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Abstract: The development of functional fermented beverages enriched with γ-aminobutyric acid
(GABA) has been pursued because of the health benefits of GABA; however, few studies have
described GABA production by yeast. Therefore, this study aimed to produce fermented apple
beverages enriched with GABA produced by Saccharomyces cerevisiae SC125. Golden Delicious apples
were fermented by S. cerevisiae SC125 to produce a novel functional beverage; commercial yeast was
used as the control. The GABA, organic acid, and volatile compound content during the fermentation
process was investigated by high-performance liquid chromatography and headspace solid-phase
microextraction/gas chromatography-mass spectrometry. A yield of 898.35 ± 10.10 mg/L GABA
was achieved by the efficient bioconversion of L-monosodium glutamate. Notably, the S. cerevisiae
SC125-fermented beverage produced several unique volatile compounds, such as esters, alcohols,
6-decenoic acid, and 3-hydroxy−2-butanone, and showed significantly enhanced contents of organic
acids, including malic acids, citric acid, and quinic acid. Sensory analysis demonstrated that the S.
cerevisiae SC125-fermented apple beverage had improved aroma, flavor, and overall acceptability. In
conclusion, a fermented functional apple beverage containing GABA was efficiently produced using
S. cerevisiae SC125.

Keywords: γ-aminobutyric acid; Saccharomyces cerevisiae; fermented beverage; organic acid;
volatile compounds

1. Introduction

Fermented beverages are widely consumed worldwide, including fruit wine, yogurt,
and vegetable–fruit beverages [1]. Notably, functional fermented beverages have become
globally known for their bioactive compounds such as vitamins, probiotics, amino acids,
and dietary fiber [2]. Several studies have focused on researching functional fermented
beverages, such as selenium-enriched beer [3], probiotic beverages [4], isoflavone enriched
soy alcoholic beverages [5], cassava and rice-based beverages with antioxidant activity [6],
and bioyogurt from buffalo milk with mannan extract [7].

γ-Aminobutyric acid (GABA) is a non-protein amino acid and is widespread in mi-
crobes, animals, and plants [8]. It is the primary inhibitory neurotransmitter in the central
nervous system of mammals. In addition, GABA has been shown to lower blood pressure,
sedation, and diuresis as well as helping to prevent diabetes [8]. Owing to these health
benefits, the development of functional fermented beverages enriched with GABA has
been pursued.

It has long been known that lactic acid bacteria (LAB) and yeast are generally recog-
nized as safe (GRAS), and they play important roles in producing fermented beverages.
Many articles have reported the use of a single LAB strain to generate GABA-enriched
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fermented beverages, including black raspberry juice [9], honey syrup [10], and yogurt-
like beverages [11]. By contrast, only a few reports have described GABA production by
yeasts [8]. Saccharomyces cerevisiae is the most common yeast for food fermentation and
possesses the qualified presumption of safety status, and many authors have reported
its beneficial effects on human health [12]. Thus, utilizing S. cerevisiae strains to generate
GABA-enriched fermented beverages is of interest. Sichuan paocai, a brine-salted pickle,
has a history spanning thousands of years in China, and it is fermented mainly by naturally
adherent microorganisms on the vegetable [13]. There are enormously diverse microor-
ganisms that exist during traditional Sichuan paocai natural or spontaneous fermentation.
In our previous study, a specific functional yeast strain, named S. cerevisiae SC125, was
isolated from traditional Sichuan paocai. It has been proven to have a unique capacity for
producing GABA, as described by Zhang et al. [14].

Apple is the second most consumed fruit, and it is considered as very rich source of
phytochemicals, which may play a role in lowering the risk of chronic diseases [15]. The
Golden Delicious apple is one of the most popular apple cultivars globally, especially in
the Sichuan-Tibet plateau in China, due to its outstanding quality, high yield, and good
flavor [16]. Nevertheless, the species has its disadvantages with storage due to its thin skin
and tendency for dehydration compared with other apple cultivars [17]. Accordingly, the
production of fermented beverages from Golden Delicious apples can help reduce the level
of post-harvest problems.

Therefore, this study aimed to produce fermented apple beverages enriched with the
functional ingredient of GABA. The specific S. cerevisiae SC125 was used as a starter culture
based on its ability to produce GABA. The pH, ethanol, organic acid, volatile compounds,
and sensory properties of the fermented apple beverages were all evaluated. To the best
of our knowledge, this is the first attempt to produce a GABA enriched fermented apple
beverage using S. cerevisiae.

2. Materials and Methods
2.1. Apple Material

The apple cultivar (Golden Delicious), harvested from a farm in the western Sichuan
Plateau of China, was used as a substrate for fermentation. Apple juice was prepared
following the methodology of Kaprasob et al. [18]. The apples were cleaned with purified
water and cut into small pieces, which were homogenized and blended using a Midea
blender (MJ-BL25C4, Guangdong Midea Living Appliances Manufacturing Co., Ltd., Fos-
han, China) for 5 min. The apple juice was stored at −20 ◦C until use. After that, the apple
juice was pasteurized for 15 min at 70 ◦C and was used for the fermentation study.

2.2. Starter Culture Preparation

S. cerevisiae SC125, which was previously isolated from traditional Sichuan paocai,
was used as the starter. The yeast was stored at −80 ◦C at the Xihua University of China
in yeast peptone dextrose (YPD) with 5 g/L L-glutamate and 20% (v/v) sterile glycerol.
The yeast was cultured in YPD broth at 30 ◦C for 24 h, and cells (6 Lg CFU/mL) were used
as the starter inoculum. Commercial active dry wine yeast (Hubei Angel Yeast Co., Ltd.,
Yichang, China) was used as the control.

2.3. Fermentation of Apple Juice

The apple juice (250 mL) containing 5 g/L L-monosodium glutamate (L-MSG) was
inoculated in duplicate with a final content of 6 Lg CFU/mL starter culture of yeast. The
fermentation was performed at 30 ◦C in 500 mL cotton-plugged and plastic film sealed
flasks without shaking for 96 h, and samples were collected every 12 h for analysis.
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2.4. Analytical Methods
2.4.1. Viable Yeast Cells and pH Analysis

The viable yeast cells were counted using plate counting on a YPD agar at 30 ◦C
for 48 h, and results were presented as Lg-transformed data. The pH of the fermented
beverage was determined using a pH meter (pHS−3C, Chengdu Ark Technology Co., Ltd.,
Chengdu, China).

2.4.2. Analysis of Reducing Sugar, Ethanol, GABA, and Organic Acids

The 3,5-dinitrosalicylic acid (DNS) method was used to determine the reducing sugar
content. The ethanol content was assayed using gas chromatography (GC) as described
by Liang et al. [19] with slight modifications. The sample was analyzed on a GC system
(Agilent Technologies, Inc., Palo Alto, CA, USA), and a DB-Wax column (30 m × 0.25 mm,
0.25 µm film thickness, Agilent Technologies, Inc., Palo Alto, CA, USA) was used, with
column and injector temperatures of 60 ◦C and 200 ◦C, respectively.

The GABA content was quantified using high-performance liquid chromatography
(HPLC) (Waters 2695, Waters corp., Reno, NA, USA) as previously described [14]. The
separation column was an Inertsil ODS−3 C18 column (4.6 mm× 150 mm, 5 µm, Shimadzu,
Japan). The mobile phases used were A (0.05 M sodium acetate: methanol: tetrahydrofuran,
84: 15: 1, V/V/V) and B (methanol). The flow rate and temperature of the elution phase
were maintained at 1.0 mL/min at 30 ◦C.

The organic acid analyses were also performed using HPLC as previously described [14].
The separation column was an ionic exchange resin Bio-Rad Aminex HPX−87H column
(7.8 mm × 300 mm, 9 µm; Bio-Rad Laboratories, Inc., Hercules, CA, USA) with a flow
rate of 0.6 mL/min and 5 mmol/L sulfuric acid as the mobile phase. The UV detection
wavelength was 210 nm, and the column oven temperature was maintained at 60 ◦C.

2.4.3. Analysis of Volatile Compounds

The volatile compounds in the fermented beverages were determined using headspace
solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-
MS), according to the process described by Yang et al. [20] with some modifications (GC
temperature program). For GC-MS analysis, each tested sample (4.8 mL) was placed in a
15 mL SPME glass vial with 200 µL internal standard and 2.0 g of sodium chloride. The
volatile compounds were semi quantified using 2-octyl alcohol (TCI Chemical Industry
Development Co., Ltd., Shanghai, China) as the internal standard.

The vial was tightly sealed and placed in a constant-temperature water bath at 55 ◦C
for 15 min before inserting the aged solid-phase micro extractor into the sample bottle for
30 min. Thereafter, the bottle was pulled out, inserted into the gas chromatograph inlet,
and desorbed at 220 ◦C for 3 min before GC-MS analysis.

GC-MS analysis was carried out on a Shimadzu GC-MS-QP 2020NX instrument
equipped with a DB-Wax column (30 m × 0.25 mm × 0.25 µm film thickness; Agilent
Technologies, Santa Clara, CA, USA). GC conditions were as follows: DB-Wax column,
injection temperature of 240 ◦C; temperature program: initial temperature at 50 ◦C for
2 min, 3 ◦C/min to 80 ◦C for 10 min, and 5 ◦C/min to 230 ◦C for 6 min; helium as a
carrier gas, linear velocity of 1.0 mL/min, and a split ratio of 5:1. Conditions for MS:
electron ionization (EI) source, electron energy of 70 eV, filament flow of 0.20 mA, ion
source temperature of 200 ◦C, interface temperature of 250 ◦C, and scanning range of
30.00–500.00 aum.

2.5. Sensory Analysis

Sensory evaluation was carried out in accordance with the method described by
Ye et al. [21]. A total of seven sensory indexes, namely aroma, color, flavor, taste, mouthfeel,
acidity, and overall acceptability, were chosen to describe the sensory quality and were
determined by a hedonic scale of nine categories (1, dislike extremely; 2, dislike very much;
3, dislike moderately; 4, dislike slightly; 5, neither like nor dislike; 6, like slightly; 7, like
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moderately; 8, like very much; and 9, like extremely). The blind evaluation was carried out
in our laboratory by a trained panel of 5 males and 5 females with 20−30 years of extensive
experience in cider description.

2.6. Statistical Analysis

All experiments were repeated three times, and the results were expressed as the mean
and standard deviation (SD). Origin 8.5 software was used to process the data and plot the
figures, SPSS Statistics 22.0 software (IBM) was used for the analysis of variance (One-way
ANOVA), and p < 0.05 was considered statistically significant.

3. Results and Discussion
3.1. Viable Cell Growth and pH Profiles during Fermentation

Changes in cell growth and pH value during fermentation by S. cerevisiae SC125 in
apple juices are presented in Figure 1. There was a significant (p < 0.05) increase in the
viable cell counts over the apple juices with a fermentation course of 24 h. The cell counts
increased slowly and reached the peak value of 7.72 ± 0.03 log CFU/mL at 48 h and
remained nearly constant until the end of fermentation. The results suggest that S. cerevisiae
SC125 growth is well adapted to the apple juice substrate environment.
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Figure 1. Viable cell counts and pH values were measured during 96 h of apple juice fermentation. The
# and4 indicate the viable cell counts in S. cerevisiae SC125-fermented apple juice and the control. The
• and N indicate pH value of the S. cerevisiae SC125-fermented apple juice and the control.

The change in pH value during fermentation is also depicted in Figure 1. The main
role of pH is to confer microbial stability and preserve the sensory properties of bever-
ages [22]. Prior to fermentation, the initial pH value of the apple juice was 4.55; after 48 h
of fermentation by S. cerevisiae SC125, there was a significant (p < 0.05) reduction in the pH
value to 4.08± 0.01. Compared with the control, the fermentation process using S. cerevisiae
SC125 resulted in a lower pH value. Notably, previous studies showed that lower pH
conditions are beneficial for enhanced GABA synthesis [23].

3.2. Changes in Ethanol and Organic Acid Profiles during Fermentation

Ethanol content is one of the most important indicators for evaluating the S. cerevisiae
fermentation beverage [24]. As shown in Figure 2, S. cerevisiae SC125 showed excellent
fermentation performance and produced 46.38 g/L (5.80% v/v) ethanol from apple juices
within 96 h, with a residual reducing sugar content of 2.31 ± 0.17 g/L compared with the
control. As the ethanol content was lower than 7% (v/v), the apple beverage would be
classified as a low-alcohol beverage and be in accordance with the healthy drinking trend
of today’s society [25].
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Figure 2. Reducing sugar consumption and ethanol production during 96 h. The # and4 indicate
reducing sugar consumption in S. cerevisiae SC125-fermented apple juice and the control. The • and
N indicate ethanol production in S. cerevisiae SC125-fermented apple juice and the control.

The organic acids in fermented fruit beverages have a significant impact on the flavor,
stability, and quality of the beverages, and they also influence their pH and acceptability [17].
The change profiles of the main organic acids during the apple beverage fermentation
process are shown in Figure 3. Malic acid was the most abundant organic acid in apple juice
and the fermented beverage (Figure 3A). The initial content of malic acid in apple juice
was 3.64 ± 0.01 g/L. Compared with control, the S. cerevisiae SC125-inoculated apple juice
showed higher malic acid content throughout fermentation, and 4.16 ± 0.03 g/L malic acid
was detected after 96 h of fermentation. This could be related to the GABA shunt pathway
in S. cerevisiae SC125. In yeast, GABA can be catabolized to succinate semialdehyde (SSA)
by GABA transaminase, followed by conversion of SSA to succinate, which subsequently
feeds into the tricarboxylic acid (TCA) cycle [26]. Succinate then undergoes a series of
catalytic reactions to form malic acid. Meanwhile, malic acid can provide a delightful
sourness and act as a flavoring agent to create a smoother, more natural taste [27].
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Furthermore, citric acid is one of the essential metabolites in the TCA cycle, which
provides nutrition and energy sources for microorganisms and promotes cell growth
during the fermentation process [28]. Figure 3B shows the curve of citric acid change
during fermentation. Citric acid content increased dramatically in both groups during
the first 24 h of fermentation and then decreased dramatically until 48 h; 1.21 ± 0.02 g/L
citric acid was detected at the end of S. cerevisiae SC125 fermentation. Interestingly, the
change curves of pyruvate (Figure 3E) and citric acid were similar. Pyruvate is an important
metabolite in the Embden-Meyerhof-Parnas (EMP) pathway; it is also a pivotal precursor
for many other metabolites, notably citric acid [29].

Shikimic acid is one of the major organic acids in apple juice. Upon inoculation
with yeast, the shikimic acid content showed a slight upward trend in the first 12 h,
followed by a sharp decrease during the next 12 h, and then remained nearly constant
until the end of fermentation (Figure 3C). Notably, the decrease in shikimic acid content
may be related to the synthesis of quinic acid. It has been reported that the breakdown
pathway of shikimic acid can produce 3-dehydroquinic acid, a precursor compound for the
synthesis of quinic acid. Thus, this may facilitate an increase in the quinic acid content [30].
In addition, shikimic acid is an essential molecule for the synthesis of aromatic amino
acids [30]. The change curve for quinic acid is shown in Figure 3D, with its levels increasing
rapidly in the first 36 h after inoculation with yeast. Remarkably, compared with the
control, the S. cerevisiae SC125-inoculated apple juice showed higher quinic acid content
throughout fermentation. Quinic acid has been reported to have anti-vasculitis, anti-
neuritis, antioxidant, and radiation protection properties, thus offering many health benefits
to consumers [31].

Fumaric acid is the intermediate of the TCA cycle. Figure 3F shows the curve of
fumaric acid content change during fermentation. The content of fumaric acid remained
extremely low throughout the fermentation period. The results were similar to those of
Hranilovic et al. [32], who reported a negative correlation between the content of fumaric
acid and ethanol production.
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3.3. Volatile Compounds Analysis

Flavor is considered one of the main properties of fermented beverages and an im-
portant element to determine the quality of the beverage, which is influenced by the type
and content of volatile compounds [33]. Table 1 summarizes the volatile compounds of the
two yeasts following the fermentation of apple juice. Overall, the results show significant
differences between the different compounds, including esters, alcohols, acids, and other
compounds. A heatmap is a very intuitive way to visualize two-dimensional data [34]. To
better visualize the flavor differences between the two yeasts fermenting apple juice sepa-
rately, the heatmap of Figure 4 was utilized to demonstrate the composition and content of
volatile compounds, while their contents were transformed by Logarithm. Ethyl caprylate,
ethyl acetate, ethyl laurate, isoamyl alcohol, phenylethanol, and octanoic acid were the
main compounds shared by the two apple beverages, and ethyl 3-hydroxytridecanoate, 6-
decenoic acid, and 3-hydroxy−2-butanone were unique to the S. cerevisiae SC125-fermented
beverage. The contents of the main compounds, except for ethyl laurate, were higher in
the S. cerevisiae SC125-fermented beverage than in the non-fermented one. Additionally,
the contents of a few other compounds, such as 9-decenoic acid ethyl ester, ethyl lactate,
isobutyl acetate, hexyl acetate, 2-methyl n-propanol, and 2-methylbutyric acid, were higher
in the S. cerevisiae SC125-fermented beverage than in the control. There were similar con-
tents of ethyl decanoate and n-pentanol between the two apple beverages. The results also
demonstrated that the S. cerevisiae SC125-fermented beverage had lower contents of hexyl
hexanoate, lauryl alcohol, 1-heptanol, 2,3-butanediol, hexanoic acid, acetaldehyde, and
eugenol than the control. Higher alcohols are considered to contribute positively to the
sensory characteristics of the apple cider [35]. The fermentation with S. cerevisiae SC125
also produced more alcohols, such as isoamyl alcohol and phenylethanol.

Table 1. Volatile compound profiles of apple beverages identified by HS-SPME/GC-MS (µg/L).

Compounds Odor
Threshold

Descriptors
Odor Content(µg/L) OAV

SC125 Control SC125 Control

Esters
Ethyl 11-hexadecenoate nf Buttery 1.49 ± 0.09 a 1.26 ± 0.08 b - -

Ethyl 3-hydroxytridecanoate nf Nutty 1.49 ± 0.02 a - - -
9-decenoic acid ethyl ester nf Fruity 313.47 ± 2.21 a 162.94 ± 3.01 b - -

Ethyl benzoate nf Fruity 4.48 ± 0.11 a 1.26 ± 0.09 b - -
Ethyl heptanoate nf Pineapple 1.49 ± 0.21 a 1.26 ± 0.09 b

Ethyl decanoate 200 Fruity 286.60 ± 2.24 a 286.72 ± 2.29 a >1 >1
Hexyl hexanoate nf Raw fruit 68.67 ± 1.89 b 370.08 ± 3.24 a - -

Hexyl formate nf Fruity 5.97 ± 0.15 a 2.53 ± 0.01 b - -
Ethyl lactate 14,000 Wine 152.26 ± 1.90 a 98.52 ± 0.21 b <0.1 <0.1

Ethyl caprylate 147 Brandy 1347.93 ± 7.65 a 1139.30 ± 5.11 b >1 >1
Isobutyl acetate 1600 Pleasant fruity 20.90 ± 0.99 a 11.37 ± 0.23 b <0.1 <0.1
Heptyl acetate nf Rose 2.99 ± 0.08 a 1.26 ± 0.01 b - -
Hexyl acetate 1500 Fruity 108.97 ± 2.99 a 73.26 ± 1.31 b <0.1 <0.1
Ethyl acetate 7500 Slightly fruity 1916.66 ± 5.88 a 1317.39 ± 5.28 b <0.1 <0.1

Isobutyl acetate 1600 Ripe fruit 29.85 ± 2.29 a 22.74 ± 2.22 b <0.1 <0.1
Isoamyl acetate 30 Banana, pear 46.27 ± 3.21 a 2.53 ± 0.01 b >1 <0.1

Ethyl laurate 1500 Flower, fruit 798.61 ± 3.29 b 924.57 ± 4.78 a >0.1 >0.1
Ethyl palmitate 1000 Weak waxy 4.48 ± 0.11 a 1.26 ± 0.01 b <0.1 <0.1

Alcohols
N-pentanol 200 Mellow, astringent 1.49 ± 0.09 a 1.26 ± 0.01 a <0.1 <0.1
1-hexanol 8000 Grass flavor 2.99 ± 0.11 a 2.53 ± 0.02 b <0.1 <0.1
N-butanol 5000 Alcoholic 64.19 ± 2.51 a 64.42 ± 1.01 a <0.1 <0.1

Isoamyl alcohol 30,000 Bitter almond 2268.95 ± 8.90 a 1894.62 ± 9.01 b <0.1 <0.1
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Table 1. Cont.

Compounds Odor
Threshold

Descriptors
Odor Content(µg/L) OAV

SC125 Control SC125 Control

Isobutanol 4000 Fusel alcohol 552.31 ± 2.29 a 492.60 ± 2.11 b >0.1 >0.1
Lauryl alcohol 1000 Floral fragrance 8.96 ± 0.91 b 11.37 ± 0.09 a <0.1 <0.1

1-Heptanol 200 Lemon, orange 28.36 ± 1.12 b 37.89 ± 1.01 a >0.1 >0.1
Phenylethanol 10,000 Rose 1792.77 ± 5.98 a 1447.49 ± 5.21 b >0.1 >0.1

2-methyl n-propanol nf nf 156.74 ± 2.91 a 118.73 ± 0.91 b <0.1 <0.1
2,3-Butanediol 30,000 Cheese 1.49 ± 0.02 b 2.53 ± 0.01 a <0.1 <0.1

Acids
2-methylpropionic acid nf nf 52.25 ± 0.99 a 42.94 ± 1.81 b - -

2-methylbutyric acid nf - 143.30 ± 3.01 a 89.68 ± 1.71 b - -
6-decenoic acid 170 Milk 1.49 ± 0.08 a - <0.1 -
Hexanoic acid 420 Barbecue flavor 210.47 ± 4.34 b 272.82 ± 2.89 a >0.1 >0.1
Octanoic acid 500 Fruit flavor 3673.60 ± 9.98 a 2936.65 ± 9.01 b >1 >1

Acetic acid 4740 Sour 406.02 ± 2.21 a 397.87 ± 1.99 b <0.1 <0.1

Aldehydes and Ketones
Acetaldehyde 110 Malt fragrance 1.49 ± 0.01 b 2.53 ± 0.01 a <0.1 <0.1

3-hydroxy−2-butanone 800 Creamy fragrance 1.49 ± 0.11 a - <0.1 -

Phenols
2,4-Di-tert-butylphenol nf Fruity 43.29 ± 1.09 a 20.21 ± 0.90 b - -

Eugenol 100 Lilac 16.42 ± 0.31 b 60.63 ± 1.09 a >0.1 >0.1

TOTAL 14540.66 12315.00

nf, the threshold of the substance has not been determined. -, not detected. Different superscripts within the same
row indicate significant differences at p < 0.05.
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Importantly, many volatile compounds in fermented beverages have very low sniffing
threshold concentrations [36]. Since humans can perceive volatiles with an rOAV > 1, the
odor activity values (OAVs; the ratio of the content of the compound to its sniffing threshold)
were also calculated for each compound. As shown in Table 1, the volatile compounds
with rOAV > 1 in the two apple beverages were ethyl decanoate, ethyl caprylate, and
octanoic acid. Additionally, the beverage fermented by S. cerevisiae SC125 also contained
isoamyl acetate, which is derived from the esterification of acetic acid and isoamyl alcohol,
another compound that was present in higher concentrations in beverages fermented by
S. cerevisiae SC125.

3.4. Changes in GABA Production during Fermentation

GABA produced by microbial fermentation has been widely used in the food industry
because of its safety and low cost. Consequently, one of the key objectives of this study was
to increase the GABA content of apple juice by S. cerevisiae SC125 through fermentation.
In this study, the GABA content of fermented beverages was analyzed by HPLC, and the
quantitative results are shown in Figure 5. The GABA content (898.35 ± 10.10 mg/L) in the
fermented beverage described here was greater than other beverages, including grape must
beverage (497.97 mg/L) [37], sugar cane juice milk (80.00 mg/L) [38], and mature coconut
water (134.00 mg/L) [2]. However, it was lower than black raspberry juice (2.40 g/L) [9].
Previous studies have shown that GABA has stress-relieving effects [8], and 10 mg of GABA
in fermented milk administered orally daily was effective for hypertensive patients [14].
Hence, the GABA content in the fermentation beverage described in this report could be
sufficient to provide consumers with these health benefits.
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3.5. Sensory Evaluation

To evaluate the organoleptic characteristics of fermented beverages, a sensory analysis
was performed by a trained panel of 10 judges, using seven evaluation indicators: aroma,
color, flavor, taste, mouth feel, acidity, and overall acceptability. Figure 6 depicts the
intensity ratings of two fermented beverages after 96 h of fermentation. Both fermented
beverages received a high acceptability score. Notably, the beverages fermented with a
culture of S. cerevisiae SC125 had a higher score for aroma (8.12), flavor (8.05), and overall
acceptability (7.80), which may be attributed to the production of more esters and alcohols.
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4. Conclusions

The results suggest that Golden Delicious apple juice can be GABA-enriched using
S. cerevisiae SC125. Furthermore, S. cerevisiae SC125 inoculation accelerated the production
of organic acids and pH reduction, which is beneficial for enhanced GABA synthesis. More-
over, it massively promoted the formation of volatile compounds—in terms of compound
types and content—during fermentation, especially for isoamyl alcohol and isoamyl acetate,
thus improving the overall sensory quality of the S. cerevisiae SC125-fermented beverage.
In conclusion, Golden Delicious apples can be used as a fermentation substrate to create a
functional fermented beverage with GABA-producing S. cerevisiae SC125.
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