, with the R2 result of 0.7427 and
0.7804 in the laboratory and field, respectively [49]. Xiao et al. used VIR/NIR spectroscopy
to predict the L*, a*, b*, SSC and TP, and LS-SVM performed best, and all results were
satisfactory [54]. Ribera-Fonseca et al. used a portable VIS/NIR spectroscopy device
combined with Pearson correlation to evaluate firmness, and the R2 result of 0.89 was
obtained [55]. Beghi et al. used a VIS/NIR spectroscopy combined with PLSR to monitor
grape withering by measuring firmness, TSS and weight loss. The R2 and RPD results
of 0.56 and 1.79 were obtained for firmness [73]. Color is a combination of visible light
reflected or emitted from an object, influencing consumer preference. Xiao et al. used
visible-near spectroscopy to grade for Manicure Finger and Ugni Blanc, and color space
CIELAB was explored [51]. Besides, sensory parameters were explored. Raúl et al. used
NIRS to evaluate sensory parameters, including firmness and color, and the study showed
considerable potential for predicting the above sensory attributes [72]. Besides, based on
the HSI, Baiano et al. applied HSI to predict the physico-chemical indices (seven grape
varieties) and sensory. Sensory data was evaluated by a series of professional panels. To
compare a hyperspectral image and RGB image, PLSR was also built using a combination of
only red, green, and blue wavelengths and full wavelengths. For spectra data, the average
R2 of all results was over 0.80. However, considering the selected three wavelengths, the
correlation between sensory data and spectra information was poor. The research showed
that HSI could predict physico-chemical indices, while it could not predict sensory data [91].
Min et al. used visible near-infrared HSI with deep learning, based on a regression approach
to predict the PH and firmness. Stacked auto-encoders (SAE) was conducted to extract
deep spectral features combined with pixel-level and mean spectra. PLS and LSSVM were
established to predict firmness and PH. The best model is SAE-LSSVM, with the R2 p
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of 0.923. The study showed that SAE could be an alternative for dimensionality reduction
and could predict the grape quality combined with HSI technology [92].

3.2.3. Conclusions

Image feature has not drawn much interest in quality assessment compared to spectral
feature. Regarding data preprocessing, in addition to the methods mentioned in Section 3.1,
detrend was used [72], and SGD1 performed the best in Kanchanomai et al. [49]. Apart
from the use in Section 3.1.3, PCA was conducted to research the latent structure of spectra
data to identify the differences between the sample, and was behind the architecture of
many food analysis devices through the analysis of reduced data [54]. In those studies,
SPA [54,92], CARS [54,92], and VMD-RC [80] have also been applied to select characteristic
wavelength and dimension reduction. Stacked auto-encoders (SAE) [92] has been used
to extract the sample’s deep spectral features and obtained a satisfactory result. Similarly,
for the calibration model, traditional ML methods, including PLS-DA [51], PLSR [49], and
Pearson correlation [55], are used to analyze data and compare the performance between
image features and spectral features. The comparison indicates the difficulty of only
evaluating internally by image features due to the poor ability to characterize features
about the internal information of fruit, while the corresponding spectral data model shows
better results.

3.3. Fusion Data Analysis
3.3.1. Qualitative Analysis

Data fusion strategies are performed as low-level, mid-level and high-level data
fusion [94]. Low-level fusion is a direct concatenation of raw data from different sources.
Mid-level fusion is a splice for features extracted from raw data. High-level fusion is the
concatenation of the results from the built model [95]. Based on HSI, data fusion strategies
have been used in the field. Here, we mainly discuss the fusion of a similar spectrum or the
fusion of a map and spectrum.

Regarding qualitative analysis, the combination of spectral features and image features
has been explored. For variety identification, Nogales-Bueno used anthocyanin profile,
color image analysis, near-infrared hyperspectral imaging and data fusion (a low-level
fusion of spectra and color space) to discriminate four autochthonous red grape cultivars.
Stepwise-LDA was built as a classification model, with an accuracy of 88%, 54%, 100% and
100% for internal validation and 86%, 52%, 86% and 86% for external validation for four
approaches, respectively. Image features performed poor results, and spectra and fusion
data showed satisfactory results [57]. Data fusion was applied in the study, while the result
is not better, and it is at least a comprehensive study.

3.3.2. Quantitative Analysis

Concerning quantitative analysis, In Gao [90], GA, CARS, SPA, UVE and CARS-SPA,
UVE-SPA were used to reduce dimensionality and extract the optimal wavelengths. The
Grey-level co-occurrence matrix (GLCM) was applied to extract the texture feature and
integrated it with image information (R, G, B, H, S, V, L, a, b). The result showed that
SPA-PLSR combined with the fusion of image and spectra information (mid-level fusion)
had the best detection, with the R2 of 0.9775 and 0.9762 for the calibration and prediction
set [90]. In that study, the PLSR model using HSI technology obtained good results in the
SSC determination of grape with the highest R2 P of 0.9763 based on fusion information in
red globe grape. Besides, Orlandi et al. used low-level and mid-level data fusion strategies
to condense the information obtained by an electronic eye (EE) and an electronic tongue (ET)
sensing system for assessing grape ripening, and PLSR was used. The results showed the
models using mid-level fusion performed better than that using EE and ET separately [96].
The studies here show that fusion data perform better than singe feature.



Foods 2023, 12, 132 16 of 23

3.3.3. Conclusions

The studies of data fusion are researched as a supplement and comparison to image
and spectral features. The spectra and image features of the sample were acquired, while
most of the studies only used spectral features. The studies have shown that only the RGB
calibration model performance is limited [90,91]. Fusion data showed great feasibility in
quality assessment and safety detection due to the acquisition of more features, which
increases the accuracy of prediction for quality assessment [90]. A little research presented
that the performance of fusion data is close to that of single spectral data, but it is also
a comprehensive study [57]. Besides, color space, GLCM and spectral data are fused
with various levels, and the multi-source information fusion of EE and ET showed great
performance. For calibration models, traditional ML (PLSR and LDA) approaches were
used for data analysis, and satisfactory results were obtained. Among them, the low-
level and mid-level are used more, and the high-level fusion is the least researched for
critical information loss due to the application of the model possibly. Besides, mid-level
fusion has a better performance than low-level. Overall, spectra better characterize the
features related to grape quality evaluation, while image features can only characterize
visible features, such as color, damage, mildew, pests, etc. Thus, spectral features are more
suitable and applicable to developing real-world applications than image features. Data
fusion is a supplement for spectral data and has shown great potential in non-destructive
detection [97–102].

4. Challenges and Prospects

In recent years, NIRS and HSI has been proven to be an effective tool due to its
characteristics of fast, high accuracy and non-destructive compared with the traditional
quality detection methods in agricultural and food products (AFP). The application of NIRS
and HSI allows reliable and convenient monitoring of grape composition to facilitate the
decision-making process dealing with grape quality sorting and harvest scheduling. While
most maturity identification was conducted using NIRS, HSI can also be used for maturity
identification due to the catch of color and component changes during ripening. HSI can
provide spatial attributes of agricultural produce for visual examination and further image
analyses, and a combination of HSI and detection of internal sugar, moisture, surface pesti-
cide residues, etc., was researched by many researchers and obtained satisfactory results.
Besides, the visualization prediction technology of HSI provides excellent convenience for
actual industries and applications.

The current hyperspectral imaging technology mainly faces significant challenges.
Regarding the data processing, hyperspectral imaging data is high volume and redundant,
which usually requires various effective algorithms to extract feature wavelengths for
dimensionality reduction, making data preprocessing for noise reduction, and robust
calibration models for extracting deep features. As summarized above, the preprocessing
and wavelength extraction methods are determined by actual performance. In general, SG,
SNV and MSC are common and efficient pre-treatment methods, and PCA and SPA are used
widely for wavelength extraction and perform acceptable results. Besides, Deep learning
(DL) shows the remarkable ability of feature extraction. However, the spatial information
obtained through hyperspectral imaging is not fully utilized, while it contains some critical
information. The data fusion technology could extract more comprehensive information,
including internal hydrogen-containing group information (e.g., O-H, C-H, and N-H) and
external image information, and it always has a good performance [57,90,91,100].

Robust calibration models have always been the focus of researchers. Various ML mod-
els have always obtained excellent and acceptable results. However, there is little research
on generalization ability. DL have performed excellent quality inspection results and good
generalization ability due to the remarkable advantage of processing high-throughput data
rapidly and extracting sample features automatically [86,88]. In particular, one-dimensional
convolutional neural networks (1D-CNN) are widely used in agro-product quality, and
excellent results have been obtained [103–106]. Besides, the deep convolutional generative
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adversarial network (DCGAN) was applied in calibration models due to limited or unbal-
anced data sets, which effectively increased the size and variability of the sample [107]. The
low robustness affects the development from laboratory to field application, one variety
to another variety, one vintage to another vintage and one device to another device, etc.
Many variations exist seriously in nature, and it is complex and inevitable. Thus, we could
build various sample databases from different vintage, vineyards, and varieties to meet
more variations.

There are many machine learning algorithms used in relevant research, and different
methods have shown different effects. For spectral and hyperspectral data from different
sources, the data is very complex and diverse. The problem we are facing now is how to deal
with these complex problems using existing and new data analysis methods in practical
application of grape quality detection. In addition, at the same time, new and various
algorithms have developed rapidly. For example, DL is used to effectively extract data
features and establish better models [108]; transfer learning can achieve model migration
in different application scenarios (different varieties, years and instruments, etc.) [109]; and
Automated Machine Learning (AutoML) can be developed to achieve the automation of
ML to free up developer’s time to focus on other tasks [110], etc. With the help of these
methods, we aim to develop a more robust and universal model, and it might be a future
research trend. Besides, the hyperspectral imaging system is currently expensive and
ponderous, which is not conducive to promotion and application. The main working range
is still near the ground. It is difficult to establish interconnection with Unmanned Aerial
Vehicles (UAV) and satellite regional remote sensing to realize large-scale collection and
detection of outdoor trees and fruits. This restricts the application of the HSI system in
real-time industrial applications. It is necessary to customize the equipment by selecting
characteristic bands and developing cheaper equipment.

Overall, as an effective non-destructive testing technology, hyperspectral imaging will
still play a significant role in the agro-food industry as a critical research tool. Further
development and applications will follow that help the agricultural industry meet food
safety and quality inspection needs. The main strategies in the future were proposed
to develop rapid, high-precision, real-time and low-cost detection systems for the food
industry, and it will be the problem we will continue to work on for a long time in the
future. The specific potential and results need to continue to be explored in future research.

5. Conclusions

This review stressed the recent progress of NIRS and HSI in identifying variety, vintage,
and geographical origin, and assessing quality attributes, biochemical components and
sensory parameters of table grapes. Qualitative and quantitative analysis is compared
and summarized regarding signal mode, data preprocessing method, calibration model
and result performance. Spectral information, image information and fusion data can
be explored based on ML and DL to link the measured reference values, and optimal
prediction models could be selected to quantify the enological parameters. The research
has shown that NIRS and HSI combined ML have great potential in the quality detection
of grapes, which is helpful to fully utilize grapes of all grades and benefits sustainable
economic development. The remarkable advantage of this technique is chemical-free
and non-destructive detection, together with the abundant information provided, which
enables multiple quality features to be examined. In the future, with continued technical
innovations in manufacturing and computing, NIRS and HSI performing in a low-cost and
high-speed way for online and real-time detection of various products foreseen. More work
must be done to implement this technology to achieve real-time applications successfully.
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1D-CNN One-dimensional convolutional neural networks
ANN/NN Artificial neural networks
Anth Total anthocyanins
CARS Competitive adaptive reweighted sample
DI Durofel index (berry firmness)
DL Deep learning
DM Dry matter
DPLS Discriminant partial least square
DWT Discrete wavelet transform
EEMD Ensemble empirical mode decomposition
Flav Flavanols
GLCM Grey-level co-occurrence matrix
GDA General discriminant analysis
IRIV Iteratively retains informative variables
LAB color space values
LDA Linear discriminant analysis
LV Latent variable/factors
MA Malic acid contents
MCCV Monte Carlo cross-validation
ML Machine learning
MPLSR Modified partial least squares regression
MSC Multivariate scattering correction
PCA Principal component analysis
Pearson Pearson’s similarity index (1/(1 − R2))
PLS Partial least squares analysis
PLS-DA PLS discriminant analysis
PLSR Partial least-square regression
QDA Quadratic discriminant analysis
RF Random forest
ResNet Residual Network
RR Ridge regression
RSQ/R2 Coefficient of determination
SAE Stacked auto-encoders
SG Savitzky-Golay smoothing
SNV Standard normal variate transform
SSC Soluble solids content
SVR Support vector regression
TA Titratable acidity
TB Tinta Barroca
TF Touriga Franca
TN Touriga Nacional
TP Total phenolic
TS Total sugars
TSS Total soluble solids
VIP Variable importance in projection
VMD-RC Variational mode decomposition (VMD)-regression coefficients
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