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Abstract: The addition of food-derived antihypertensive peptides to the diet is considered a rea-
sonable antihypertension strategy. However, data about the stability of antihypertensive peptides
in different food processing conditions are limited. In this study, through Sephadex G-15 gel chro-
matography and RP-HPLC separation, UPLC–ESI–MS/MS analysis and in silico screening, two novel
ACE-inhibitory peptides, Pro-Leu-Leu-Lys (IC50: 549.87 µmol/L) and Pro-Pro-Met-Trp-Pro-Phe-Val
(IC50: 364.62 µmol/L), were identified in millet bran glutelin-2 hydrolysates. The inhibition of
angiotensin-I converting enzyme and the potential safety of PLLK and PPMWPFV were studied
using molecular docking and in silico prediction, respectively. The results demonstrated that PLLK
and PPMWPFV could non-competitively bind to one and seven binding sites of ACE through short
hydrogen bonds, respectively. Both PLLK and PPMWPFV were resistant to different pH values
(2.0–10.0), pasteurization conditions, addition of Na+, Mg2+ or K+ and simulated gastrointestinal
digestion. However, PLLK and PPMWPFV were unstable upon heat treatment at 100 ◦C for more than
20 min or treatment with Fe3+ or Zn2+. In fact, treatment with Fe3+ or Zn2+ induced the formation of
PLLK–iron or PLLK–zinc chelates and reduced the ACE-inhibitory activity of PLLK. These results
indicate that peptides derived from millet bran could be added to foods as antihypertension agents.

Keywords: millet bran glutelin-2 hydrolysates; angiotensin-I converting enzyme inhibitor; molecular
docking; stability; security prediction in silico

1. Introduction

In 2021, around 1.28 billion people were suffering from hypertension and its com-
plications such as arteriosclerosis, hypertensive encephalopathy, stroke and myocardial
infarction [1]. More than one-sixth of the antihypertensive drugs used in the world are
angiotensin I-converting enzyme (ACE) inhibitors, because ACE is a crucial enzyme in the
processes that elevate human blood pressure [2,3]. In the renin–angiotensin system, ACE
can catalyze the conversion of angiotensin-I (an inactive decapeptide) into angiotensin-II,
with potential vasoconstriction effects; in addition, ACE can inactivate bradykinin that
has vasodilatory activity in the kallikrein–kinin system [4]. Undesirable dietary habits are
one of the main causes of hypertension [5]. Therefore, the improvement of dietary habits,
including the addition of ACE-inhibitory peptides to the diet, is considered a reasonable
strategy to lower the blood pressure [6]. Compared with chemically synthesized ACE
inhibitors, ACE-inhibitory peptides identified in food proteins have some advantages,
as they are economical, can be obtained from various sources, are safe and more easily
accepted by consumers [7]. Recently, technologies such as in silico screening, molecular
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docking and in silico simulated absorption and transport have presented new possibilities
for the application of ACE-inhibitory peptides by functional food and pharmaceutical
industries [8,9].

However, several challenges must be faced before novel ACE-inhibitory peptides
can be used by the food or pharmaceutical industry, which regard their bioavailability,
antihypertensive effect, in vivo safety, and stability in different processing conditions [10].
It was demonstrated that the amino acid sequence, especially the C-terminal tripeptide,
plays a crucial role in the physiological functions of ACE-inhibitory peptides [11]. However,
the active sequence of ACE-inhibitory peptides can be degraded by proteases present in
the stomach and the intestine such as pepsin, trypsin and dipeptidase, thereby making the
peptides inactive in vivo [12]. Moreover, the active sequence of ACE-inhibitory peptides can
be modified under some processing conditions including acidic treatment, alkali treatment,
heating, fermentation and by the interaction with other food ingredients [13]. Safety is the
first requirement for foods. Unsafe factors, especially potential toxicity and allergenicity,
hinder the inclusion of bioactive peptides in food [10]. In addition, some physicochemical
properties of these peptides, such as isoelectric point, hydrophilicity and hydrophobicity,
can also affect their utilization in specific food systems [14]. Therefore, it is very necessary to
investigate the safety and physicochemical properties of ACE-inhibitory peptides, as well as
their stability in different food processing conditions and during gastrointestinal digestion.

Millet (Setaria italica) bran is an abundant and economical plant protein resource be-
cause it is rich in protein (8.1–19.6 g/100 g), and its annual yield in China is
480,000 t [15]. Previous studies demonstrated that millet proteins are bioactive, as they
may exert anti-inflammatory, hypolipidemic and antioxidant activities [16–18]. However,
to our best knowledge, little data about millet bran antihypertensive peptides are avail-
able. Glutelin-2 accounts for approximately 25 g/100 g of millet proteins [19]. Preliminary
experiments for this study demonstrated that the ACE-inhibitory activities of albumin,
globulin, prolamin, glutelin-1 and glutelin-2 are 11.47%, 12.67%, 19.00%, 16.41% and 33.56%
(at 1 mg/mL), respectively. Millet bran glutelin-2 with high ACE-inhibitory activity and
yield can be developed as a potential natural ACE inhibitor. Therefore, the current study
focused on the identification, screening, characterization and safety of ACE inhibition
peptides from millet bran glutelin-2 hydrolysates using a combined in silico and in vitro
strategy. Moreover, the effect of these peptides on ACE structure and stability in various
food processing conditions and during gastrointestinal digestion were also studied.

2. Materials and Methods
2.1. Materials

Millet bran was purchased from Yushe Old Mill, Yushe, China. Trypsin (from bovine
pancreas, 5 × 104 U/g), alcalase (from Bacillus licheniformis, 2 × 105 U/g), papain
(8 × 105 U/g) and pepsin (from porcine stomach, 5 × 104 U/g) were bought from Guang-
dong Shengwukeji Co., Ltd. (Guangzhou, China). ACE and N-hippuryl-L-histidyl-L-
leucine (HHL) were purchased from Sigma (St. Louis, MO, USA). Other chemicals were
bought from Lianshi Company (Guangzhou, China).

2.2. Preparation of Millet Bran Glutelin-2 Hydrolysates (MBGH)

As per the modified method of Zheng et al. [20], millet bran was crushed and sieved
with a 120-mesh sieve. Millet bran powder was deoiled with N-hexane (1: 25, m/v) in
triplicate samples. Twenty grams of the defatted millet bran was dispersed in a NaCl
solution (250 µmol/L, 400 mL), mixed thoroughly and stirred (180 r/min) at 40 ◦C for
80 min. After filtration with a filter paper, the residue was collected and dispersed into
0.1 mol/L NaOH (1:10, mg/mL). The mixture was stirred (180 r/min) at 45 ◦C for 125 min
and then filtered with a filter paper. The filtrate was collected and centrifuged at 12,000× g
for 12 min. The supernatant was dialyzed against deionized water (dH2O) with SP132590
dialysis membranes (3500 Da MWCO) at 4 ◦C for 24 h. The dH2O was changed at 4 h
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intervals. Then, the dialysate solution was dried using an FD1A50 freeze dryer (Kesheng
Food Machinery Co., Zhucheng, China) to obtain a millet bran glutelin-2 powder.

Four grams of millet bran glutelin-2 powder was dissolved in 200 mL of distilled water
(dH2O), and the solution was adjusted to pH 7.8 ± 0.1. Papain (100 U/g) and alcalase
(200 U/g) were added and incubated under stirring (180 r/min) in a water bath at 53 ◦C.
The pH value of the reaction solution was maintained at pH 7.8 ± 0.1 by adjusting it with
0.1 mol/L NaOH at 30 min intervals. Two hours later, the pH value was adjusted to pH 6.8,
and trypsin (100 U/g) was added. The reaction solution was stirred (180 r/min) at 37 ◦C
for 60 min and then heated at 100 ◦C for 8 min to inactive the enzymes. After centrifugation
at 13,500× g for 10 min, the supernatant was dried with the freeze drier. This procedure
yielded millet bran glutelin-2 hydrolysates (MBGH). Moreover, the hydrolysis degree of
MBGH was determined using the trinitrobenzenesulfonic acid method [21].

2.3. ACE Inhibition and Definition of IC50 Value

As per the same procedure described by Jimsheena and Gowda [22], the inhibition of
ACE was evaluated by comparing the quantity of produced hippuric acid before and after
the addition of the peptides. The IC50 value was calculated from the regression equation of
ACE inhibition percentage for different concentrations of the sample and defined as the
concentration of sample inhibiting ACE activity by 50%.

2.4. Purification and Identification of ACE-Inhibitory Peptides from MBGH

After ultrafiltration using a membrane with pore size of 0.45 µm, the MBGH (1 mg/mL)
was purified with a Sephadex G-15 gel column (Φ1.6× 100 cm), eluted using distilled water
at an elution rate of 2.8 mL/min. The monitored wavenumber was 220 nm, and the effluent
fraction was collected every 5 min. The collected fractions were lyophilized, and their
ACE inhibition capacity was determined. The fraction with the highest inhibition capacity
was further separated using reversed-phase high-performance liquid chromatography (RP-
HPLC) with a semi-preparative C18 column (Zorbax, 9.4 × 250 mm, Agilent Technologies,
Palo Alto, CA, USA). A linear gradient of acetonitrile (5%–35%, in 25 min) was used
as mobile phase A, and deionized water containing 0.1% (v/v) of trifluoroacetate was
used as mobile phase B. The flow rate was 2.2 mL/min and was monitored at 220 nm.
The subfractions were freeze-dried and used for the determination of ACE inhibition.
The subfraction with the highest inhibition capacity was chosen for the analysis of the
peptide sequence.

The identification of the peptide sequence was carried out using Ultra-High-Perform-
ance Liquid Chromatography (UPLC) coupled with electrospray ionization–mass spec-
trometry (ESI–MS). A UPLC (U-3000 Series, Thermo Scientific, Waltham, MA, USA) with an
InfinityLab Poroshell 120 EC-C18 column (80× 2.0 mm, 1.9 µm, Agilent Technologies, Santa
Clara, CA, USA) was performed with a gradient of acetonitrile (5–95%, 0–30 min; 95–5%,
30–35 min) as eluent A and ultrapure water (containing 0.1% formic acid) as eluent B was.
The flow rate was 0.3 mL/min. The ESI-MS with a Q Exactive hybrid quadrupole-orbitrap
mass spectrometer (Thermo Fisher, Bremen, Germany) was carried out with full MS 35000,
ddMS2 17500, AGC target value of 1 e5, and mass range of 120–1800 m/z. Moreover, the MS
data were processed by De Novo™ software (Peak Studio 7.5, Bioinformatics Solutions,
Inc., Waterloo, BC, Canada) [23].

2.5. In Silico Screening and Synthesis

Peptide sequences identified in the MBGH were analyzed utilizing the databases
BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep, accessed on
17 December 2021) and AHTPDB (http://crdd.osdd.net/raghava/ahtpdb/, accessed on
17 December 2021) to find sequences of potential ACE inhibitors and of peptides with
antihypertensive activity, respectively [24]. If the predicted vector machine software scores
(SVMS) of a peptide sequence is more than zero, and the average local confidence (ALC)
of a peptide sequence is above 85%, the peptide is acceptable as an ACE inhibitor of with
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potential antihypertension activity [7,25]. Isoelectric point, hydrophilicity, hydrophobicity
and amphiphilicity of the selected peptides were predicted using the database AHTPDB
(http://crdd.osdd.net/raghava/ahtpdb/, accessed on 17 December 2021). Moreover, the
chemical synthesis of the selected sequence was performed by Qiangyao Biotech Co. (Wuxi,
China) with a standard solid phase method.

2.6. In Silico Security Prediction

Toxicity evaluation of the peptides identified in the MBGH was carried out using
the database ToxinPred (http://www.imtech.res.in/raghava/toxinpred/, accessed on
23 December 2021) [25]. In addition, the potential allergenicity of the peptides was assessed
using the database AlgPred (http://www.imtech.res.in/raghava/algpred/, accessed on
23 December 2021), with a threshold of −0.4 [26].

2.7. Molecular Docking

The docking patterns of ACE and the selected peptide sequences were molecularly
visualized with the WYBYL-X2.11 software (X2.11, Tripos International Company, Saint
Louis, Missouri, USA) [23]. From the Protein Data Bank (http://www.rcsb.org/pdb/
home/home.do, accessed on 9 January 2022), the three-dimensional (3D) crystal structure
of ACE (PDB: 1O8A) was downloaded. The T-score (the least required thrust value is 6.0)
was the predominant indicator used to select the docking patterns between the peptide and
ACE [27]. Additionally, the C-score, indicating the number and distance of the hydrogen
bonds formed between the active sites of ACE and the peptide sequence, was also recorded.

2.8. Stability Profiles under Different Processing Conditions
2.8.1. Thermal Stability Profiles

As per the method described by Zheng et al. [13], the synthesized peptide sequences
identified in the MBGH were dissolved in dH2O (100 µg/mL, pH 7.0) and then subjected
to two thermal regimens. (i) The peptide solution was heated at different temperatures
to simulate pasteurization conditions, including heating at 63 ◦C for 0.5 h; 69 ◦C for
0.5 h; 72 ◦C for 15 s; 75 ◦C for 10 min; 80 ◦C for 25 s; and 100 ◦C for 12 min. (ii) The peptide
solution was heated at 100 ◦C for 10, 20, 30, 40 and 50 min. After each thermal processing,
the peptide solution was cooled to room temperature, and its ACE inhibitory activity was
determined. Untreated peptides were used as a control.

2.8.2. pH Stability Profiles

According to the method described by Chai et al. [28] with slight modifications,
the synthesized peptide sequences identified in the MBGH were dissolved in dH2O
(100 µg/mL), and the solutions were then separately adjusted to different pH values
(pH 2–10). After incubation at 37 ◦C for 10 min, these solutions were all adjusted to pH 7.0.
After that, these peptide solutions were used for the determination of their ACE inhibitory
activity, using an untreated sample for comparison.

2.8.3. Effects of Different Metal Ions on Peptide Stability

Peptide stability in the presence of different metal ions was evaluated according to the
method of Zheng et al. [13]. Briefly, the peptides identified in the MBGH were dissolved in
dH2O (1 mg/mL). An aliquot of each peptide solution (100 µL) was subjected to treatment
with NaCl, KCl, MgSO4, ZnSO4 and FeCl3 (5 mmol/L, 100 µL). After incubation at 37 ◦C
in a stirring bath (140 r/min) for 15 min, 50 µL of the reaction solution was taken, and its
ACE inhibitory activity was determined. The remaining reaction solution was mixed with
the same volume of ethanol (approximately 150 µL) and then centrifuged at 12,000× g for
10 min. The precipitate was collected, lyophilized and then mixed with dry KBr (1:50 m/m).
The mixed powder was ground, pelleted and analyzed using a 660-IR FTIR spectrometer
(Varian, Palo Alto, CA, USA) in a scanning range from 400 to 4000 cm−1 [13]. Untreated
peptides were used for comparison.

http://crdd.osdd.net/raghava/ahtpdb/
http://www.imtech.res.in/raghava/toxinpred/
http://www.imtech.res.in/raghava/algpred/
http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do
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2.9. Stability Profiles during Simulated Gastrointestinal Digestion

Mixtures of trypsin (0.45 g), pig bile salt (3 g) and NaHCO3 (6.25 g) dissolved in
100 mL of dH2O (pH 6.8) were used to simulate the intestinal fluid, whereas pepsin (40 mg)
and NaCl (0.877 g) dissolved in 100 mL of dH2O (pH 2.0) were used to simulate the gastric
fluid (Sun et al., 2021) [29]. Peptide solutions (dissolved in ultrapure water, 1 mg/mL) were
incubated at 37 ◦C in a stirring bath (140 r/min) for 15 min, and then the simulated gastric
fluid was added (gastric fluid: peptide solution = 1: 10 v/v), and the mixture was further
incubated at 37 ◦C (140 r/min) for 90 min. Then, the reaction solution was adjusted to
pH 6.8 with Na2HPO4. The simulated intestinal fluid (the fluid: peptide solution = 1: 10,
v/v) was added, and the mixture was stirred (140 r/min) at 37 ◦C for 180 min. All reaction
solutions were heated at 100 ◦C for 8 min to inactivate the enzymes. The ACE inhibition
activities of the peptides before and after digestion were separately determined to evaluate
their stability.

2.10. Data Analysis

Data were analyzed, and the results are expressed as mean ± standard errors (n ≥ 3)
(SPSS Version 16.0 software, Chicago, IL, USA). One-way ANOVA was used to analyze the
variance at a significance level of p < 0.05.

3. Results and Discussion
3.1. Isolation of ACE-Inhibitory Peptides from MBGH

The extraction ratio of millet bran glutelin-2 was 6.94 g/100 g millet bran, consistently
with the report of Fu et al. [19]. The ACE inhibition capacity of millet bran glutelin-2
was 33.56% (at 1 mg/mL). After digestion by alcalase, papain and trypsin, the hydrolysis
degree of millet bran glutelin-2 hydrolysates (MBGH) was 19.33% ± 1.18%, and the ACE-
inhibitory activity of MBGH was 49.28% ± 3.38% (at 1 mg/mL). Alcalase, papain and
trypsin are widely used in the preparation of antihypertensive peptides because they
preferentially hydrolyze peptide bonds linking aromatic amino acid residues, Lys or Arg
residues, which are mainly responsible for the ACE-inhibitory activity of peptides [4]. As
shown in Figure 1, through Sephadex G-15 gel column chromatography, the MBGH was
separated into MBGH-A, MBGH-B, MBGH-C, MBGH-D and MBGH-E fractions. Because
MBGH-E showed greater ACE inhibition capacity than the other subfractions (p < 0.05),
it was further purified using RP-HPLC with a semi-preparative C18 column. As shown
in Figure 2, four main peaks (MBGH-E1, MBGH-E2, MBGH-E3 and MBGH-E4) appeared
after the purification of MBGH-E with RP-HPLC. MBGH-E4 was chosen for amino acid
sequencing with UPLC–ESI–MS/MS because its ACE inhibitory activity was the highest
(71.19% ± 3.85%, at 1 mg/mL).

The recent development of technologies such as in silico prediction of bioactivity and
safety of peptides, molecular docking and in silico simulated absorption and transport
in vitro has made the identification and selection procedures of peptides faster, easier
and more precise [8]. However, primary isolation and purification are still necessary,
since they can exclude most of the not-targeted peptides and improve the accuracy of the
identification [30,31]. Thus, a combined strategy including a classic purification procedure
(Sephadex gel and PR-HPLC chromatography) and in silico screening was utilized in the
current study.
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3.2. Peptide Identification from MBGH-E4 and In Silico Screening

Based on the results of the UPLC-ESI-MS/MS analysis, regarding, especially fragment
information and molecular weight, four oligopeptides of 4–9 amino acid residues were
identified in MBGH-E4 (Table 1). The in silico screening of these peptide sequences is
shown in Table 1. Since the average local confidence (ALC) was greater than 85%, the
peptides Pro-Leu-Leu-Lys (469.66 Da) and Pro-Pro-Met-Trp-Pro-Phe-Val (873.18 Da) were
demonstrated to have ACE inhibitory activity [25]. Furthermore, PLLK and PPMWPFV
were also predicted to have high potential antihypertensive capacity, because their vector
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machine software scores (SVMS) were higher than 0.9 [7]. These sequences were chemically
synthesized, and their ESI–MS/MS spectra are shown in Figure 3.

Table 1. Amino acid sequences obtained from UPLC–ESI–MS/MS analysis, ACE inhibition capacity,
in silico prediction of toxicity, allergenicity and physicochemical properties of the peptides identified
in millet bran glutelin-2 hydrolysates.

Peptide Sequence PLLK SGGRGGFGGG NDFAGF PPMWPFV

Mass (Da) 469.66 807.97 669.76 873.18
ALC (%) 90 76 70 94
SVMS 0.99 −0.10 −0.94 0.97
Prediction AHT Non-AHT Non-AHT AHT
Hydrophilicity −0.15 0.08 0.00 −1.24
Amphiphilicity 0.92 0.25 0.00 0.99
Hydrophobicity 0.53 −0.03 0.05 0.22
Isoelectric point 9.11 10.11 3.80 5.88
IC50 (µmol/L) 549.87 ND ND 364.62
IC50 (µmol/L) after
gastrointestinal digestion
(µmol/L)

591.57 ND ND 397.83

Toxicity Non-Toxin Non-Toxin Non-Toxin Non-Toxin
Allergenicity ND ND ND ND

The BIOPEP database was used for the calculation of the average local confidence (ALC); AHT: antihypertension;
SVMS: vector machine software score. The AHTPDB database was employed to predict the physicochemical
properties. The potential toxicity and allergenicity were predicted using the databases ToxinPred (www.imtech.
res.in/raghava/toxinpred/, accessed on 23 December 2021) and AlgPred (www.imtech.res.in/raghava/algpred/,
accessed on 23 December 2021), respectively. ND: not measured.
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(y = 14.168 ln(x)–33.838, R2 = 0.9762), as shown in Figure 4A,B, the IC50 values of PLLK
and PPMWPFV were calculated to be 549.87 µmol/L and 364.62 µmol/L, respectively.
Obviously, PLLK was identified as a tetrapeptide with a high content of Leu (a branched
amino acid), while PPMWPFV was identified as a heptapeptide with the branched amino
acid Val, the aromatic amino acid Phe and a Pro residue in the C-terminal tripeptide.
Previous studies referring to structure–activity relationships demonstrated that the ACE
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inhibition capacity of peptides is mainly dependent on a tripeptide sequence of amino
acids especially at the C-terminal [12]. In particular, aromatic amino acids (Phe, Trp and
Tyr), branched amino acids (Leu, Ile and Val) and Pro in C-terminal tripeptides are mainly
responsible for the high ACE-inhibitory activity of peptides, because these amino acids
can tightly bind to active sites in ACE [7,32]. Moreover, an increasing number of studies
have demonstrated that a Lys residue in a peptide sequence could tightly bind to the
key site S1 of ACE, thereby remarkably improving the inhibition capacity of peptides
towards ACE [33]. Therefore, the peptide sequence characteristics of PLLK and PPMWPFV
appear to be responsible for their relatively high ACE inhibitory activity. In addition, PLLK
(469.66 Da) showed a lower ACE inhibitory activity than the peptides SSYYPFK, derived
from oat naked glutelin-2 (890.4 Da, IC50: 91.82 µmol/L), and NMAINPSKENLCSTFCK,
identified in casein (IC50: 129.07 µmol/L). This is inconsistent with reports that the ACE
inhibitory ability of a peptide is negatively correlated with the peptide mass [11,34,35].
The main reason of this discrepancy is perhaps the use of different inhibition models of
ACE and the different binding power to ACE, as shown in Figure 5. In addition, the IC50
values of PLLK and PPMWPFV were much higher than that of Captopril (an excellent
antihypertensive drug with an IC50 value of 0.14 µmol/L) [20], indicating that their dose
required for a therapeutic effect is likely to be relatively high. This suggests that these
peptides may have an auxiliary hypotensive effect.

Foods 2022, 11, x FOR PEER REVIEW 9 of 16 
 

 

(A) (B) 

Figure 4. Regression analysis of the ACE inhibitory activity of PLLK (A) and PPMWPFV (B). 

  
(A) (B) 

  
(C) (D) 

Figure 5. General overview and local overview of the best-ranked binding patterns of PLLK (A,B) 
and PPMWPFV (C,D) docking at ACE (PDB: 1O8A). 

3.3. In Silico Prediction of Physicochemical Properties and Potential Safety 
Some physicochemical properties of PLLK and PPMWPFV were predicted using the 

BIOPEP databases [24]. As shown in Table 1, the hydrophobicity of PLLK and 
PPMWPFV is 0.22 and 0.53, respectively, consistent with their high content of hydro-
phobic amino acid residues. Their high amphiphilicity (0.92 and 0.99) suggested that 
PLLK and PPMWPFV have relatively high solubility in both polar food systems and 
non-polar food systems [10]. Moreover, the isoelectric point of PLLK and PPMWPFV is 

Figure 4. Regression analysis of the ACE inhibitory activity of PLLK (A) and PPMWPFV (B).

Foods 2022, 11, x FOR PEER REVIEW 9 of 16 
 

 

(A) (B) 

Figure 4. Regression analysis of the ACE inhibitory activity of PLLK (A) and PPMWPFV (B). 

  
(A) (B) 

  
(C) (D) 

Figure 5. General overview and local overview of the best-ranked binding patterns of PLLK (A,B) 
and PPMWPFV (C,D) docking at ACE (PDB: 1O8A). 

3.3. In Silico Prediction of Physicochemical Properties and Potential Safety 
Some physicochemical properties of PLLK and PPMWPFV were predicted using the 

BIOPEP databases [24]. As shown in Table 1, the hydrophobicity of PLLK and 
PPMWPFV is 0.22 and 0.53, respectively, consistent with their high content of hydro-
phobic amino acid residues. Their high amphiphilicity (0.92 and 0.99) suggested that 
PLLK and PPMWPFV have relatively high solubility in both polar food systems and 
non-polar food systems [10]. Moreover, the isoelectric point of PLLK and PPMWPFV is 

Figure 5. Cont.



Foods 2022, 11, 1355 9 of 15

Foods 2022, 11, x FOR PEER REVIEW 9 of 16 
 

 

(A) (B) 

Figure 4. Regression analysis of the ACE inhibitory activity of PLLK (A) and PPMWPFV (B). 

  
(A) (B) 

  
(C) (D) 

Figure 5. General overview and local overview of the best-ranked binding patterns of PLLK (A,B) 
and PPMWPFV (C,D) docking at ACE (PDB: 1O8A). 

3.3. In Silico Prediction of Physicochemical Properties and Potential Safety 
Some physicochemical properties of PLLK and PPMWPFV were predicted using the 

BIOPEP databases [24]. As shown in Table 1, the hydrophobicity of PLLK and 
PPMWPFV is 0.22 and 0.53, respectively, consistent with their high content of hydro-
phobic amino acid residues. Their high amphiphilicity (0.92 and 0.99) suggested that 
PLLK and PPMWPFV have relatively high solubility in both polar food systems and 
non-polar food systems [10]. Moreover, the isoelectric point of PLLK and PPMWPFV is 

Figure 5. General overview and local overview of the best-ranked binding patterns of PLLK (A,B)
and PPMWPFV (C,D) docking at ACE (PDB: 1O8A).

3.3. In Silico Prediction of Physicochemical Properties and Potential Safety

Some physicochemical properties of PLLK and PPMWPFV were predicted using the
BIOPEP databases [24]. As shown in Table 1, the hydrophobicity of PLLK and PPMWPFV
is 0.22 and 0.53, respectively, consistent with their high content of hydrophobic amino acid
residues. Their high amphiphilicity (0.92 and 0.99) suggested that PLLK and PPMWPFV
have relatively high solubility in both polar food systems and non-polar food systems [10].
Moreover, the isoelectric point of PLLK and PPMWPFV is 9.11 and 5.88, respectively,
indicating that it should be avoided to use them in food systems with these pH values [13].

In silico prediction provides fast and low-cost information on the safety of novel
peptides. The result predicted by the database ToxinPred demonstrated that PLLK and
PPMWPFV are not toxic (Table 1). The allergenicity of these peptides was not pre-
dicted because only peptides with more than 12 amino acids can be analyzed in AlgPred
(www.imtech.res.in/raghava/algpred/, accessed on 23 December 2021). A previous study
reported that oligopeptides with a smalle mass derived from foods are less allergenic
in comparison with proteins having a large mass, because they usually do not contain
complete epitopes [10]. Moreover, since some ACE inhibitors have been shown to affect
bradykinin metabolism and cause cough [4], further study in vivo is still needed to clarify
the safety of these peptides.

3.4. Molecular Docking Analysis

Peptides can bind to key binding pockets in ACE (S1, S1
′, and S2

′) and interfere
with the binding of ACE to its ligands (angiotensin-I or bradykinin), thereby showing
competitive inhibition [32]. The results of molecular docking revealed that PPMWPFV can
bind to seven active sites in ACE (LYS368, ASP377, GLU376, THR282, LYS454, ARG522 and
PRO508P) and form eight short hydrogen bonds (Figure 5 and Table 2), suggesting that
PPMWPFV has a relatively strong binding affinity for ACE [27]. This is the main reason
for its relatively high T-Score (9.93) and inhibition activity (364.62 µmol/L). On the other
hand, PLLK also showed a high T-Score (11.76), although it can bind to only one active
site of ACE (PRO508) and form two hydrogen bonds. The main reason is perhaps that the
distance of these hydrogen bonds is short (Table 2), since a high T-Score or a short distance
between hydrogen bonds indicates a strong coordination between peptides and ACE [36].
Moreover, the lower hydrogen bond number is responsible for the lower ACE inhibitory
activity of PLLK compared to PPMWPFY [7]. In addition, the active sites with which PPLK
and PPMWPFV interact are not in the key binding pockets of ACE (S1, S1

′ and S2
′), so both

PPLK and PPMWPFV are non-competitive inhibitors of ACE [32]. The non-competitive
inhibition is the main reason why PPLK and PPMWPFV showed a weaker ACE inhibitory
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capacity than the peptides NMAINPSKENLCSTFCK identified in casein (a competitive
inhibitor of ACE, IC50: 129.07 µmol/L) and SSYYPFK derived from oat naked globulin
(a competitive inhibitor, IC50: 91.82 µmol/L) [34,35].

Table 2. Docking scores and hydrogen bonds observed between ACE and peptides PLLK or PPMW-
PFV from the molecular docking simulation.

Ligand T-Score C-Score Hydrogen Bonds
Number Distance (Å)

PLLK 11.76 5.00 2 PRO508: 1.84, 1.92

PPMWPFV 9.93 5.00 8

LYS368: 2.44; ASP377: 2.73;
GLU376: 2.42; THR282: 2.37;
LYS454: 2.04; ARG522: 2.73;

PRO508: 2.04, 1.95

3.5. Stability under Different Thermal Treatments and pH Values

Stability is one paramount factor determining the compatibility of peptides with
different food systems and their bioavailability in vivo [28]. Heat treatments such as pas-
teurization and boiling are common processing techniques in the food industry. Obviously,
the ACE inhibition capacities of PPLK and PPMWPFV were relatively stable in different
pasteurization conditions (Figure 6A). These conditions included thermal treatments at
63 ◦C for 0.5 h, 69 ◦C for 0.5 h, 72 ◦C for 15 s, 75 ◦C for 10 min and 80 ◦C for 25 s. A
reduction in the ACE inhibition capacity of both PLLK and PPMWPFV was observed after
treatment at 100 ◦C for 12 min, but it was insignificant (p > 0.05). Moreover, the result in
Figure 6B demonstrated that PPLK and PPMWPFV showed stable ACE inhibition activity
during heating at 100 ◦C for 10–20 min. However, the ACE inhibition capacity of both
PPLK and PPMWPFV was dramatically decreased by a heat treatment at 100 ◦C for more
than 30 min (p < 0.05), indicating that they are unstable when subjected for a long time to a
high temperature. The structure of peptides can be destroyed at a high temperature, and
their bioactivity will be lost [10].

The ACE-inhibitory activities of PPLK and PPMWPFV were relatively stable in a pH
value range of 2.0–10.0 (Figure 6C). It is well recognized that the structure of a protein
tends to shrink at the isoelectric point. This tendency probably influences the docking
modes of ACE and peptides [14]. However, PLLK did not show an obviously different ACE
inhibition capacity at pH 10.0 (near its isoelectric point of pH 9.11, Table 1) with respect to
other pH values (p > 0.05). A similar trend was observed for PPMWPFV. The main reason
of this behavior is that the effect of the isoelectric point on oligopeptides is smaller than
that on proteins with a large molecule weight [2].
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Figure 6. Stability of PLLK and PPMWPFV (A) in different pasteurization conditions: heating at
63 ◦C, 0.5 h; 69 ◦C, 0 h; 72 ◦C, 15 s; 75 ◦C, 10 min; 80 ◦C, 25 s; and 100 ◦C, 12 min; (B) incubation at
100 ◦C for 10–50 min; (C) at various pH values; (D) addition of various metal ions. Controls in each
figure are untreated samples. Different lowercase letters (a–e) above the bars indicate the difference
is significant (p < 0.05).

3.6. Effects of Different Metal Ions on the Stability
3.6.1. Stability Profiles

Previous studies have found that the addition of metal ions can affect the capacity for
ACE inhibition of peptides in two ways: (i) by changing the polarity of the microenviron-
ment around the catalytic sites in the active center of ACE [7]; (ii) by inducing the formation
of a peptide–metal chelate [29]. Both mechanisms can influence the binding patterns of
ACE and peptides, resulting in a change in the peptides’ ACE inhibitory capacity. Moreover,
the zinc ion is the key prosthetic group of ACE [27]. The addition of zinc ions has been
demonstrated to have an effect on the ACE inhibition capacity of peptides identified in
camellia’s proteins [13]. After treatment with Na+, K+ or Mg2+, the ACE inhibitory activity
of PLLK or PPMWPFV was not significantly different compared to that of the untreated
peptides (Figure 6C) (p > 0.05), suggesting that the addition of Na2+, K+ and Mg2+ had
no obvious effect on the ability of PLLK and PPMWPFV to inhibit ACE. In contrast, both
PLLK and PPMWPFV exhibited a much lower ACE inhibitory activity after the addition of
Zn2+ or Fe3+ (p < 0.05), indicating that the ACE inhibitory activity of PLLK and PPMWPFV
were susceptible to high concentrations of Zn2+ or Fe3+.
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3.6.2. Fourier-Infrared Spectroscopy Analysis

The FT-IR spectrum of PPMWPFV treated with Zn2+ or Fe3+ showed no obvious
differences compared with that of untreated PPMWPFV (p > 0.05) (Figure 7A), demonstrat-
ing that the metal treatments did not cause the formation of PPMWPFV–iron chelate or
PPMWPFV–zinc chelate. In contrast, an obvious difference was found in the FT-IR spec-
trum of PLLK after treatment with Zn2+ or Fe3+ (p < 0.05, Figure 7B). Compared with the
FT-IR spectrum of untreated PLLK, the adsorption peak at 3471 cm−1, corresponding to the
stretching vibration of−N–H, shifted to 3476 cm−1 and 3477 cm−1 after the addition of Zn2+

and Fe3+, respectively (Figure 7B) [37]. Moreover, the peak at 570.90 cm−1, representative
of the stretching of amide IV in PLLK, separately shifted to 551.7 cm−1 and 549.9 cm−1 after
the addition of Zn2+ and Fe3+ [29]. These results indicate that the N-terminal amino groups
(–NH3) of PLLK are involved in the chelation of Zn2+ and Fe3+ [38]. The adsorption peak
at 1423.5 cm−1 (representing the strength of the −C=O bond of amide I) in the spectrum of
untreated PLLK moved to 1417 cm−1 and 1413 cm−1 after treatment with Zn2+ and Fe3+,
respectively [39]. Moreover, a new peak appeared at 1760.9 cm−1 owing to the deformation
vibration of the carboxyl group in the spectrum of PLLK treated with Fe3+, suggesting the
formation of –COO–Fe [29].
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with Zn2+ and Fe3+. PLLK–Zn2+, PLLK–Fe3+, PPMWPFV–Zn2+ and PPMWPFV–Fe3+ are PLLK and
PPMWPFV after reaction with ZnSO4 and FeCl3 (5 mmol/L), respectively.

Overall, the results shown in Figures 6C and 7B demonstrated the formation of PLLK–
iron chelates and PLLK–zinc chelates. Chelation with Zn2+ or Fe3+ can induce changes in
the structure of PLLK, thereby reducing its ACE inhibitory activity. In addition, treatment
with Fe3+ or Zn2+ may change the polarity of the microenvironment around the active
center of ACE, leading to a decrease in the ACE inhibitory activity of PPMWPFV [14].

3.7. Resistance to Gastrointestinal Digestion

ACE-inhibitory peptides should have sufficient resistance to digestion by proteases
existing in the gastrointestinal tract to exert antihypertension activity in the body [37]. As
shown in Figure 8A, on the basis of the regression equation y = 14.596 ln(x)–43.163, the IC50
value of PLLK after digestion was calculated to be 591.57 µmol/L (Table 1). This value was
higher, though not significantly, than that of untreated PLLK (364.62 µmol/L, Figure 4A)
(p > 0.05). Moreover, the IC50 value of PPMWPFV after digestion was 397.83 µmol/L,
as calculated from the regression equation y = 14.085 ln(x)–34.313 (Figure 8B), and was
not significantly different compared to that of the untreated PPMWPFV (364.62 µmol/L,
Figure 4B). These results indicated that both PLLK and PPMWPFV were relatively stable
during the simulated gastrointestinal digestion. PPMWPFV contains Tyr and Phe residues



Foods 2022, 11, 1355 13 of 15

but exhibited a relatively high stability against gastrointestinal digestion, which seems to
be inconsistent with the report that peptides rich in aromatic amino acids (Tyr, Phe and Trp)
are susceptible to gastrointestinal digestion [29], because pepsin and trypsin in the gastric
and the intestinal fluids preferentially hydrolyze amide bonds involving aromatic amino
acid residues [12]. The main reason of our observations is perhaps the high proline content
of PPMWPFV. Proline has been demonstrated to have a high water-holding capacity and
can confer plants excellent resistance to drought and heat [40]. An increasing number of
studies found that a Pro residue near aromatic amino acids can effectively improve the
resistance of a peptide to digestion by pepsin and trypsin [32]. Therefore, the Pro residue in
PLLK and PPMWPFV may contribute to peptide stability during gastrointestinal digestion.
Proline-rich peptides including ELHPQ, LHPQ and KPVPR, identified in canary seeds, and
SSYYPFK, identified in naked oat, also exhibited excellent stability during gastrointestinal
digestion [7,34]. Moreover, the Lys (cationic amino acid) residue at the C-terminus of PLLK
and the branched amino acid residues (Leu and Val) existing in PLLK and PPMWPFV were
also demonstrated to be helpful for the stability of oligopeptides during gastrointestinal
digestion [10,29]. In addition, the application of trypsin during proteolysis could enhance
the resistance of peptides to gastrointestinal hydrolysis [34]. However, the influence of
simulated gastrointestinal digestion on the amino acid sequences of PLLK and PPMWPFV
should be studied in a future work.
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4. Conclusions

Two novel ACE-inhibitory peptides, PLLK (IC50: 549.87 µmol/L) and PPMWPFV
(IC50: 364.62 µmol/L), without potential toxicity, were identified in millet bran glutelin-2
hydrolysates. PLLK and PPMWPFV can bind to one and seven binding sites of ACE, (but
not to the key binding sites), respectively, through hydrogen bonds of a short distance.
Both PLLK and PPMWPFV were resistant to different pH values (2.0–10.0), pasteurization
conditions, and addition of Na+, Mg2+ or K+. Moreover, PLLK and PPMWPFV showed
a relatively high stability during simulated gastrointestinal digestion. However, these
peptides were unstable when heated at 100 ◦C for more than 30 min and when treated
with Fe3+ or Zn2+. The addition of Fe3+ or Zn2+ could induce the formation of PLLK–iron
chelate or PLLK–zinc chelate. These results indicated that PLLK and PPMWPFV derived
from millet bran could be used as ingredients for antihypertensive foods. However, their
bioavailability, plasma half-life, antihypertensive effect in vivo and other experimental
indicators should be investigated in further work.
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